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a b s t r a c t

In this letter, the solutions of some nonlinear differential equations have been obtained by
means of the homotopyperturbationmethod (HPM). Applications of the homotopymethod
to some nonlinear reaction–diffusion equations with exponential source term show rapid
convergence of the sequence constructed by this method to the exact solutions.
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1. Introduction

In reality, closed-form solutions for nonlinear problems are difficult to come-by and this has resulted in the development
of numerical and other approximate solutions [1]. Recently, the application of the homotopy perturbation method (HPM)
to nonlinear initial boundary value problems shows that there is a rapid convergence of the sequence constructed by this
method to the exact solutions [2,3]. In this paper, we consider the initial value problem (IVP)

dθ
dx

+ δeθ
= 0, (1)

θ(0) = 0, (2)

which describes the temperature equation in a pressure driven porous media combustion with weak internal thermal
diffusion [4]. In the absence of reactant consumption, the general heat balance equation for the one-step reaction system
can be written as [1]

∂θ

∂t
= 1θ + δeθ

= 0, in Ω (3)

∂θ

∂n
+ Bi θ = 0, ∂Ω, (4)

where 1 is an operator and δ is related to the characteristic chemical reaction, while ∂
∂n is the outward normal derivative

on the boundary and Bi is the Biot number, a parameter which determines whether or not the temperatures inside a body
will vary significantly in space.
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2. Homotopy perturbation technique

In line with [5,6,3,7–11], we illustrate the homotopy perturbation method, we consider the nonlinear equation

A(u) − f (r) = 0, r ∈ Ω, (5)

with the boundary conditions:

B

u,

∂u
∂n


= 0, (r ∈ ∂Ω), (6)

where A is a general differential operator, B is a boundary operator, f (r) is a known analytic function, and ∂Ω is the boundary
of domain Ω . The operator A is generally divided into two parts; L and N , where L and N are linear and nonlinear parts of A,
respectively. Therefore, (3) may be written as

L(u) + N(u) − f (r) = 0. (7)

We construct a homotopy v(r, p) : Ω × [0, 1] → ℜ which satisfies

H(v, p) = [L(v) − L(u0)] + p[L(u0)] + p[N(v) − f (r)] = 0, (8)

or

H(v, p) = [L(u) − L(u0)] + p[A(u) − f (r)] = 0 (9)

where p ∈ [0, 1] is called the homotopy parameter and u0 is an initial approximation of (5) which satisfies the specified
boundary conditions. When p = 0 or p = 1, we have

H(v, 0) = L(u) − L(u0) = 0, H(v, 1) = A(u) − f (r) = 0. (10)

On the other hand, if p ∈ (0, 1), then the homotopy H(v, p) deforms from L(u) − L(u0) to A(u) − f (r). Thus, the solution of
(5)–(6) may be expressed as

v = v0 + pv1 + p2v2 + p3v3 + · · · . (11)

Eventually, at p = 1, the system takes the original form of the equation and the final stage of deformation gives the desired
solution. Thus taking limit

u = lim
p→1

v = v0 + v1 + v2 + . (12)

3. Some particular examples

3.1. Example I

We start by applying the homotopy technique to an initial value problem of the form

dθ
dx

+ δeθ
= 0. (13)

θ(0) = 0. (14)

In line with [1], we define homotopy as

dθ
dx

−
dy0
dx

+ p

dy0
dx

+ δeθ


= 0. (15)

Suppose that the solution of (13)–(14) takes the form

θ = v0 + pv1 + p2v2 + p3v3 + p4v4 + p5v5 · · · , (16)

with an initial approximation

v0(x) = y0(x) = c, (17)

where c is to be determined. Eq. (15) may be expressed as [7]

dθ
dx

−
dy0
dx

+ p
[
dy0
dx

+ δev0


1 + θ1 +

θ2
1

2!
+

θ3
1

3!
· · ·

]
= 0, (18)
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where θ1 = pv1 + p2v2 + p3v3 + p4v4 + p5v5 · · ·. After substituting (16) into (18), and collecting terms in powers of p, we
obtain

dv1

dx
+

dy0
dx

+ δev0 = 0, (19)

dv2

dx
+ δev0v1 = 0, (20)

dv3

dx
+ δev0


v2 +

v2
1

2


= 0, (21)

dv4

dx
+ δev0


v3 + v1v2 +

v3
1

6


= 0, (22)

dv5

dx
+ δev0


v4 + v1v3 +

v2
1v2

2
+

v2
2

2
+

v4
1

24


= 0, (23)

v1(0) = v2(0) = v3(0) = v4(0) = v5(0) · · · = 0. (24)

The solutions of (19)–(23) are

v1 = −δecx, v2 =
δ2

2
e2cx2, v3 = −

δ3

3
e3cx3, v4 =

δ4

4
e4cx4, and v5 = −

δ5

5
e5cx5. (25)

The fifth order approximation is given by

θ = v0 + v1 + v2 + v3 + v4 + v5 = c − δecx +
δ2

2
e2cx2 −

δ3

3
e3cx3 +

δ4

4
e4cx4 −

δ5

5
e5cx5. (26)

By using (14) on (26), we obtain c = 0, and the solution corresponds to the exact solution

θ =

∞−
n=1

(−1)n

n
δnxn

n!
= − ln(1 + δx). (27)

3.2. Example II

The steady state formulations of (3)–(4) due to Frank-Kamenetskii have been developed and studied by many others
[12,1,13,14]

d2θ

dx2
+

j
x
dθ
dx

+ δx−βeθ
= 0, (28)

dθ
dx

(0) = 0, θ(1) = 0, (29)

where j is related to the geometry and β is a numerical exponent. Thus after substituting (16) into (28)–(29) and collecting
terms in p,

d2v1

dx2
+

j
x
dv1

dx
+

d2y0
dx2

+ δx−βev0 = 0, (30)

d2v2

dx2
+

j
x
dv2

dx
+ δx−βev0v1 = 0, (31)

d2v3

dx2
+

j
x
dv3

dx
+ δx−βev0


v2 +

v2
1

2!


= 0, (32)

d2v4

dx2
+

j
x
dv4

dx
+ δx−βev0


v3 + v1v2 +

v3
1

3!


= 0, (33)

d2v5

dx2
+

j
x
dv5

dx
+ δx−βev0


v4 + v1v3 +

v2
2

2!
+

v2
1v2

2!
+

v4
1

4!


= 0. (34)
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The solutions of (30)–(34) are

v0 = c, v1 = −
δecx2−β

(2 − β)(j + 1 − β)
, v2 =

δ2e2cx4−2β

2(2 − β)2(j + 1 − β)(j + 3 − 2β)
,

v3 = −
δ3e3c(2j + 4 − 3β)

2(2 − β)2(j + 1 − β)2(j + 3 − 2β)(j + 5 − 3β)
x6−3β ,

v4 =
δ4e4c(3j2 + 16j − 11jβ − 25β + 17 + 9β2)

12(2 − β)4(j + 1 − β)3(j + 3 − 2β)(j + 5 − 3β)(j + 7 − 4β)
x8−4β , (35)

v5 =

−δ5e5c

24j4 + 316j3 − 206j2β + 609j2β2
− 1890j2β

+1416j2 − 745jβ3
+ 3468jβ2

− 5190jβ + 2516j
+324β4

− 1991β3
+ 4419β2

− 4234β + 1488

 x10−5β

120(2 − β)5(j + 1 − β)4(j + 3 − 2β)2(j + 5 − 3β)(j + 7 − 4β)(j + 9 − 5β)
,

where β ≠ 2, which is also satisfied by the corresponding closed-form solution [14]. The value of c is determined by using
the Dirichlet condition in the boundary conditions (29). For example, when j = β = 0 and δ = 0.86, c = 0.8363.

3.3. Example III

An unsteady 1D form of (3)–(4) is

∂θ

∂t
=

∂2θ

∂x2
+ δeθ

= 0, (x, t) ∈ Ω ⊂ ℜ
2, (36)

θ(x, 0) = 1/2x(1 − x), (37)

dθ
dx

(0, t) = 0, θ(1, t) = 0. (38)

In line with [3], we construct homotopy in the form

∂θ

∂t
−

∂v0

∂t
= p


∂2θ

∂x2
+ eθ

−
∂v0

∂t


, (x, t) ∈ Ω ⊂ ℜ

2. (39)

After substituting Eq. (16) into Eq. (39) and collecting terms in p,

∂v1

∂t
=

∂2v0

∂x2
−

dv0

dt
+ ev0 , (40)

∂v2

∂t
=

∂2v1

∂x2
+ ev0v1, (41)

∂v3

∂t
=

∂2v2

∂x2
+ ev0


v2 +

v2
1

2!


, (42)

∂v4

∂t
=

∂2v3

∂x2
+ ev0


v3 + v1v2 +

v3
1

3!


, (43)

∂v5

∂t
=

∂2v4

∂x2
+ ev0


v4 + v1v3 +

v2
2

2!
+

v2
1v2

2!
+

v4
1

4!


. (44)

In line with [1], it is convenient to choose v0 = 1/2x(1 − x), then

v1 =


e

1
2 x(1−x)

− 1

t, (45)

v2 =
t2

2!


e

1
2 x(1−x)

+


1
2

− x
2

− 2


e

1
2 x(1−x), (46)

v3 =
t3

3!


5 − 6e

1
2 x(1−x)

+


5e

1
2 x(1−x)

− 7
 

1
2

− x
2

+ 2ex(1−x)
+


1
2

− x
4


e

1
2 x(1−x), (47)
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Fig. 1. Plot of θ(x) against x (HPM).

Fig. 2. Plot of θ(x) against x (Exact).

Fig. 3. 3D plot of θ(x, t) against x (HPM).

v4 =
t4

4!


−20 + 6e

3
2 x(1−x)

− 20ex(1−x)
+ 31e

1
2 x(1−x)

+ 34

1
2

− x
2

ex(1−x)

− 59

1
2

− x
2

e
1
2 x(1−x)

+ 21

1
2

− x
4

e
1
2 x(1−x)

+ 52

1
2

− x
2

− 8

1
2

− x
4

+


1
2

− x
6

− 20

1
2

− x

e

1
2 x(1−x)


e

1
2 x(1−x). (48)

v5 =
t5

5!

[
∂2v∗

4

∂x2
+ e

1
2 x(1−x)


v∗

4 + 4v∗

1v
∗

3 +
30
2!

v∗

2
2
+

15
2!

v∗

1
2
v∗

2 +
1
4!

v∗

1
4
]

e
1
2 x(1−x), (49)

where

v∗

1 = v1/t, v∗

2 =
2!
t2

e
−1
2 x(1−x)v2, v∗

3 =
3!
t3

3!e
−1
2 x(1−x)v3, v∗

4 =
4!
t4

3!e
−1
2 x(1−x)v4. (50)

4. Conclusion

It is observed that Fig. 1. obtained by the fifth order approximation (HPM) converges to the profiles given by the exact
solution (Fig. 2). Similarly, in the unsteady state, Figs. 3 and 4 show that the HPM solution is reliable as it confirms the
numerical solutions obtained byNDSolve in theMATHEMATICA package. Although the approximate homotopy perturbation
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Fig. 4. 3D plot of θ(x, t) against x (NDSolve).

method is found to work extremely well in the examples considered, the approach may be less effective and accurate in the
presence of more complicated nonlinear source terms.
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