Computation of Functions of Certain Operator Matrices

Lawrence A. Harris
Mathematics Department
University of Kentucky
Lexington, Kentucky 40506

Submitted by Ky Fan

Abstract

This note gives a simple method to compute the entries of holomorphic functions of a 2×2 block or operator matrix which can be written as a product. To illustrate this method, the entries are given for the exponential, fractional powers, and inverse of such operator matrices.

If H and K are Hilbert spaces, we denote the space of bounded linear operators from H to K by $\mathscr{L}(H, K)$. Our main result is the following:

Theorem 1. Let $B_{1}, C_{1} \in \mathscr{L}\left(H, K_{1}\right)$ and $B_{2}, C_{2} \in \mathscr{L}\left(H, K_{2}\right)$. Suppose f is a function which is holomorphic in an open set D containing the spectrum $\sigma\left(C_{1}^{*} B_{1}+C_{2}^{*} B_{2}\right)$ and 0 . Then

$$
f\left(\left[\begin{array}{cc}
B_{1} C_{1}^{*} & B_{1} C_{2}^{*} \\
B_{2} C_{1}^{*} & B_{2} C_{2}^{*}
\end{array}\right]\right)=\left[\begin{array}{cc}
f(0) I+B_{1} R C_{1}^{*} & B_{1} R C_{2}^{*} \\
B_{2} R C_{1}^{*} & f(0) I+B_{2} R C_{2}^{*}
\end{array}\right]
$$

where $R=g\left(C_{1}^{*} B_{1}+C_{2}^{*} B_{2}\right)$ and g is the holomorphic extension to D of $g(z)=[f(z)-f(0)] / z$.

Note that when $H=\mathbb{C}$ the operators B_{1}, B_{2}, C_{1}, and C_{2} may be identified with vectors in K_{1} or K_{2}. The proof of Theorem 1 follows immediately from the lemma below with

$$
B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right], \quad \text { and } \quad K=K_{1} \times K_{2} .
$$

Lemma 2. Let $B, C \in \mathscr{L}(H, K)$. Suppose f is a function which is holomorphic in a open set D containing $\sigma\left(C^{*} B\right)$ and 0 . Then

$$
f\left(B C^{*}\right)=f(0) I+B g\left(C^{*} B\right) C^{*}
$$

In particular, the above lemma contains the well-known formula (e.g. [6, p. 264])

$$
\begin{equation*}
\left(\lambda I-B C^{*}\right)^{-1}=\frac{1}{\lambda}\left[I+B\left(\lambda I-C^{*} B\right)^{-1} C^{*}\right] \tag{1}
\end{equation*}
$$

which holds when $\lambda \notin \sigma\left(C^{*} B\right)$ and $\lambda \neq 0$.
Proof. Let $S=\sigma\left(C^{*} B\right) \cup\{0\}$. Then $\sigma\left(B C^{*}\right) \subseteq S$ by (1). Clearly $f(z)$ $=f(0)+z g(z)$ for $z \in D$, so $f\left(B C^{*}\right)=f(0) I+B C^{*} g\left(B C^{*}\right)$ by the holomorphic functional calculus [4, §5.2]. It suffices to show that $C^{*} g\left(B C^{*}\right)=$ $g\left(C^{*} B\right) C^{*}$. Since $\left(\lambda I-C^{*} B\right) C^{*}=C^{*}\left(\lambda I-B C^{*}\right)$, it follows that $C^{*}(\lambda I$ $\left.-B C^{*}\right)^{-1}=\left(\lambda I-C^{*} B\right)^{-1} C^{*}$ for all $\lambda \notin S$. Let Γ be an oriented envelope of S with respect to $g(z)$. Then by Theorems 3.3.2 and 5.2.4 of [4],

$$
\begin{aligned}
C^{*} g\left(B C^{*}\right) & =\frac{1}{2 \pi i} \int_{\Gamma} g(\lambda) C^{*}\left(\lambda I-B C^{*}\right)^{-1} d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma} g(\lambda)\left(\lambda I-C^{*} B\right)^{-1} C^{*} d \lambda \\
& =g\left(C^{*} B\right) C^{*}
\end{aligned}
$$

as required.
Corollary 3.

$$
\exp \left(\left[\begin{array}{ll}
B_{1} C_{1}^{*} & B_{1} C_{2}^{*} \\
B_{2} C_{1}^{*} & B_{2} C_{2}^{*}
\end{array}\right]\right)=\left[\begin{array}{cc}
I+B_{1} R C_{1}^{*} & B_{1} R C_{2}^{*} \\
B_{2} R C_{1}^{*} & I+B_{2} R C_{2}^{*}
\end{array}\right]
$$

where

$$
R=\sum_{n=0}^{\infty} \frac{\left(C_{1}^{*} B_{1}+C_{2}^{*} B_{2}\right)^{n}}{(n+1)!}
$$

Let S be a compact set in \mathbb{C} containing 1 , and suppose that 0 is in the unbounded component of the complement of S. It is not difficult to show that there is a simply connected domain D containing S and an nth root function $z \rightarrow z^{1 / n}$ which is holomorphic on D with $1^{1 / n}=1$. By the functional calculus, any such function defines an nth root for any bounded linear operator A on H satisfying $\sigma(A) \subseteq S$. In particular, when A is a positive operator, we may define $A^{1 / n}$ to be the unique positive nth root of A. (Existence and uniqueness can be proved by a simple modification of the argument for the square root given in [2, Proposition 4.33], or as in [1, 5].)

Corollary 4. Suppose that m and n are positive integers and that 1 is in the unbounded component of the complement of $\sigma\left(C_{1}^{*} B_{1}+C_{2}^{*} B_{2}\right)$. Then

$$
\left[\begin{array}{cc}
I-B_{1} C_{1}^{*} & -B_{1} C_{2}^{*} \\
-B_{2} C_{1}^{*} & I-B_{2} C_{2}^{*}
\end{array}\right]^{m / n}=\left[\begin{array}{cc}
I-B_{1} R C_{1}^{*} & -B_{1} R C_{2}^{*} \\
-B_{2} R C_{1}^{*} & I-B_{2} R C_{2}^{*}
\end{array}\right]
$$

where $R=\phi\left(I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)$ and

$$
\phi(z)=\frac{1+z+\cdots+z^{m-1}}{1+z^{m / n}+\cdots+z^{(n-1) m / n}}
$$

In particular, when the exponent is $\frac{1}{2}, R=\left[I+\left(I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)^{1 / 2}\right]^{-1}$.
Corollary 5. Under the conditions of Corollary 4,

$$
\left[\begin{array}{cc}
I-B_{1} C_{1}^{*} & -B_{1} C_{2}^{*} \\
-B_{2} C_{1}^{*} & I-B_{2} C_{2}^{*}
\end{array}\right]^{-m / n}=\left[\begin{array}{cc}
I+B_{1} R C_{1}^{*} & B_{1} R C_{2}^{*} \\
B_{2} R C_{1}^{*} & I+B_{2} R C_{2}^{*}
\end{array}\right]
$$

where $R=\left(I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)^{-m / n} \phi\left(I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)$. In particular, when the exponent is $-\frac{1}{2}$,

$$
R=\left(I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)^{-1 / 2}\left[I+\left(I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)^{1 / 2}\right]^{-1}
$$

The following formula is useful for computing inverses. In particular, it allows one to deduce Corollary 5 from Corollary 4 (by incorporating R into B_{1} and B_{2}). Compare [3, Proposition 2].

Corollary 6. Suppose λ is a nonzero complex number outside of $\sigma\left(C_{1}^{*} B_{1}+C_{2}^{*} B_{2}\right)$. Then

$$
\left[\begin{array}{cc}
\lambda I-B_{1} C_{1}^{*} & -B_{1} C_{2}^{*} \\
-B_{2} C_{1}^{*} & \lambda I-B_{2} C_{2}^{*}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\lambda^{-1} I+B_{1} R C_{1}^{*} & B_{1} R C_{2}^{*} \\
B_{2} R C_{1}^{*} & \lambda^{-1} I+B_{2} R C_{2}^{*}
\end{array}\right]
$$

where $R=\lambda^{-1}\left(\lambda I-C_{1}^{*} B_{1}-C_{2}^{*} B_{2}\right)^{-1}$.

Proofs of Corollaries. Corollary 3 follows immediately from Theorem 1 with $f(z)=\exp (z)$. To deduce Corollary 4, put $S=\sigma\left(I-C^{*} B\right) \cup\{1\}$, and let $z \rightarrow z^{1 / n}$ be an nth root function as described in the comments preceding Corollary 4. Take $f(z)=(1-z)^{m / n}$, and note that R is as asserted because $g(z)=-\phi(1-z)$. The proof of Corollary 5 is similar, but with $f(z)=(1-z)^{-m / n}$ and $g(z)=(1-z)^{-m / n} \phi(1-z)$. Corollary 6 follows immediately from Theorem 1 with $f(z)=(\lambda-z)^{-1}$. It also follows immediately from (1).

REFERENCES

1 D. R. Brown and M. J. O'Malley, On nth roots of positive operators, Amer. Math. Monthly 87:380-382, (1980).
2 R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic, New York, 1972.
3 L. A. Harris, Linear fractional transformations of circular domains in operator spaces, Incliana Univ. Math. J. 41:125-147, (1992).
4 E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, 1957.
5 N. M. Rice, On nth roots of positive operators, Amer. Math. Monthly 89:313-314, (1982).

6 A. E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.

