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It is shown that, in the sense of the Baire category, almost all continuous 
single valued a-nonexpansive mappings T: C + C do have lixed points. Here C 
is a nonempty closed convex and bounded subset of an infinite dimensional 
Banach space. A similar result holds for upper semicontinuous cu-nonexpansive 
mappings which are compact convex valued. Corresponding results for single 
valued and set-valued nonexpansive mappings are reviewed. 

1. INTRODUCTION AND RESULTS 

Let C be a nonempty closed convex bounded subset of positive diameter 
contained in an infinite dimensional Banach space E. If E is uniformly convex, 
the classical theorem established by Browder [I], Godhe [8] and (in a more 
general setting) by Kirk [Ill ensures that C has the fixed point property for 
each mapping T: C -+ C which is nonexpansive, that is I/ TX - Ty 11 < Ij x - y /I , 
(x, y E C). This result is no longer true [15, p. 1261 for T in the larger class A’, of 
all continuous maps which are ol-nonexpansive, that is a-Lipschitz 

+V)I G G@l for each X C C (1) 

with Lipschitz constant KT = 1. Here c1 denotes the Kuratowski measure of 
noncompactness. In this case, both, the subsets of maps with or without fixed 
points, can be nonempty and so it comes rather naturally the question of finding 
the topological size (in the sense of the Baire category) of each of these subsets. 

In this note we are going to consider the question in its full generality without 
any additional assumption on the geometry of the Banach space E. We find that 
the subset T2”, of all T E A’i which are fixed point free is of Baire I category in the 
Baire space .A$ of all continuous a-nonexpansive mappings endowed with the 
metric of the uniform convergence 

PGT S> = su~{Il T(x) - G9ll I x E C> (T SE-J&). (2) 

This result seems to be the best possible since, as we shall see in an example, for 
each K > 1, the subset %OK of all functions which are fixed point free, can have 
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nonempty interior, hence it is of Baire II category in the Baire space of all 
continuous a-Lipschitz mappings T: C + C with constant Kr. = li’. Thus we 
have: 

ZCK = ,O by Darbo’s theorem [3] if K < 1 

= I category if 6 LIZ= ] 

= II category (possibly) if K > 1. 

The fact that E?‘i is of I category is a consequence of the following: 

THEOREM 1. Let A!,, be the subset of all T E A, such that: (i) T has at least one 
fixed point; (ii) the set Qsz, of the fixed points of T is compact and, (iii) for each 

x E C V”Yx)) ’ P as recompact. Then A0 is a residual set in the Baire space A’1 . 

Let d be the metric space of all nonexpansive mappings T: C + C equipped 
with the metric (2). The method of proof of Theorem 1 furnishes, in particular, 
another and different proof of the following: 

PROPOSITION 1 [lg]. The subset &,, of all T E d which have fixed points is 
residual in the Baire space 8. 

Indeed even more can be said, for we have: 

PROPOSITION 2 [4]. The subset d of all T E 8 for which the successive appro- 
ximations (T”(x)} converge for each starting point x E C is residual in the Baire 
space 8. 

Propositions 1 and 2 furnish some light on the problem of extending the 
theorem of Browder, Giihde and Kirk beyond the framework of the uniform 
convexity or, more generally, of the normal structure of the space (see [17]). 

We notice, by the way, that Proposition 2 has a counterpart in the theory of 
ordinary differential equations in infinite dimensional Banach spaces [6j. 

Theorem 1 and Proposition 1 can be formulated also for set-valued functions. 
Let r(C) (resp., f(C)) be the complete metric space of all nonempty compact 

((resp., compact convex) subsets of C endowed with the Hausdorff distance H. 
Let B be the set of all upper semicontinuous maps T: C + p(C) which satisfy 
(l), with constant Kr = 1. 9 is a Baire space under the metric of the uniform 
convergence, 

PV’, S) = su~WW9, %4) I x E Cl (T, SE@). (3) 

THEOREM 2. Let 9, be the subset of all T E B which have properties (i-iii) 
of Theorem 1. Then 9,, is a residual set in the Baire space 8. 
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Let % be the metric space of all mappings T: C -+ r(C) which are non- 
expansive, that is Lipschitzian 

fww~ T(Y)) G G II x - Y II (x, Y E c> 

with constant KT = 1, equipped with the metric (3). 

PROPOSITION 3. The subset a0 of all T E @ which have jixed points is residual 
in the Baire space 9Y. 

This statement is seen in the proper light if it is compared with some recent 
fixed point theorems [2, 9, 13, 141 p roved under additional assumptions on the 
geometry of the space E, namely when E is uniformly convex. Without this 
hypothesis very little seems to be known. 

2. PROOFS 

Proof of Theorem 1. It is known that the set JV of all S E A1 with constant 
K, < 1 is dense in .Mr . Let S E JV. Let E > 0 and let T E A1 satisfy p( T, S) < 
S,(c) where 0 < S,(E) < (1 - K,) c/2. Let XC C be any. We have 

n-1 
a[@ T)” (X)] < Ks%[X] + 26,(e) 1 K,” (4) 

i-0 

in which Co denotes the closed convex hull. Let U be the unit ball in E. In order 
to show that (4) is true we use induction. For n = 1, being p(T, 5’) < S,(r), we 
have 

and so 

from which 
(co T) (X) c (c5 S) (X) + U&&) 

a[@ T) (X)] < “[(Z S) (X)] + 28,(c) < K&X) + 28s(~)- 

Suppose now that (4) is true for a given n. From 

we have 
T(G T)” (X) C S(C.5 T)” (X) + U&(E) 

hence 

(Co T)n+l (X) C (Co S) (Co T)n (X) + U&(E), . 

a[(cO T)n+l (X)] < o~[(co S) (Co T)n (X)] + 28&) 

< Ks4(co T)” @‘>I + 2&(4 
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and, using (4) in the last inequality, we find that (4) is true also for n + 1. 
Since K, < 1, we obtain from (4), 

li:rzp c@6 T)% (X)] < 2Ss(6) (1 - KS)-; < E. 

Now let B(S, 6) = {TE J& [ p(Z’, S) < 6). Define 

and observe that JZ. , as a dense (for A.+ contains JV which is so) G,-set in the 
Baire space Jr , is residual. To complete the proof we shall show that &‘.+ C &, . 
Let T E A.+ . This implies that there are Sk E Jlr such that T E B(S, , 6$/K)) 
for K = 1,2,.... Consequently 

lirnzs:p a[(% T)n (X)] < l/K (k = 1, 2,...), 

hence 

k+c c&S T)” (A’)] = 0, (X c: C). (5) 

This equality is in particular true for X = C. In such case the sequence 

(6 V (Cl> f o nonempty closed convex sets is monotone nonincreasing and, 
by Kuratowski’s theorem [12, p. 4121, has nonempty intersection, C,, . Since 
C,, is compact convex and invariant under the continuous function T, by 
Schauder’s theorem T has a fixed point. 

From 

~[%I = WV,)1 < a[@ T)” (C)l 

by virtue of (5), if we let X = C, we obtain a[.-$-] = 0 and so Qr (which is 
closed) is also compact. A similar argument shows that for each x E C, (Tn(x)j 
is precompact. This completes the proof, 

EXAMPLE. Let c0 be the Banach space of all real sequences 3c =’ (.vr , .v2 ,...) 
which converge to zero, with the supremum norm. Let C = {x E cg ! )I .r j! < 4). 
For a fixed 1 < K < 2 set 

p(r) = Kr if iY] <l 

= Kr// Y / if 1 <IrIG 

and define 

T:C-+C by W(x) = (K ~(4, P(&-). 
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Since T is Lipschitzian with constant Kr = K it satisfies u[T(X)] < Kol[X] for 
each X c C. Let @: C -+ C be any continuous function such that p( T, @) < E = 
K - 1. We shall see that any such @ has not fixed points. Otherwise, for same 
x E C, we would have xi = Qd(x) (; = 1,2,...). Since p(T, @) < E we have 

Thus 

K - E < @&) < K + E 

p(x,-1) - E < @i(X) <P(%-I> + E for i > 2. 

x1 = @Jx) > K - E = 1 

x2 = f&(x) > p(x1) - E 3 p(l) - c: = 1 

and, in general, xi > 1 for each i = 1, 2 ,..., a contradiction. This shows that 
each continuous @ in the open ball B( T, e) is fixed point free. 

Proof of Theorem 2. It runs as that of Theorem 1 with the difference that 
now the existence of a fixed point of T in C, is furnished by the theorem of 
Kakutani and KY-Fan [lo, 71. 

Proof of Proposition 3. As in the proof of Theorem 1 we obtain the existence 
of a compact convex set C,, which is nonempty and invariant under T. Let 
ZEC,. For K = 1, 2,... set S,(x) = (l/K) %f (1 - l/K) T(x), XE C,, , and 
observe that S,(C,,) C C,, and S’, -+ T uniformly on C, . Since each S, has 
Lipschitz constant KS, < 1, by a theorem of Nadler [16], it has a fixed point, xk . 
By the compactness of C, we assume xk ---f 3i: E C,, . Suppose now, inf{i\ 3i: - y I( 1 
y E T(4)) = u > 0. Then by the continuity of T and the fact that X~ -+ f and S, 
converges (uniformly) to T we have, for K sufficiently large, inf(J xlc - y /I / 
y E &W 3 4, a contradiction. Therefore u = 0 and T has a fixed point. 

Remark. Let C be a nonempty closed convex and bounded subset of a Banach 
space E. It has been shown in Theorem 1 that the set JZ? of all T E J& which 
have fixed points is residual in &?i . If we denote by Z? the subset J&\&? of the 
pathological maps of .&r , that is of the maps which are fixed point free, the 
following questions can be posed: 

1. Characterize the Banach spaces E which admit nonempty 2. 

2. Characterize the maps which are in 2”. 

3. Find how the set 2 is scattered in .&‘r (density, convexity, etc.). 

Of course each of these questions can be formulated in correspondence with 
any other result of the paper. In some special case, question 3 has been partially 
answered. In fact, with reference to Proposition 2, it has been proved that, if E 
is a Hilbert space, then S\bis dense in $ [Sj. In a more general setting very little 
is known. 
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