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Abstract

Through the classical umbral calculus, we provide new, compact and easy to handle expresskesimtistics, and more
generally forU-statistics. In addition, this symbolic method can be naturally extended to multivariate cases and to generalized
k-statistics.
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1. Introduction

In 1929, Fisher4] introducedk-statistics as new symmetric functions of a random sample. The aim of Fisher was
to estimate cumulants through free-distribution methods by using only combinatorial techniquésst@fistics are
related to the power sum symmetric polynomials in the random variables (r.v.'s) of the sample. The point of view of
Fisher is described with a wealth of details by Kendall and Stuart&pt. The method is straightforward enough;
however, his execution leads to intricate computations and some cumbersome expressions, except for very simg
cases. That is why many authors tried to simplify the matter later.

One of the most relant ontributions was given by Speed n the 1980’s. Speed resumed the Doubilet approach
to symmetric functionsd], consisting in labelling symmetric functiottsrough partitions of a set rather than partitions
of an integer. Transition matrices are computed via Maebius function, generalizing and simplifying the presentation o
thek-staistic theory. Nevertheless, in order to extend such a theory to generkigatistics (polykays), Speed had
toresort to the tensor approach introduced by Kaplan in 1952.

We take a dferent point of view by using the high computational potential of the classical umbral calculus.
This symbolic method was introduced by Rota and Taylor in 18)4ifid futher developed in1] and [2]. From
a mmbinatorial perspective, we revisit the Fisher ttyeas exposed by Kendall and Stuart, taking into account the
Doubilet approach to symmetric funatis. The umbral calculus offers a nimble syntax method that allows both
computation without using Maebius function and a natural extension to generklgtatistics without bringing the
tensor device into it. What is more, this language clarifies the role played by the power sum symmetric polynomials
in thek-statistic expressions.
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After recalling inSection 2the grictly necessary umbral background Section 3we put in an umbral setting the
four classical bases of symmetric polynomial algebrs&Séistion 4we give a general procedure for writing down
statistics. Such a procedure is based on the umbral relation between moments and augmented symmetric polynomia
(Theorem 4.} In the last sectin, applications t&-statistics, h-staistics and multivariat&-staistics are given.

2. Theumbral calculuslanguage

We start by presenting the formal setting of umbral célsu We shall confine our exposition to what is necessary
for the aims of this paper.

The umbral calculus is a syntax consisting of the following data: an alphabef«, 8, ...} whose elements are
namedumbrae; a canmutdive integral domairR whose quotient field is of characteristic zero; a linear functional
E, called evaluation, defined on the polynomial rind[A] and taking values inR, and seh that E[1] = 1,
Ela' Bl - yK] = E[«'|E[B]]- - - E[yX] for any set ddistinct umbrae inA and fori, j, ..., k non-negative integers
(uncorrelation property); an element € A, calledaugmentation, such hatE[e"] = 0 forn > 1; an elementi € A,
calledunity umbra, such thaE[u"] = 1, forn > 1.

A polynomialp € R[A] is calledumbral polynomial. Thesupport of pis the set of all umbrae occurring ;n Two
umbral polynomials are said to lnacorrelated when their supports are disjoint.

When the evaluatiof is considered as expectation operator, afbrancarries the structure of a r.v., making no
reference to its probability space. Thements of an umbrax are the elementa, € R suchthat E[a"] = a, for
n > 1. In that case, we said that the umlraepresents the sguence lai, ap, .... Thesingleton umbra x is the
umbra whose moments are all zero but the first, which is equal to 1fattaial moments of an umbrax are the
elementsyn, € Rcorresponding to the umbral polynomi&gn = a(e —1) - - - (0« —n+1), n > 1 viathe evaluation
E, i.e. E[(¢)n] = an). TheBell umbra g is the umbra such th&[(8)n] = 1,n > 1. The umbrgs and the umbra
x provide respectively a symbolic tool for handling composition and inversion of formal power series; for a detailed
exposition see]] and [2].

Two umbraex andy are said to baimilar whenE[a"] = E[y"] for all n > 1, and we ill write « = y. So
two similar umbrae represent tharse moment sequence. A sequenca; lay, ... in Ris represented by infinitely
many distinct and thus similar umbrae, so one deals with moment products by means of the uncorrelation property
Indeed, we have; a; # E[o'«!] with 8 = E[e'] anda; = E[«!], as well asg; aj = E[e'o’) ] with @ = o’ anda’
uncorrelded witha. So,givenn € N, the sguence

> (7) ar-eax
k=0
gives the moments af + o’.

Let p andg be two umbral polynomials. We said thptis umbrally equivalent to g if and only if E[p] = E[q];
in symbols,p ~ q. This last guivalence turns out to be very useful in defining and handling generating functions
of umbrae. We point out that all operations among umbrae correspond to analogous operations in the algebra c
generating functions. Neverthelegs,the following we make no mention of generating functions (for a detailed
exposition see9)).

The notion of similarity allows us to extend the alphabetvith the so-calledauxiliary umbrae derived from
operations among similar umbrae. That leads to the constructiorsatfieated umbral calculus in which auxiliary
umbrae are treated as elements of the alphabet§f.let o', o, ..., «” ben uncorrelated umtae sinilar to an
umbrax. The synboln.«a denotes an auxiliary umbra similar to the surh+a” + - - - + . The symbola" denotes
an auxiliary umbra similar to the produete” - - - . Propeties of such auxiliary umbrae are extensively described
in [1] and they will be recalled whenever it is necessary. We will assume both the suppazt of.a anda ", '™ to
be disjoint wheneven # m. If p andq are correlated umbral polynomials, therp >~ p1 + --- + pn is correlated
with n.g ~ g1 + --- + gn, and pj is correlated withg; but uncorrelded withqj with i # j. In [1], the fdlowing
identity is stated:

) i
El(no)'] =) (NkBik@1, a2, ..., 8 k1) i>1, (1)
k=1
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whereB; i are the (incomplete) exponential Bell polynomials @nds thei-th moment ofx. Moreover,t is easy to
verify that E[(«™)'] = & fori > 0.
Two umbraex andy are said to bénverse to each other whea + y = ¢. The inverse bthe umbrawx is denoted
by —1.«. Note tat, in dealing with a saturated umbral calculus, the inverse of an umbra is not unique, but any two
inverse umbae of the same umbra are similar.

Repkcing inn.« the integen with anumbray , we obtain the auxiliary umbra .« whose moments are

) i
El(y.)'l=) dwBik@s, a....a k1) i>1, @)
k=1

whereg are the factorial moments of. In paticular 8.« is callede-partition umbra and its moments are the
(complete) exponential Bell polynomials (cfl]]. Moreover .« is calleda-cumulant umbra and«. x is calleda-
factorial umbra, with moments equal to the factorial momentswofcf. [2]). In particular we have

B.x =u= x.B. 3)

Again, replacing iny.« the umbray with the umbray.g, we obtain thecomposition umbra ofa andy, i.e. y.B.a.
The compositional inverse of an umhras the umbrax~1 suchthata!~ .0 = x = a.p.a!~Y. In paticular we
have

u(_1>.ﬂ =y = u<_1>./3, (4)

whereu{~Y denotes the compositional inversewoia the umbral lagrange inversion formula (cfl]), the moments
of u= areE[(u!~)"] = (—1)"1(n — 1)!. Findly, we have

x.x =ub — x.(=x) = (—uw) D, (5)

The disjoint sum ofr andy is the umbra whose moments ae+ gn, wherea, andg, are then-th moments ofx
andy respectively (cf.2]); in symbols(a + )" >~ a" + y". For instaee, it turns out that

x4+ xy=x.(a+y) (6)

which is the well known dditive property of cumulants. In the following, we denote the disjoint sun. - - 4 o by
—————

n
+na.

3. Umbral symmetric polynomials

A partition of an integem is a sguencex = (A1, A2, ..., At), wherei; are weakly decreasing a@}zl Ai=m
The integers,; are said to bgarts of A. A different notation is. = (1", 22, .. .), wherer; is the nunber of parts of
A equal toi. Themonomial symmetric polynomialsin the variables1, ap, . .., ay arem; = Zail .- -ath, where the

sum isover al distinct monomials having exponeits . . ., At. Wheni rangesover theset of partitions of the integer
m, m,,_is a basis for the algebra of the symmetric polynomialser€ are other different bases; we recall just those
necessary ithe following: ther -th power sum symmetric polynomiads = > [, of ; thek-th elementay symmetic
polynomialsex = ) aj,«j, - - «j, Where thesmisover 1< j1 < jo < -+ < jk < n, and ther-th complete

homogeneous symmetric polynomiis = Zd1+"'+dn =i agl .- -aﬂ". It is not hard to see thdt = Zm:i m;,
where|A| = Zj Aj.
When the umbraexy, ..., an are uncorrelated and similar to each other, these four classical bases can be

represented by means of the umbral polynomiékc') and its momentsPropositions 13 and4 are stated under
slch a hypothesis. For power sum symmetric polynomials we have

s ~na ~n(xa).

Note thats are umbrally equivalent to the momentsiefa (cf. [2]):
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Proposition 1 (Elementary Symmetric Polynomials).

k. |Ke, k=1,2,...,n
[n-(xe)] —{o, k=n+Lln+2... Q)
Proof. Fork = 1, ..., n the result follows by pplying the evaluatioffE to the multinomial expansion ¢h.(x a)1¥ ~

(x101 + - - - + xnan)¥ and observing that the terms having powerg @freater than 1 vanish. So jugtmonomials of
the formyj, o, xj%j, - - - Xjj have an evaluation that is not zero. Insteadkfer n+1, n+2, . .. the result follows
by observing that at least one powerofreater than 1 occurs in each monomial of the multinomial expansidn.

Proposition 2. We have
x-n.(xa) =u V() n(xe) = .UV (o)l (8)

Proof. The first equivalence i(8) follows from (6) on observing that

x-N.(xe@) = x.(x101 + - + xnan) = Fnx.(xa) = +au Ve

The second one follows from the first by taking the right dot product Witimd recalling3). O

Eq. (8) are the umbral versions of the well known relations between power sum symmetric polyngadats
elementary symmetric polynomiadg. Indeed the umbré-no) represents the sequenise} and the umbra.(x«)
represents the sequeng@}. The umbral expression ofn, requires the introduction of the augmented monomial
symmetric polynomialsh, . Let A = (1", 22, .. .) bea partition of the integem; such polynomials are defined by

H, — . o2 2
m= _Z _ Qg e Xy g, (9)
1<ji#lny Flrp 1 Flrg4rp <0
Proposition 3. Itis
. =~ [N.(xe)]" [N (xa®)]2 - .
Proof. Analogous to the proof dProposition1 O

Recalling tham; = m, /[r1!ro!- - -] it follows that

NGl [n.(xe®)12

rq! ro! (10)
Proposition 4 (Complete Symmetric Polynomials).
[—n.(—=xe)]™ ~ mlhy, m=12,.... (11)

Proof. We have
[=n.(=xe)]™ = [1.(=yae) + - - + —L.(= gnan)]™
~m Y L) =L (=)D

[A]=m

and the result follows fronl0), since([—1.(—x)])" ~ (ih". O

my,
Ahrl2ar,! - -

Equivalence$7) and(11) are the umbral versions of the well known identities

n
1
Za(tk = H(l—l—ait) thtk I
k i=1 l_[(l alt)

Proposition 5. We have
—xn(=xa) = (W) —n(—xa) = BIEWT GFna)l. (12)
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Proof. The results follow fron{8) on replacing the umbrga with —x and recalling that~ = x.x must be replaced
with (—u) = —x.(—=x). O

Eqg. (12) are the umbral versions of the well known relations between power sum symmetric polyngnaiats
complete symmetric polynomialii. Indeed the umbrai-na) represents the sequensg} and the umbra-n.(—xa)
represents the sequenids}.

4, U-Statistics

Let X1, X2, ..., Xy ben independentr.v.'s. A statistic of the form

= Zgb(le,x,z,...,xjk)

where the sumanges over the set of all permutatidis jo, ..., jk) ofkintegers, 1< j; < n,is cdled U-datistic[5].

If X1, Xo, ..., Xn have the same cumulagivdigribution functionF (x), U is an unbiased estimator of the population
characte®(F) = [ - f &(X1, ..., X)) dF(X1) - - - dF (k). In thatcase, the functior® may be assumed to be a
symmetric function of its arguments. Often, in the applicatiohds a polynomial in theX;’s, so theU -stdistic

is a ymmetric polynomial. By virtue of the fundamental theorem on symmetric polynomial&) tigtistic can be
considered a polynomial in the elementary symmetric polynomials. The following theorem is an umbral reformulation
of the above statement.

Theorem 4.1 (U-Satistic). If A = (1", 22, ... ,) isa partition of the integer m < n then

1
(jp) (@) 2+ = Gl . (a)” (13)

where ji € {1,2,....njand " rj = k.
Proof. The result follows on observing that.(xa")]" ~ (n.x)" (a')" are distinct integers angh.x)* ~ (Nx. O

Note that equivalencgl3) states how to estimate moment products by using onigformation drawn out of the
population. Then the symmetric polynomial on the right sidél8f is theU -statistic of the uncorrelted and similar
umbraexy, «y, . .., an associated Withaj1)~rl(aj22)~r2 e

Example 4.1 (Powers of Moments). Setr; = 2 andk = 2; from (13) theU -statistic associated with2 ~ af is

2. 1 . 1 B
o _m[n.(xa)] —n(n_l)Za,aJ, n>2.

Example 4.2 (h-Statistics). As shown in P], we have

aiyr . k .k r—k S (_1)k . Kk, /\r—k
<a1>:Z<)(1> @)=y e ) e
k=0

k=0 k=0

wherea® is the central umbra af abouta; = E[a] ando’ = « is an umbra uncorrelated with. Rephcing the
producte ¥ (a’)" ~% with the correspondingJ -statistic (13), the result is

1
(@) =~ Z( ) ((n) X . ey ra ). (14)

When the product$n.(xa)1¥n.(xa" %) are expressed in terms of uncorrelated power sum symmetric polynomials,
we have the so-calleldstatistics. About this key point, we will give more details in the next section.
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5. k-Statistics

Thei-th k-stdistic k; is the unique symmetric unbiased estimator of fhth cumulants; of a given statistical
distribution, i.e.E[ki] = «i. In this section we give an umbral syntax tipabvides a general computational method
for generating the expressionslektaistics in terms of sums of the-th powers of the data points. To this end, we
digress to introduce the exponential Bell umbral polynomials.

The most widespread expression for incomplete expialddell polynomials refers to partitions of an integer.
Of course, it is also possible to express such polyntameferring them to partitions of a set. Here we follow

this last pont of view. We denote by]  the set of all partitions of the séit] = {1,2,...,i} into k blocks. Let
= {A1, Az, ..., A} be an element off k. Then we haveB; x(aj, a2,...) = Zneﬂlkanl an, . .. an, Where
|IAjl = nj,j = 1,2,...,k, a we will suppose from now on. Let us consider the following symmetric umbral
polynomial:
Bix(ar, oz, ....a) = Y oagton? - aX, (15)
wellk
whereay, ay, . .., ax are uncorrelated umbrae similard:oandanj = E[a"i],j = 1,2,..., k. Obviously we have

E[Bix] = Bik, S0 any expression containing the polynomial x could be replaced with an umbrally equivalent
expression containing the polynomials . The polynomials5; x will be called (incomplete) umbral exponential
Bell polynomials. The combinatorics underlying the polynonfial is the following: the sefi] is partitioned intck
blocks; with each of them one associates the unafiraobtained by firstly replacing the elements in th¢h block
with the umbrax and then IabeIIing all blocks so that powersdiging to different blocks become uncorrelated.
Rephcing in(15)the p’OdUCtS(xl (xz k % with the umbrally correspondingy -statistic (13), we get fori < n

1
Bixlen, a2, ... 00) = Y e a™)n.(x a™) - n.(xa™), (16)
mellik

by which we areable to give the umbra&-stéistics. Indeed, the.-cumulant umbrg .« represents the sequence of
cumulantsk; (cf. [2]) so, since(x)k ~ (u‘~1)k, from (2) and(16)we have

L k— 1)!
(x.@)' ZZ(—DH% Y ona™n(xa™) (™). 17)
k=1 wellik

Sincen.(xa") is umbrally equivalent to a symmetric power sum polynomial, @d) gives the moments of the-

cumulant umbra in terms of power sum polynomials, i.e. the umbral form dé-8tdistics. Note that the symmetric
power sum polynomials i17) are correlated. So, in order to make form(1¥) effective, we need a device with
which to evaluate the produch.(x a™) n.(x ™) ---n.(x «"). To this end, by using the umbral exponential Bell

polynomials(15), the manents of the umbra.(x«) can be evaluated froif2) recallingn.a" ~ (+nha)" and the
second equivalence i(8):

[n (XOl) Z Z (u )nl(u//(fl))nz . (u/// )nk[n a/nl] [n a//nz] [n.a///nk]' (18)
k=1mell «
The previous umbral equivalence is suitable for being generalized to the product of umbral polynomials
[n.(xpIN.(xp2)]- - - [n.(xpi)]- Indeed, the result is

[n.<xp1>]---[n.<xpi>]:z Do wthM WPy T [0 PR, (19)
k=1mell

wherePa; = ]'[{11 pj; and pj, are polynomials indexed by the elements of the blégk as we will suppose from
now on. Equivalencél9) is the device required to generate thetatistics. Indeed, setting= k andp; = «™ for
t=12...,i,theresultis
k
N.Ge™)]- (™)=Y > WM W )N ne ™ [ne ™, (20)
j=1lmell;



974 E. Di Nardo, D. Senato / Applied Mathematics Letters 19 (2006) 968-975

wherem; = Z{ll nj, andnj, are indexed by the elements of the blokk Note that the power sum polynomials on

the rightsideof (20) are now uncorrelated. Equivalen@®) gives augmented monomial symmetric polynomials in
terms of power sum polynomials and translates Kendall and Stuart tables read dowrBjidrgg¢ad, the following
formula translates Kendall and Stuart tables read across (i.e. power sum polynomials in terms of augmented monomi
ones):

i i
(N.p) -+ (P =D Mk D Pp-—-Pa =D Y n(xPa)--n.(xPa). (21)
k

k=1 wellk =1rellik

The first equivalence i(21) is obtained from(1) through considerations analogous to those used to &8jethe
second equivalence comes frqdB) replacingoziJi with the umbral polynomialPy,, i.e.

1
P;_\l P'Xz cee P;_{; >~ —nN.(x Pap)N.(x Pay) - - - n.(x Pay).

(MK
Setting in(21) py =a™ fort =1,2,...,i, we have
i
(e (na™ >y Y (xad™)(n.xa™) - (nxe™), (22)
k=1 el

wheremj = Z{il nj, andnj, are indexed by the elements of the blotk

Example5.1 (h-Satigtics). In (20)setn; = n—kandnz = - - - = ngy1 = 1; from (14)we get he umbral expression
of the h-stdistics.

Example 5.2 (Joint Cumulants). Let p1, pz, ..., pi be umbral polynomials. In the first equivalencg2t), replacing
n with x we have

1
(-PDOC-P2) - (P = Y Ok Y Pa -+ PR (23)
k=1 wellk

When the umbral polynomialg; are interpreted as r.v.'s, equivaler(@8) gives their jont cumulants. So we will call
(x-pD)(x.p2) - - (x.pi) the joint cumulant ofpy, ..., p;. Note that, settingpy = « fort = 1,2, ...,1i, one has the
i-th ordinary cumulanty.«)'. Through this equivalence there resyttgp; + - - + pi) = x.pL+ - - - + x.pi- Now
suppose we split the s¢pz, po, ..., pi} into two subset$pj,, ..., pj} and{pk,, ..., P} With s+t =i, such hat
polynomials belonging to different subsets are uncorrelated. Then we have

(x-PD(x-p2) -~ (x.pi) = 0. (24)
Indeed, settinP = th=1 pj andQ = > i1 Pk, such polynomials are uncorrelated, gaP + Q) = x.P+x.Q
from (6). Equivalence(24) follows on observing that, due to the disjoint sum, products involving powers. Bf

andy.Q vanish. When the umbral polynomiafs are interpreted as r.v.’s, equivalen(@d) states the following well
known resultif some of the r.v.’s are uncorrelated with all others, then their joint cumulant is zero.

Example 5.3 (Multivariate k-Satistics). Equivalencg21) allows compact expression of the multivariatstdistics.
In the second equivalence (1), replacingn with x we construct theJ -staistic of the joint cumulant:

(k —1)!
(Mk
Again, in the product on the right side (#5) the umbral polynomials are correlated. In order to make the computation

effective, it is necessary to rewri{@5) by using equivalencgl9) with Pp, instead ofp;. For insance, in order to
expresskoi, setin(25)i = 3 andp;1 = p2 = a1, p3 = az. The resultis

(x-01)?(x.02) =~ %n-(xa%az) 4 X2 {2n.(xa1) N.(xa1a2) + N.(xa?) n.(xa2)}

(n)2
+ @{[n.(xal)]zn.(xaz)}. (26)
(N3

> N.(xPa)N.(xPa,) - N.(x Pay). (25)

mellk

1
(PP - () = Y (=D
k=1



E. Di Nardo, D. Senato / Applied Mathematics Letters 19 (2006) 968-975 975
Setsp q ~ N.(a} @3). We have

n.(xa1) N.(xaia2) =~ (u(_l>)2n.(a%a2) + (u(_1>)'2n.o/1 N.(a102) >~ —Sp.1 + S1,0S1.1 27)
n.(xed) n.(xe2) = )20 (eda) + U Zne nee ~ —s1 + s0%:1 (28)
{n.(xal)}zn.(xaz) ~ (u<71>)3n.(a%a2) + (u<*1>)'3n.o/1 N.a1 N.o2
U W2 ne? nas + 20 n.(e1az)]
~ 281 — 051~ 2510511 + St o S0.1- (29)

Equivalencg27) comes from(19), settingi = 2, p1 = a1 and p2 = a1a2; equivalencg28) comes from(19) setting
i =2, p1= a% and p2 = a2; equivalence(29) comes from(19) settingi = 3, p1 = p2 = a1 andp3 = a2.
Substituting the above equivalenceg2®) and rearranging the terms, we have the expressiokpfor

1
ko1 = (x.01)?(x.a2) =~ @[nzsz,l —2ns1081,1 — N$0%,1+ ZSfo S0,1].

The expressions for generalizkdtaistics (as well as the multivariate ones) in terms of power sums come(&28)n
on replacing some of the umbrgewith uncorrelated ones and then constructing the correspohbhistgtistics.
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