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A symbolic method fork-statistics
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Abstract

Through the classical umbral calculus, we provide new, compact and easy to handle expressions fork-statistics, and more
generally forU -statistics. In addition, this symbolic method can be naturally extended to multivariate cases and to generalized
k-statistics.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1929, Fisher [4] introducedk-statistics as new symmetric functions of a random sample. The aim of Fisher was
to estimate cumulants through free-distribution methods by using only combinatorial techniques. Thek-statistics are
related to the power sum symmetric polynomials in the random variables (r.v.’s) of the sample. The point of view of
Fisher is described with a wealth of details by Kendall and Stuart (cf. [8]). The method is straightforward enough;
however, his execution leads to intricate computations and some cumbersome expressions, except for very simple
cases. That is why many authors tried to simplify the matter later.

One of the most relevant contributions was given by Speed [7] in the 1980’s. Speed resumed the Doubilet approach
to symmetric functions [3], consisting in labelling symmetric functionsthrough partitions of a set rather than partitions
of an integer. Transition matrices are computed via Mœbius function, generalizing and simplifying the presentation of
thek-statistic theory. Nevertheless, in order to extend such a theory to generalizedk-statistics (polykays), Speed had
to resort to the tensor approach introduced by Kaplan in 1952.

We take a different point of view by using the high computational potential of the classical umbral calculus.
This symbolic method was introduced by Rota and Taylor in 1994 [6] and further developed in [1] and [2]. From
a combinatorial perspective, we revisit the Fisher theory as exposed by Kendall and Stuart, taking into account the
Doubilet approach to symmetric functions. The umbral calculus offers a nimble syntax method that allows both
computation without using Mœbius function and a natural extension to generalizedk-statistics without bringing the
tensor device into it. What is more, this language clarifies the role played by the power sum symmetric polynomials
in thek-statistic expressions.
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After recalling inSection 2the strictly necessary umbral background, inSection 3we put in an umbral setting the
four classical bases of symmetric polynomial algebra. InSection 4we give a general procedure for writing downU -
statistics. Such a procedure is based on the umbral relation between moments and augmented symmetric polynomials
(Theorem 4.1). In the last section, applications tok-statistics,h-statistics and multivariatek-statistics are given.

2. The umbral calculus language

We start by presenting the formal setting of umbral calculus. We shall confine our exposition to what is necessary
for the aims of this paper.

The umbral calculus is a syntax consisting of the following data: an alphabetA = {α, β, . . .} whose elements are
namedumbrae; a commutative integral domainR whose quotient field is of characteristic zero; a linear functional
E , called evaluation, defined on the polynomial ringR[A] and taking values inR, and such that E[1] = 1,
E[αiβ j · · · γ k] = E[αi ]E[β j ] · · · E[γ k] for any set of distinct umbrae inA and fori, j, . . . , k non-negative integers
(uncorrelation property); an elementε ∈ A, calledaugmentation, such that E[εn] = 0 for n ≥ 1; an elementu ∈ A,
calledunity umbra, such thatE[un] = 1, for n ≥ 1.

A polynomialp ∈ R[A] is calledumbral polynomial. Thesupport of p is the set of all umbrae occurring inp. Two
umbral polynomials are said to beuncorrelated when their supports are disjoint.

When the evaluationE is considered as expectation operator, an umbra carries the structure of a r.v., making no
reference to its probability space. Themoments of an umbraα are the elementsan ∈ R suchthat E[αn] = an for
n ≥ 1. In that case, we said that the umbraα represents the sequence 1, a1, a2, . . .. The singleton umbra χ is the
umbra whose moments are all zero but the first, which is equal to 1. Thefactorial moments of an umbraα are the
elementsa(n) ∈ R corresponding to the umbral polynomials(α)n = α(α −1) · · · (α −n +1), n ≥ 1 viathe evaluation
E , i.e. E[(α)n] = a(n). TheBell umbra β is the umbra such thatE[(β)n] = 1, n ≥ 1. The umbraβ and the umbra
χ provide respectively a symbolic tool for handling composition and inversion of formal power series; for a detailed
exposition see [1] and [2].

Two umbraeα andγ are said to besimilar when E[αn] = E[γ n] for all n ≥ 1, and we will write α ≡ γ . So
two similar umbrae represent the same moment sequence. A sequence 1, a1, a2, . . . in R is represented by infinitely
many distinct and thus similar umbrae, so one deals with moment products by means of the uncorrelation property.
Indeed, we haveai a j �= E[αiα j ] with ai = E[αi ] anda j = E[α j ], as well asai a j = E[αiα′ j ] with α ≡ α′ andα′
uncorrelated withα. So,givenn ∈ N , the sequence

n∑
k=0

(
n
k

)
an−k ak

gives the moments ofα + α′.
Let p andq be two umbral polynomials. We said thatp is umbrally equivalent to q if and only if E[p] = E[q];

in symbols,p � q. This last equivalence turns out to be very useful in defining and handling generating functions
of umbrae. We point out that all operations among umbrae correspond to analogous operations in the algebra of
generating functions. Nevertheless,in the following we make no mention of generating functions (for a detailed
exposition see [9]).

The notion of similarity allows us to extend the alphabetA with the so-calledauxiliary umbrae derived from
operations among similar umbrae. That leads to the construction of asaturated umbral calculus in which auxiliary
umbrae are treated as elements of the alphabet (cf. [6]). Let α′, α′′, . . . , α′′′ be n uncorrelated umbrae similar to an
umbraα. The symboln.α denotes an auxiliary umbra similar to the sumα′ + α′′ + · · · + α′′′. The symbolα.n denotes
an auxiliary umbra similar to the productα′α′′ · · ·α′′′. Properties of such auxiliary umbrae are extensively described
in [1] and they will be recalled whenever it is necessary. We will assume both the support ofn.α, m.α andα.n , α.m to
be disjoint whenevern �= m. If p andq are correlated umbral polynomials, thenn.p � p1 + · · · + pn is correlated
with n.q � q1 + · · · + qn, and pi is correlated withqi but uncorrelated with q j with i �= j . In [1], the following
identity is stated:

E[(n.α)i ] =
i∑

k=1

(n)k Bi,k(a1, a2, . . . , ai−k+1) i ≥ 1, (1)
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whereBi,k are the (incomplete) exponential Bell polynomials andai is thei -th moment ofα. Moreover,it is easy to
verify that E[(α.n)i ] = an

i for i ≥ 0.
Two umbraeα andγ are said to beinverse to each other whenα + γ ≡ ε. The inverse of the umbraα is denoted

by −1.α. Note that, in dealing with a saturated umbral calculus, the inverse of an umbra is not unique, but any two
inverse umbrae of the same umbra are similar.

Replacing inn.α the integern with anumbraγ , weobtain the auxiliary umbraγ.α whose moments are

E[(γ .α)i ] =
i∑

k=1

g(k) Bi,k(a1, a2, . . . , ai−k+1) i ≥ 1, (2)

whereg(k) are the factorial moments ofγ . In particular β.α is calledα-partition umbra and its moments are the
(complete) exponential Bell polynomials (cf. [1]). Moreoverχ.α is calledα-cumulant umbra andα.χ is calledα-
factorial umbra, with moments equal to the factorial moments ofα (cf. [2]). In particular we have

β.χ ≡ u ≡ χ.β. (3)

Again, replacing inγ.α the umbraγ with the umbraγ.β, we obtain thecomposition umbra ofα andγ , i.e. γ.β.α.
The compositional inverse of an umbraα is the umbraα〈−1〉 suchthatα〈−1〉.β.α ≡ χ ≡ α.β.α〈−1〉. In particular we
have

u〈−1〉.β ≡ χ ≡ u〈−1〉.β, (4)

whereu〈−1〉 denotes the compositional inverse ofu. Via the umbral Lagrange inversion formula (cf. [1]), the moments
of u〈−1〉 areE[(u〈−1〉)n] = (−1)n−1(n − 1)!. Finally, we have

χ.χ ≡ u〈−1〉 − χ.(−χ) ≡ (−u)〈−1〉. (5)

The disjoint sum ofα andγ is the umbra whose moments arean + gn, wherean andgn are then-th moments ofα
andγ respectively (cf. [2]); in symbols(α +̇ γ )n � αn + γ n. For instance, it turns out that

χ.α +̇ χ.γ ≡ χ.(α + γ ) (6)

which is the well known additive property of cumulants. In the following, we denote the disjoint sumα +̇ · · · +̇α︸ ︷︷ ︸
n

by

+̇nα.

3. Umbral symmetric polynomials

A partition of an integerm is a sequenceλ = (λ1, λ2, . . . , λt ), whereλi are weakly decreasing and
∑t

i=1 λi = m.
The integersλi are said to beparts of λ. A different notation isλ = (1r1, 2r2, . . .), whereri is the number of parts of
λ equal toi . Themonomial symmetric polynomials in the variablesα1, α2, . . . , αn aremλ = ∑

α
λ1
1 · · ·αλt

t , where the
sum isover all distinct monomials having exponentsλ1, . . . , λt . Whenλ rangesover theset of partitions of the integer
m, mλ is a basis for the algebra of the symmetric polynomials. There are other different bases; we recall just those
necessary inthe following: ther -th power sum symmetric polynomialssr = ∑n

i=1 αr
i ; thek-th elementary symmetric

polynomialsek = ∑
α j1α j2 · · · α jk , where the sum is over 1 ≤ j1 < j2 < · · · < jk ≤ n, and ther -th complete

homogeneous symmetric polynomialshi = ∑
d1+···+dn

= i α
d1
1 · · · αdn

n . It is not hard to see thathi = ∑
|λ|=i mλ,

where|λ| = ∑
j λ j .

When the umbraeα1, . . . , αn are uncorrelated and similar to each other, these four classical bases can be
represented by means of the umbral polynomialn.(χαi ) and its moments.Propositions 1, 3 and4 are stated under
such a hypothesis. For power sum symmetric polynomials we have

sr � n.αr � n.(χαr ).

Note thatsr are umbrally equivalent to the moments of+̇nα (cf. [2]):
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Proposition 1 (Elementary Symmetric Polynomials).

[n.(χα)]k �
{

k!ek, k = 1, 2, . . . , n,

0, k = n + 1, n + 2, . . . .
(7)

Proof. Fork = 1, . . . , n the result follows by applying the evaluationE to the multinomial expansion of[n.(χα)]k �
(χ1α1 + · · · + χnαn)k and observing that the terms having powers ofχ greater than 1 vanish. So justk! monomials of
the formχ j1α j1χ j2α j2 · · ·χ jk α jk have an evaluation that is not zero. Instead, fork = n+1, n+2, . . . the result follows
by observing that at least one power ofχ greater than 1 occurs in each monomial of the multinomial expansion.�

Proposition 2. We have

χ.n.(χα) ≡ u〈−1〉(+̇nα) n.(χα) ≡ β.[u〈−1〉(+̇nα)]. (8)

Proof. The first equivalence in(8) follows from(6) on observing that

χ.n.(χα) ≡ χ.(χ1α1 + · + χnαn) ≡ +̇nχ.(χα) ≡ +̇nu〈−1〉α.

The second one follows from the first by taking the right dot product withβ and recalling(3). �

Eq. (8) are the umbral versions of the well known relations between power sum symmetric polynomialssr and
elementary symmetric polynomialsek . Indeed the umbra(+̇nα) represents the sequence{sr } and the umbran.(χα)

represents the sequence{ek}. The umbral expression ofmλ requires the introduction of the augmented monomial
symmetric polynomials̃mλ. Let λ = (1r1, 2r2, . . .) bea partition of the integerm; such polynomials are defined by

m̃λ =
∑

1≤ j1�=···�= jr1 �= jr1+1 �=···�= jr1+r2 ···≤n

α j1 · · · α jr1
α2

jr1+1
· · · α2

jr1+r2
· · · . (9)

Proposition 3. It is

m̃λ � [n.(χα)]r1[n.(χα2)]r2 · · · .
Proof. Analogous to the proof ofProposition 1. �

Recalling thatmλ = m̃λ/[r1!r2! · · ·] it follows that

mλ � [n.(χα)]r1

r1!
[n.(χα2)]r2

r2! · · · . (10)

Proposition 4 (Complete Symmetric Polynomials).

[−n.(−χα)]m � m!hm m = 1, 2, . . . . (11)

Proof. We have

[−n.(−χα)]m � [−1.(−χ1α1) + · · · + −1.(−χnαn)]m

� m!
∑

|λ|=m

[−1.(−χ ′)].r1([−1.(−χ ′′)]2).r2 · · · m̃λ

(1!)r1r1!(2!)r2r2! · · ·
and the result follows from(10), since([−1.(−χ)]i).ri � (i !)ri . �

Equivalences(7) and(11)are the umbral versions of the well known identities

∑
k

ektk =
n∏

i=1

(1 + αi t)
∑

k

hktk = 1
n∏

i=1
(1 − αi t)

.

Proposition 5. We have

−χ.n.(−χα) ≡ (−u)〈−1〉(+̇nα) −n.(−χα) ≡ β.[(−u)〈−1〉(+̇nα)]. (12)
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Proof. The results follow from(8)on replacing the umbraχ with −χ and recalling thatu〈−1〉 ≡ χ.χ must be replaced
with (−u)〈−1〉 ≡ −χ.(−χ). �

Eq. (12) are the umbral versions of the well known relations between power sum symmetric polynomialssr and
complete symmetric polynomialshk . Indeed the umbra(+̇nα) represents the sequence{sr } and the umbra−n.(−χα)

represents the sequence{hk}.

4. U -Statistics

Let X1, X2, . . . , Xn ben independent r.v.’s. A statistic of the form

U = 1

(n)k

∑
Φ(X j1, X j2, . . . , X jk )

where the sum ranges over the set of all permutations( j1, j2, . . . , jk) of k integers, 1≤ ji ≤ n, is calledU -statistic [5].
If X1, X2, . . . , Xn have the same cumulative distribution functionF(x), U is an unbiased estimator of the population
characterθ(F) = ∫ · · · ∫ Φ(x1, . . . , xk) dF(x1) · · · dF(xk). In that case, the functionΦ may be assumed to be a
symmetric function of its arguments. Often, in the applications,Φ is a polynomial in theXi ’s, so theU -statistic
is a symmetric polynomial. By virtue of the fundamental theorem on symmetric polynomials, theU -statistic can be
considered a polynomial in the elementary symmetric polynomials. The following theorem is an umbral reformulation
of the above statement.

Theorem 4.1 (U-Statistic). If λ = (1r1, 2r2, . . . , ) is a partition of the integer m ≤ n then

(α j1)
.r1(α2

j2)
.r2 · · · � 1

(n)k
[n.(χα)]r1[n.(χα2)]r2 · · · (13)

where ji ∈ {1, 2, . . . , n} and
∑

j r j = k.

Proof. The result follows on observing that[n.(χαi )]ri � (n.χ)ri (αi ).ri are distinct integers and(n.χ)k � (n)k . �

Note that equivalence(13) states how to estimate moment products by using onlyn information drawn out of the
population. Then the symmetric polynomial on the right side of(13) is theU -statistic of the uncorrelated and similar
umbraeα1, α2, . . . , αn associated with(α j1)

.r1(α2
j2
).r2 · · ·.

Example 4.1 (Powers of Moments). Setr1 = 2 andk = 2; from(13) theU -statistic associated withα.2 � a2
1 is

α.2 � 1

n(n − 1)
[n.(χα)]2 � 1

n(n − 1)

∑
i �= j

αiα j , n ≥ 2.

Example 4.2 (h-Statistics). As shown in [2], we have

(αa1)r �
r∑

k=0

(
r
k

)
(−1)kα.k(α′)r−k �

r−2∑
k=0

(−1)k

r − k

r∑
k=0

α.k(α′)r−k ,

whereαa1 is the central umbra ofα abouta1 = E[α] andα′ ≡ α is an umbra uncorrelated withα. Replacing the
productα.k(α′)r−k with the correspondingU -statistic (13), the result is

(αa1)r �
r∑

k=0

(
r
k

)
(−1)k

(n)k+1
[n.(χα)]kn.(χαr−k). (14)

When the products[n.(χα)]kn.(χαr−k ) are expressed in terms of uncorrelated power sum symmetric polynomials,
we have the so-calledh-statistics. About this key point, we will give more details in the next section.
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5. k-Statistics

The i -th k-statistic ki is the unique symmetric unbiased estimator of thei -th cumulantκi of a given statistical
distribution, i.e.E[ki ] = κi . In this section we give an umbral syntax thatprovides a general computational method
for generating the expressions ofk-statistics in terms of sums of ther -th powers of the data points. To this end, we
digress to introduce the exponential Bell umbral polynomials.

The most widespread expression for incomplete exponential Bell polynomials refers to partitions of an integer.
Of course, it is also possible to express such polynomials referring them to partitions of a set. Here we follow
this last point of view. We denote byΠi,k the set of all partitions of the set[i ] = {1, 2, . . . , i} into k blocks. Let
π = {A1, A2, . . . , Ak} be an element ofΠi,k . Then we haveBi,k(a1, a2, . . .) = ∑

π∈Πi,k
an1 an2 . . . ank where

|A j | = n j , j = 1, 2, . . . , k, as we will suppose from now on. Let us consider the following symmetric umbral
polynomial:

Bi,k(α1, α2, . . . , αk) =
∑

π∈Πi,k

α
n1
1 α

n2
2 · · · α

nk
k , (15)

whereα1, α2, . . . , αk are uncorrelated umbrae similar toα andan j = E[αn j ], j = 1, 2, . . . , k. Obviously we have
E[Bi,k ] = Bi,k , so any expression containing the polynomialsBi,k could be replaced with an umbrally equivalent
expression containing the polynomialsBi,k . The polynomialsBi,k will be called (incomplete) umbral exponential
Bell polynomials. The combinatorics underlying the polynomialBi,k is the following: the set[i ] is partitioned intok
blocks; with each of them one associates the umbraαn j obtained by firstly replacing the elements in thej -th block
with the umbraα and then labelling all blocks so that powers belonging to different blocks become uncorrelated.
Replacing in(15) the productsαn1

1 α
n2
2 · · · αnk

k with the umbrally correspondingU -statistic (13), we get fori ≤ n

Bi,k(α1, α2, . . . , αk) �
∑

π∈Πi,k

1

(n)k
n.(χ αn1) n.(χ αn2) · · · n.(χ αnk ), (16)

by which we areable to give the umbralk-statistics. Indeed, theα-cumulant umbraχ.α represents the sequence of
cumulantski (cf. [2]) so, since(χ)k � (u〈−1〉)k , from (2) and(16)we have

(χ.α)i �
i∑

k=1

(−1)k−1 (k − 1)!
(n)k

∑
π∈Πi,k

n.(χ αn1) n.(χ αn2) · · · n.(χ αnk ). (17)

Sincen.(χαni ) is umbrally equivalent to a symmetric power sum polynomial, Eq.(17) gives the moments of theα-
cumulant umbra in terms of power sum polynomials, i.e. the umbral form of thek-statistics. Note that the symmetric
power sum polynomials in(17) are correlated. So, in order to make formula(17) effective, we need a device with
which to evaluate the productn.(χ αn1) n.(χ αn2) · · · n.(χ αnk ). To this end, by using the umbral exponential Bell
polynomials(15), the moments of the umbran.(χα) can be evaluated from(2) recallingn.αni � (+̇nα)ni and the
second equivalence in(8):

[n.(χα)]i �
i∑

k=1

∑
π∈Πi,k

(u′〈−1〉)n1(u′′〈−1〉)n2 · · · (u′′′〈−1〉)nk [n.α′n1] [n.α′′n2] · · · [n.α′′′nk ]. (18)

The previous umbral equivalence is suitable for being generalized to the product of umbral polynomials
[n.(χp1)][n.(χp2)] · · · [n.(χpi)]. Indeed, the result is

[n.(χp1)] · · · [n.(χpi)] �
i∑

k=1

∑
π∈Πi,k

(u′〈−1〉)n1 · · · (u′′〈−1〉)nk [n.P ′
A1

] · · · [n.P ′′
Ak

], (19)

wherePA j = ∏n j

t=1 p jt and p jt are polynomials indexed by the elements of the blockA j , as we will suppose from
now on. Equivalence(19) is the device required to generate thek-statistics. Indeed, settingi = k and pt = αnt for
t = 1, 2, . . . , i , the result is

[n.(χαn1)] · · · [n.(χαnk )] �
k∑

j=1

∑
π∈Πk, j

(u′〈−1〉)n1 · · · (u′′〈−1〉)n j [n.α′m1] · · · [n.α′′m j ], (20)
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wherem j = ∑n j

t=1 n jt andn jt are indexed by the elements of the blockA j . Note that the power sum polynomials on
the rightsideof (20) are now uncorrelated. Equivalence(20) gives augmented monomial symmetric polynomials in
terms of power sum polynomials and translates Kendall and Stuart tables read downwards [8]. Instead, the following
formula translates Kendall and Stuart tables read across (i.e. power sum polynomials in terms of augmented monomial
ones):

(n.p1) · · · (n.pi ) �
i∑

k=1

(n)k

∑
π∈Πi,k

P ′
A1

· · · P ′′
Ak

�
i∑

k=1

∑
π∈Πi,k

n.(χ PA1) · · · n.(χ PAk ). (21)

The first equivalence in(21) is obtained from(1) through considerations analogous to those used to state(19); the
second equivalence comes from(13) replacingα ji

i with the umbral polynomialPAi , i.e.

P ′
A1

P ′′
A2

· · · P ′′′
Ak

� 1

(n)k
n.(χ PA1)n.(χ PA2) · · · n.(χ PAk ).

Setting in(21) pt = αnt for t = 1, 2, . . . , i , we have

(n.αn1) · · · (n.αni ) �
i∑

k=1

∑
π∈Πi,k

(n.χαm1)(n.χαm2) · · · (n.χαmk ), (22)

wherem j = ∑n j

t=1 n jt andn jt are indexed by the elements of the blockA j .

Example 5.1 (h-Statistics). In (20)setn1 = n − k andn2 = · · · = nk+1 = 1; from(14)we get the umbral expression
of theh-statistics.

Example 5.2 (Joint Cumulants). Let p1, p2, . . . , pi be umbral polynomials. In the first equivalence of(21), replacing
n with χ we have

(χ.p1)(χ.p2) · · · (χ.pi) �
i∑

k=1

(χ)k

∑
π∈Πi,k

P ′
A1

· · · P ′′
Ak

. (23)

When the umbral polynomialspi are interpreted as r.v.’s, equivalence(23)gives their joint cumulants. So we will call
(χ.p1)(χ.p2) · · · (χ.pi) the joint cumulant ofp1, . . . , pi . Note that, settingpt = α for t = 1, 2, . . . , i , one has the
i -th ordinary cumulant(χ.α)i . Through this equivalence there resultsχ.(p1 + · · · + pi) ≡ χ.p1 + · · · + χ.pi . Now
suppose we split the set{p1, p2, . . . , pi } into two subsets{p j1, . . . , p jt } and{pk1, . . . , pks } with s + t = i , such that
polynomials belonging to different subsets are uncorrelated. Then we have

(χ.p1)(χ.p2) · · · (χ.pi) � 0. (24)

Indeed, settingP = ∑t
l=1 p jl andQ = ∑s

l=1 pkl , such polynomials are uncorrelated, soχ.(P + Q) ≡ χ.P+̇χ.Q
from (6). Equivalence(24) follows on observing that, due to the disjoint sum, products involving powers ofχ.P
andχ.Q vanish. When the umbral polynomialspi are interpreted as r.v.’s, equivalence(24)states the following well
known result:if some of the r.v.’s are uncorrelated with all others, then their joint cumulant is zero.

Example 5.3 (Multivariate k-Statistics). Equivalence(21)allows compact expression of the multivariatek-statistics.
In the second equivalence of(21), replacingn with χ we construct theU -statistic of the joint cumulant:

(χ.p1)(χ.p2) · · · (χ.pi) �
i∑

k=1

(−1)k−1 (k − 1)!
(n)k

∑
π∈Πi,k

n.(χ PA1)n.(χ PA2) · · · n.(χ PAk ). (25)

Again, in the product on the right side of(25)the umbral polynomials are correlated. In order to make the computation
effective, it is necessary to rewrite(25) by using equivalence(19) with PAt instead ofpt . For instance, in order to
expressk21, set in(25) i = 3 andp1 = p2 = α1, p3 = α2. The result is

(χ.α1)
2(χ.α2) � χ

n
n.(χα2

1α2) + (χ)2

(n)2
{2n.(χα1) n.(χα1α2) + n.(χα2

1) n.(χα2)}

+ (χ)3

(n)3
{[n.(χα1)]2 n.(χα2)}. (26)
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Setsp,q � n.(α
p
1 α

q
2). We have

n.(χα1) n.(χα1α2) � (u〈−1〉)2n.(α2
1α2) + (u〈−1〉).2n.α′

1 n.(α1α2) � −s2,1 + s1,0 s1,1 (27)

n.(χα2
1) n.(χα2) � (u〈−1〉)2n.(α2

1α2) + (u〈−1〉).2n.α′2
1 n.α2 � −s2,1 + s2,0 s0,1 (28)

{n.(χα1)}2n.(χα2) � (u〈−1〉)3n.(α2
1α2) + (u〈−1〉).3n.α′

1 n.α1 n.α2

+ u′〈−1〉 (u〈−1〉)2[n.α2
1 n.α2 + 2n.α′

1 n.(α1α2)]
� 2 s2,1 − s2,0 s0,1 − 2 s1,0 s1,1 + s2

1,0 s0,1. (29)

Equivalence(27)comes from(19), settingi = 2, p1 = α1 and p2 = α1α2; equivalence(28)comes from(19)setting
i = 2, p1 = α2

1 and p2 = α2; equivalence(29) comes from(19) settingi = 3, p1 = p2 = α1 and p3 = α2.
Substituting the above equivalences in(26)and rearranging the terms, we have the expression fork21:

k21 � (χ.α1)
2(χ.α2) � 1

(n)3
[n2s2,1 − 2n s1,0 s1,1 − n s2,0 s0,1 + 2 s2

1,0 s0,1].
The expressions for generalizedk-statistics (as well as the multivariate ones) in terms of power sums come from(23)
on replacing some of the umbraeχ with uncorrelated ones and then constructing the correspondingU -statistics.
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