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a b s t r a c t

In numerous epidemiological and animal models, it can be inferred that oxidative stress is a key factor in
cataract formation. Production of reactive oxygen species and reduction of endogenous antioxidants both
contribute to cataract formation. In the cataractogenous process, lens proteins lose sulfhydryl groups and
become thiolated or cross-linked by disulfide bonds. The resultant high molecular weight aggregates
become insoluble and affect lens transparency. All these are consequences of changes in the redox state.
A mixed protein-thiol and protein-protein disulfide bond precedes the morphological changes of cata-
ract. Normally, sustained high levels of reduced glutathione provide a protective effect, while depletion
of glutathione causes damage to epithelial cells and fiber cells. UV rays in the ambient environment
evoke reactive oxygen species formation and also contribute to cataracts. The reduction in free UV filters
and increase in their binding to lens proteins make the lens more predisposed to UV damage and
oxidation. In the aqueous humor of cataract lenses, there is a decrease in antioxidant enzymes and
increase in nitric oxide, which demonstrates the relationship between oxidative stress and cataracts.
Though surgical intervention is the standard treatment for cataracts, experimental medical therapies for
cataracts are under extensive investigation. Carnosine, a pro-drug of carnosine-N-acetylcarnosine,
bendazac, ascorbic acid, and aldose reductase inhibitors are under therapeutic evaluation, and preven-
tion of cataract formation may be possible in the future.
Copyright� 2010, Asia Pacific League of Clinical Gerontology and Geriatrics. Published by Elsevier Taiwan
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1. Introduction

Cataract (lens opacification) is a major contributing factor of
blindness. An estimate from the World Health Organization is that
the current global prevalence of blindness is 0.57% (range,
0.2e1.0%), with more than 82% of all blindness occurring in indi-
viduals aged 50 and older. Cataract accounts for 47.8% of the
roughly 37 million blind people in the world.1 While the main
treatment for cataract is surgical intervention,2 it is associated with
certain risks and subsequent suboptimal outcomes. Endoph-
thalmitis is the most devastating complication following cataract
surgery and usually results in severe vision impairment. Several
studies have demonstrated that pseudophakic patients have
a fourfold cumulative risk of retinal detachment for up to 20 years
after cataract surgery.3 The incidence of pseudophakic posterior
capsular opacification remains high,4 while laser capsulotomy is
associated with a 3.9-fold increased risk of retinal detachment.5
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Cataractogenesis is influenced by multiple risk factors, such as
aging, diabetes mellitus, drugs, trauma, toxins, genetics and other
ocular diseases.6e8 Among the various causes, oxidative stress is
considered to play a key role in the molecular mechanism of
cataract formation.9e11 In this article, we review the current
understanding of oxidative stress in the process of cataract
formation and examine the correlation between the proposed
mechanisms and prospective therapeutic agents for cataract
prevention.

2. Oxidative stress and cataract formation

The main composition of the lens is protein, also known as
crystalline, that is generated frommigratingfiber cells fromanterior
cubodial epithelia during embryogenesis. During migration, nuclei
and mitochondria are lost and render the fiber cells susceptible to
damage because of the absence of turnover process.12 There is also
simultaneous loss of repair systems of the mitochondria that can
restore the oxidative damage by utilizing glutathione (GSH), thio-
redoxin (Trx), NADPH and FADH2 as electron donors, and maintain
the proteins in stable redox status.
. Published by Elsevier Taiwan LLC. Open access under CC BY-NC-ND license.
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It is generally accepted that oxidation is a key feature of cataract
formation. Free radicals, including numerous reactive oxygen
species (ROS) such as superoxide anion radical ($O2

�), H2O2, and
hydroxyl free radical ($OH), may lead to structural damage of the
crystalline lens and contribute to cataract formation. ROS may be
generated exogenously after UV light and ionizing radiation expo-
sure, or endogenously as a result of normal metabolism through the
enzymatic reaction of lipoxygenases, cytochrome P450, NADPH,
and mitochondrial electron transport in various cellular compart-
ments (mitochondria, peroxisomes, cytoplasm). Oxidative stress
occurs when the level of pro-oxidants surpass the level of antiox-
idants. Thus, the level of ROS should be finely regulated, otherwise
damage to the mitochondria and overproduction of ROS may occur.

Antioxidant enzymes work with reducing systems and protein
repair systems to protect against ROS-induced damage. In the
mitochondria matrix, MnSOD (SOD2) converts the superoxide
anion, which is generated by the electron transport chain, into
hydrogen peroxide. By regulating the level of SOD2, lens epithelial
cells can overcome oxidative stress.13 CuZnSOD (SOD1), present in
the mitochondria intermembrane space, also effectively transforms
superoxide anion to hydrogen peroxide in a similar manner.14

Elevated levels of SOD1 protects the lens from H2O2-mediated
damage.15

Hydrogen peroxide is a relatively stable ROS species with
moderate destructive potency. Enzymes including catalase (CAT),
GSH peroxidase and the peroxiredoxins cooperate to reduce the
potential for damage. Among ROS, H2O2 is the most stable oxygen
species present in the aqueous humor. H2O2 can also diffuse into the
interior lens. Lenticular epithelial cells have antioxidant defences
(including CAT, GSH, and GSH peroxidase), which are capable of
removing aqueous-derivedH2O2. The normal concentration of H2O2
in aqueous humorand lens is 25e30 mM,but there can be a threefold
increase in cataract patients.16,17 RO S-induced destruction at
different targets within the crystalline lens, such as proteins or
lipids, is believed to underlie the pathogenesis of cataracts.18

GSH is abundant in the lens and can be synthesized by the
lens.19 The GSH repair system consists of reduced GSH and its
oxidized form (GSSG). GSH is maintained in its reduced form rather
than its oxidized form by GSH reductase enzymes in the presence of
NADPH, and the formation of mixed disulfide is prevented. Reduced
GSH acts as an electron donor for GSH peroxidase while reducing
H2O2 to H2O and O2.20 The level of oxidized GSH rises significantly
once cataract develops. In experimentally-induced cataract,
decrease in GSH level is also a typical finding. Furthermore, studies
have shown that reduced GSH prevents protein sulfhydryl groups
from intramolecular and intermolecular disulfide cross-linking.
Therefore, GSH can reduce high molecular weight protein aggre-
gation in the lens and prevent subsequent light scattering and
cataract deterioration. Hence, GSH is considered to be a crucial
factor involved in cataract formation. The protective effect of GSH is
considered to be concentration-dependent. GSH above 1 mM
effectively inhibits hydroxyl radical formation, whereas a concen-
tration below 1 mM accelerates its production.21,22

Trx, another electron donor, is a small thiol protein with active-
site dithiol, which reduces protein disulfide actively. Oxidized Trx is
further reduced by Trx reductase in a NADPH-dependent manner.
The production of NADPH increases under oxidative stress, making
it important in redox control.23

To correlate these biochemical facts to lensmorphology, the lens
barriermaybe ofmost importance. Thebarrier at the cortex/nucleus
interface impedes the flow of molecules such as antioxidants into
the nucleus and thus predisposes the lens center to oxidative
damage. Furthermore, the unstable molecules stay much longer in
the central zone and cause more structural oxidative damage in the
central lens.24,25
Many antioxidants, such as vitamins C and E and the caroten-
oids, are considered to work as ROS scavengers. In animal models,
antioxidant levels have been found to correlate with cataract
progression. However, studies on the protective effects of antioxi-
dant supplementation in human lens have been limited by few
participants, high dropout, coeffectiveness of previous nutritional
supplements, and dietary differences.

3. Photooxidative stress

The lens that works together with the cornea to focus radiation
on the retina is constantly exposed to ambient radiation including
UVA, UVB, and visible light, which lead to photochemical insult to
the eye. As already mentioned, there is no turnover of proteins in
the lens throughout life, so the lens is more vulnerable to photo-
chemical insult. The differences in cataract risk in epidemiological
assessments, particularly in geographic studies, indicate an asso-
ciation between cataract and UV light exposure.

3-Hydroxykynurenine (3OHKyn), present as a UV filter in the
human lens, reacts with lens proteins and affects lens coloration.26

After continual exposure to 300e400 nm UV light, loss of 3-
hydroxykynurenine glucoside (3HKG, glucosided form of 3OHKyn)
and subsequent yellowing of the lens is noted. Other compounds of
3OHKyn, such as oxidized xanthurenic acid and xanthommatin, are
also potentially cataractogenic molecules. In the lens compartment
where the antioxidant (e.g., GSH) is depleted, 3OHKyn can act
alternatively as an antioxidant.27 Since the attachment of 3OHKyn
to lens proteins results in lens coloration, increased photon and UV
light absorption may be a potential causative cofactor in cataract
development.

a-Crystallin, as a major protein family in the lens, is responsible
for the maintenance of lens transparency. It has been demonstrated
that exposure to UV induces cross-linking of a-, b- and g-crystallins,
which lead to conformational and solubility change, resulting in light
scattering incataracts.Nevertheless, thea-crystallins themselvescan
act as chaperones against photodamage byUV irradiation.28 The lens
epitheliumalsohasanti-photooxidative enzymes,whichprevent the
lens from being damaged by photooxidation induced by UV.29 The
human lens membrane contains high levels of cholesterol, plasmal-
ogen, and dihydrosphingomyelin; UVB irradiation induces perox-
idation of membrane lipids, and leads to formation of hydroxyl and
hydroperoxyl lipids. Membrane repair can be compromised by
reduction of protein synthesis after UV irradiation.16,30

4. Non-enzymatic glycation

Non-enzymatic glycation is a condensation reaction between
amino groups in proteins and reducing sugars. The glycated
product, known as early glycation product, may undergo further
reaction by oxidative or non-oxidative pathway. Under oxidative
conditions, the early glycation product does not undergo further
reaction. Under non-oxidative conditions, the early glycation
product can react with many amino groups to give rise to brown
and cross-linked products called advanced glycation end
products.31e33

The lens derives 80% of its metabolic energy from anaerobic
glycosis, with the remaining 15% and 5% from the hexose mono-
phosphate shunt and Krebs cycle, respectively. It is hypothesized
that increased intracellular glucose may overflow the glycolysis
pathway, resulting in activation of aldose reductase. Thereafter, the
cellular osmotic pressure increase and influx of water into the cell
membrane leads to lens swelling and opacification.34 In vitro, gly-
cation partially unfolds lens proteins and exposes buried sulfhy-
dryls, leading to disulfide formation and high molecular weight
aggregation. Further, cortical proteins are more susceptible to
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glycation than are nuclear proteins.35e37 Another consequence of
partial unfolding is exposure of hydrophobic groups, which may
promote hydrophobic interaction. This mechanism may also
contribute to high molecular weight aggregation and eventual
protein insolubilization. In addition to the lens protein, glycation
also influences the lenticular membrane. Cross-linking of the
intrinsic proteins in the membrane affects membrane rigidity and
permeability, and may also lead to membrane opacity.38

5. Parameters in aqueous humor

Clinically, epidemiological surveys provide an idea of the
potential risk factors of cataract, while animal models and in vitro
studies make the hypothesis and mechanism more convincing.
Some studies on oxidative stress markers in aqueous humor have
been proposed to correlate the aqueous humor micro-condition
with cataractogenesis in the human lens. ROS is difficult to
detect because of its instability and rapid reactions; hence,
measurement of antioxidant enzymes in aqueous humor is a reli-
able surrogate.

Among these, superoxide dismutase (SOD), a major antioxidant
enzyme, which decomposes superoxide into hydrogen peroxide,
and CAT, which breaks down hydrogen peroxide into water, are the
two major enzymes discussed. These antioxidant enzymes in the
aqueous humor protect the lens protein from ROS-induced
damage.39 SOD activities in aqueous humor was typically low in
previous reports, but Sawada et al. found that in more advanced
cataract, there was a significant increase in the level of SOD activity
and total protein in aqueous humor.40 The increase was propor-
tional to cataract severity but not to patient age. They mainly
detected the activities of SOD1 and SOD2 in cells from the cornea,
ciliary epithelium and lens, not extracellular SOD. It may be inferred
that advanced cataract is associated with molecules leaking
through the lens capsule.

Nitric oxide (NO), generated by NO synthases, and known as
a detrimental free radical, has been found to regulate cell metab-
olism and to play an important role in the aging process. Non-
enzymatic nitration of a-crystallin in the cataractous lens matrix
may be a mechanism in lens protein damage.41e44 Furthermore,
different nitrogen oxide species, including peroxynitrite, are highly
reactive species that can oxidize proteins and non-protein sulfhy-
dryl groups. Significantly higher levels of NO in the aqueous humor
of patients withmature cataract compared to patients with cortical,
nuclear or posterior capsular cataract have been found. In addition,
NO levels in the aqueous humor increase with age and in patients
with age-related cataract.45 These oxidative stress markers in the
aqueous humor reveal a possible relationship with cataract.
However, the precise mechanism is not fully understood. In the
future, control of NO formation may be an alternative way to
prevent cataract progression.

6. Therapeutic agents

Quinax has been widely used for prophylaxis of cataract
formation. Oxidative stress, as the key to cataract formation, is
related to a cascade of biochemical reactions as described above.
Many enzymes and oxidative agents are involved in cataracto-
genesis. Once the pathway is blocked, the progression of cataract
formation may be controlled. Several medications are under
investigation for cataract prevention or treatment.

6.1. Lipid peroxidation and carnosine

Lipid peroxidation (LPO), as an endogenous source of oxidative
injury, leads to formation of reactive oxygen radicals and high
molecular weight protein aggregation of low solubility.46,47

A potential treatment strategy is to prevent activation of LPO and
accumulation of damaging LPO products by exogenously adminis-
tered antioxidants with a strong affinity to LPO. Carnosine was
found to be the most potent lipid peroxidase mimetic with
a powerful antioxidant property that can protect cell membranes
from oxidative damage.48

The ophthalmic pro-drug carnosine-N-acetylcarnosine (NAC)
has recently been developed for clinical use.49 Babizhayev et al.
found that after 6 months of NAC treatment, 96% of the treated
eyes showed improvement in lens clarity as based on slit-lamp
images and retroillumination photographs. Significantly, NAC
was found to be able to reverse lens opacity in canine eyes, and
a “melting snow” phenomenon was described.46 Other studies
also showed improvements in best-corrected visual acuity or
lens opacity. Nevertheless, there remain some barriers to wide-
spread adoption of this experimental therapy, such as the small
number of participants, high dropout rate, too little progression
to show convincing worsening of untreated cataracts, and
insufficient baseline measurements to compare the efficacy of
NAC. A larger trial is needed to justify the benefit of long-term
NAC therapy.50

6.2. Irradiation cataract and bendazac

Bendazac has been demonstrated to have a protective effect
against lens protein denaturation both in vitro and in vivo.51 Pan-
dolfo et al. found that bendazac was especially effective in pro-
tecting against X-ray-induced cataracts in the rabbit lens with
preservation of the antioxidant enzyme system.52 In addition,
bendazac’s main metabolite, 5-hydroxybendazac, was found to be
an effective hydroxyl radical scavenger.53 Unfortunately, the reli-
ability of these results on bendazac is limited because the present
conclusions are based on studies of subjective criteria, high dropout
rate, and small participant numbers. The results were concluded to
be ambiguous.

6.3. Ascorbic acid

In the lens, ascorbic acid acts as a reductant and a free radical
scavenger. Ascorbic acid was reported to be capable of preventing
photooxidation-induced protein cross-linking.54 Likewise, aspirin
works as an acetylating agent, which prevents protein denaturation
within the lens.55 Even if ascorbic acid is proven to be beneficial in
cataract prevention in case-controlled studies, other retrospective
studies have not arrived at a favorable conclusion.56e59

6.4. Diabetic cataract and aldose reductase inhibitors

Aldose reductase is the key enzyme in the polyol pathway. Some
drugs have been designed as aldose reductase inhibitors to prevent
cataracts. Sorbinil, an experimental aldose reductase inhibitor,
reduces polyol production and prevents NADPH from being
oxidized. Sorbinil is also capable of maintaining GSH in the reduced
state in experimental cataracts. However, sorbinil showed little
beneficial effect on cataract formation and many studies were
stopped due to adverse effects.60,61

7. Conclusion

The crystalline lens is constantly subjected to oxidative stress
from free radicals, which can potentially lead to lens protein
damage. The lens has several protective mechanisms such as the
GSH system and Trx, which work as repair systems to protect
the lens protein from oxidation and further cataractogenous
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changes. The relationship between UV light and cataract was
first discovered by epidemiological studies, while further surveys
showed that 3OHKyn is a crucial mediator of UV light absorp-
tion. UV light-induced cross-linking of lens proteins also
contributes to UV-related cataracts. Research is revealing that
the levels of CAT, NO and proteins in the aqueous humor may be
correlated with cataractogenesis in the human lens. Further
investigation of cataractogenesis is of clinical value and may lead
to the development of potential medical therapy as an alterna-
tive to surgery.
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