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Abstract

We prove the existence and uniqueness of solutions in Sobolev spaces to second-order parabolic equa-
tions in non-divergence form. The coefficients (except one of them) of second-order terms of the equations
are measurable in both time and one spatial variables, and VMO (vanishing mean oscillation) in other
spatial variables.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper continues the investigation of parabolic equations in [11] dealing with more general
class of coefficients than in [11]. The parabolic equation we consider is of the form

ut + aij (t, x)uxixj + bi(t, x)uxi + c(t, x)u = f (1)

in the Sobolev spaces W
1,2
p , p > 2.

In establishing Lp-theory for equations as above, no regularity assumptions are required for bi

and c (i.e., bi and c are bounded measurable), whereas there could not exist a unique solution
to the above equation if the coefficients aij are only measurable. In fact, there have always been
some regularity assumptions on aij in the literature. For example, if aij (t, x) are uniformly con-
tinuous uniformly in t (see [16]), then for f ∈ Lp , the above equation has a unique solution
in W

1,2
p . In [1] they assumed aij (t, x) to be in the space of VMO as functions of (t, x) ∈ Rd+1.
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This result was generalized using a different approach in [14], so that aij (t, x) can be measur-
able in t ∈ R and VMO in x ∈ Rd . Piecewise continuous aij were also dealt with in [9,23]. As
a predecessor of this paper, we considered in [11] coefficients aij (t, x) which are measurable
in x1 ∈ R and VMO in (t, x′), t ∈ R, x′ ∈ Rd−1. Here we denote x = (x1, x′) ∈ Rd , x1 ∈ R,
x′ ∈ Rd−1.

In this paper, we remove the regularity assumption with respect to t ∈ R on aij (t, x) (in [11]
aij were assumed to be VMO in t ∈ R). More precisely, we assume that aij (t, x) are measurable
in (t, x1) ∈ R2 and VMO in x′ ∈ Rd−1 except that a11(t, x) is measurable only in x1 ∈ R and
VMO in (t, x′) ∈ Rd . This class of coefficients aij clearly covers the class considered in [11].
By no means, however, does this paper make the results in [11] obsolete because here we have
to make use of results from [11] in our main steps. In addition, the paper [11] contains a very
important result about the case p = 2, where aij (including a11) are only measurable as functions
of (t, x1). Note that the class of aij in this paper does not include the coefficients in [14] since
a11 is not allowed to be measurable in t ∈ R. However, the class of coefficients aij we consider
here is considerable general, so that, for example, we do not require any regularity assumptions
on aij as long as they are functions of (t, x1) (a11 is a function of x1) satisfying the ellipticity
condition.

It is worth mentioning that, as noted in [10], in the elliptic case an example of an equation
in Rd , d � 3, was constructed in [15] (the original paper [27]) having no unique solvability
in W 2

p , where the coefficients of the equation are functions of only the first two coordinates.
Non-uniqueness of elliptic equations in a very generalized sense is proved in [20,22]. Note that
due to the unique solvability in W

1,2
p of Eq. (1), by following the arguments in [9,26], we have the

weak uniqueness of stochastic processes associated with the parabolic equation. This would be
another motivation to investigate parabolic equations as in (1). Besides those papers referred to
earlier, we refer to papers [2–6,8,17–19,21,24,25] for more information about Lp-theory for both
elliptic and parabolic equations with rough coefficients—coefficients which are not uniformly
continuous. For weak uniqueness of stochastic processes, in addition to those mentioned in the
above, see [13] and references therein.

This paper is organized as follow. We present the main result in Section 2. To prepare for a
proof of the main result, we state and prove some auxiliary results in Section 3. Finally, we prove
Theorem 2.4 in Section 4. For the results in Section 3, we needed some properties of traces of
functions in parabolic Sobolev spaces [12] and parabolic equations with mixed norms [7].

2. Main results

We consider the parabolic equation (1) in the Sobolev space

W 1,2
p

(
(S,T ) × Rd

) = {
u: u,ut , ux,uxx ∈ Lp

(
(S,T ) × Rd

)}
,

−∞ � S < T � ∞. The coefficients aij , bi , and c satisfy the following assumptions.

Assumption 2.1. The coefficients aij , bi , and c are measurable functions defined on Rd+1,
aij = aji . There exist positive constants δ ∈ (0,1) and K such that∣∣bi(t, x)

∣∣ � K,
∣∣c(t, x)

∣∣ � K,

δ|ϑ |2 �
d∑

i,j=1

aij (t, x)ϑiϑj � δ−1|ϑ |2

for any (t, x) ∈ Rd+1 and ϑ ∈ Rd .
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To state another assumption on the coefficients aij , we introduce some notation. Let

Br(x) = {
y ∈ Rd : |x − y| < r

}
,

B ′
r (x

′) = {
y′ ∈ Rd−1: |x′ − y′| < r

}
,

Qr(t, x) = (
t, t + r2) × Br(x), Γr(t, x

′) = (
t, t + r2) × B ′

r (x
′),

Λr(t, x) = (
t, t + r2) × (

x1 − r, x1 + r
) × B ′

r (x
′).

Set Br = Br(0), B ′
r = B ′

r (0), Qr = Qr(0) and so on. By |B ′
r | we mean the (d − 1)-dimensional

volume of B ′
r (0). Denote

oscx′
(
aij ,Λr(t, x)

) = r−3
∣∣B ′

r

∣∣−2
t+r2∫
t

x1+r∫
x1−r

A
ij

x′(s, τ ) dτ ds,

osc(t,x′)
(
aij ,Λr(t, x)

) = r−5
∣∣B ′

r

∣∣−2
x1+r∫

x1−r

A
ij

(t,x′)(τ ) dτ,

where

A
ij

x′(s, τ ) =
∫

y′,z′∈B ′
r (x

′)

∣∣aij (s, τ, y′) − aij (s, τ, z′)
∣∣dy′ dz′,

A
ij

(t,x′)(τ ) =
∫

(σ,y′),(�,z′)∈Γr(t,x′)

∣∣aij (σ, τ, y′) − aij (�, τ, z′)
∣∣dy′ dz′ dσ d�.

Also denote

Ox′
R

(
aij

) = sup
(t,x)∈Rd+1

sup
r�R

oscx′
(
aij ,Λr(t, x)

)
,

O(t,x′)
R

(
aij

) = sup
(t,x)∈Rd+1

sup
r�R

osc(t,x′)
(
aij ,Λr(t, x)

)
.

Finally set

a#
R = O(t,x′)

R

(
a11) +

∑
i �=1 or j �=1

Ox′
R

(
aij

)
.

Assumption 2.2. There is a continuous function ω(t) defined on [0,∞) such that w(0) = 0 and
a#
R � ω(R) for all R ∈ [0,∞).

Remark 2.3. It can be seen from our proofs that we use only the fact that R ∈ (0,∞) can be
chosen so that a#

R is smaller than a constant which depends only on constants, especially, N , ν,
and α in (17), appearing in the proof of Corollary 4.2.

In this paper we mean by W̊
1,2
p ((0, T )×Rd) the collection of all functions in W

1,2
p ((0, T )×Rd)

vanishing at t = T . The differential operator is denoted by L, i.e.,

Lu = ut + aijuxixj + biuxi + cu. (2)
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Here we present our main result. Throughout the paper, we write N = N(d, . . .) if N is a
constant depending only on d, . . . .

Theorem 2.4. Let p ∈ (2,∞). Under Assumptions 2.1 and 2.2, for any f ∈ Lp((0, T ) × Rd),

there exists a unique u ∈ W̊
1,2
p ((0, T ) × Rd) such that Lu = f in (0, T ) × Rd . Furthermore,

there is a constant N = N(d, δ,K,p,ω,T ) such that, for any u ∈ W̊
1,2
p ((0, T ) × Rd),

‖u‖
W

1,2
p ((0,T )×Rd )

� N‖Lu‖Lp((0,T )×Rd ).

Remark 2.5. In case p = 2, by Theorem 2.2 in [11], the above theorem holds true under the
assumption that aij are functions of only (t, x1) ∈ R2 satisfying Assumption 2.1. That is, we do
not need any regularity assumptions on the coefficient aij (t, x1).

3. Auxiliary results

In this section the coefficients aij are assumed to be measurable functions of only (t, x1) ∈ R2.
In addition, we assume that a11 is a function of only x1 ∈ R. Throughout this section we set

Lu(t, x) = ut (t, x) + aij
(
t, x1)uxixj (t, x).

We denote by ∂ ′Qr(t, x) the parabolic boundary of Qr(t, x) defined as

∂ ′Qr(t, x) = ([
t, t + r2] × ∂Br(x)

) ∪ {(
t + r2, y

)
: y ∈ Br(x)

}
.

Lemma 3.1. There exists N = N(d, δ) such that, for u ∈ W
1,2
2 (Qr) with u|∂ ′Qr

= 0, we have

r2
∫
Qr

|ux |2 dx dt +
∫
Qr

|u|2 dx dt � Nr4
∫
Qr

|Lu|2 dx dt.

Proof. The proof is identical to that of Lemma 4.1 in [11]. In fact, Lemma 4.1 in [11] assumes
that aij are functions of only x1, but the proof there needs only the fact that a11 is independent
of t . �
Lemma 3.2. Let 0 < r < R. There exists N = N(d, δ) such that, for u ∈ W

1,2
2 (QR),

‖u‖
W

1,2
2 (Qr )

� N
(‖Lu − u‖L2(QR) + (R − r)−2‖u‖L2(QR)

)
.

Proof. The proof of this lemma is based on the estimate of solutions of the equation Lu = f

in L2(R
d+1). To find the L2-estimate, see Remark 2.5 or, more precisely, Theorem 3.2 in [11]

with λ = 1. Hence the proof of Lemma 4.2 in [11] can be repeated without any change. Also see
the proof of Lemma 4.2 in [10]. �
Lemma 3.3. Let γ = (γ 1, . . . , γ d) be a multi-index such that γ 1 = 0,1,2. Set γ ′ =
(0, γ 2, . . . , γ d) and 0 < r < R. If h is a sufficiently smooth function defined on QR such that
Lh = 0 in QR , then∫

Qr

∣∣Dγ ′
ht

∣∣2
dx dt +

∫
Qr

∣∣Dγ h
∣∣2

dx dt � N

∫
QR

|h|2 dx dt,

where N = N(d, δ, γ,R, r).
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Proof. Use Lemma 3.2 and the argument in the proof of Lemma 4.4 in [10]. �
We recall some function spaces which we need in the following lemmas. As is well known,

we denote by Hs
p(Rd), s ∈ R, the space of all generalized functions u such that (1 − Δ)s/2u ∈

Lp(Rd). For k = 0,1,2, . . . , Wk
p(Ω) is the usual Sobolev space and Ck+ν(Ω), 0 < ν < 1, is the

Hölder space. By Ck(Ω) we mean the space of all functions u whose derivatives Dαu, |α| � k,
are continuous and bounded in Ω . As we recall,

‖u‖Ck+ν (Ω) = ‖u‖Ck(Ω) +
∑
|α|=k

sup
x,y∈Ω
x �=y

|Dαu(x) − Dαu(y)|
|x − y|ν ,

where

‖u‖Ck(Ω) =
∑

|α|�k

sup
x∈Ω

∣∣Dαu(x)
∣∣.

Lemma 3.4. Let u ∈ W
1,2
2 ((0,∞) × Rd) ∩ C2([0,∞) × Rd). Then we have

sup
0�s<∞

∥∥u(s, ·)∥∥
W 1

2 (Rd )
� N(d)‖u‖

W
1,2
2 ((0,∞)×Rd )

.

Proof. Observe that

∫
Rd

∣∣uxi (s, x)
∣∣2

dx = −2
∫
Rd

∞∫
s

uxi t (t, x)uxi (t, x) dx dt

= 2

∞∫
s

∫
Rd

uxixi (t, x)ut (t, x) dx dt �
∫
Rd

∞∫
s

|uxixi |2 + |ut |2 dt dx.

Similarly, we obtain

∫
Rd

∣∣u(s, x)
∣∣2

dx �
∫
Rd

∞∫
s

|ut |2 + |u|2 dt dx.

The lemma is proved. �
In the rest of this paper, hx′ represents, depending on the context, one of hxi , i = 2, . . . , d ,

or the whole collection {hx2 , . . . , hxd }. By hx we mean one of hxi , i = 1, . . . , d , or the gradient
of h with respect to x. Thus hxx′ is one of hxixj , where i ∈ {1, . . . , d} and j ∈ {2, . . . , d}, or the
collection of them. Norms of these collections are defined arbitrarily.

Lemma 3.5. Let h be a sufficiently smooth function h defined on Q4 such that Lh = 0 in Q4.
Then, for each x′ ∈ B ′

1,

4∫ ∥∥h(t, ·, x′)
∥∥p

L2(−2,2)
dt +

4∫ ∥∥hx(t, ·, x′)
∥∥p

L2(−2,2)
dt
0 0
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+
4∫

0

∥∥hxx′(t, ·, x′)
∥∥p

L2(−2,2)
dt � N‖h‖p

L2(QR),

where 1 � p < ∞, 2 < R � 4, and N = N(d, δ,p,R).

Proof. We prove that, for each x′ ∈ B ′
1,

4∫
0

∥∥h(t, ·, x′)
∥∥p

L2(−2,2)
dt +

4∫
0

∥∥hx1(t, ·, x′)
∥∥p

L2(−2,2)
dt � N‖h‖p

L2(Qτ ), (3)

where 2 < τ < R. If this turns out to be true, then using this and the fact that Lhx′ = 0 we
obtain the inequality (3) with hx′ in place of h. Furthermore, using Lhx′x′ = 0, we also obtain
the inequality (3) with hx′x′ in place of h. Hence the left side of the inequality in the lemma is
not greater than a constant times

‖h‖p

L2(Qτ ) + ‖hx′ ‖p

L2(Qτ ) + ‖hx′x′ ‖p

L2(Qτ ).

This and Lemma 3.3 finish the proof.
To prove (3), we introduce an infinitely differentiable function η defined on R2 such that

η
(
t, x1) =

{
1 on [0,4] × [−2,2],
0 on R2 \ [(−r2, r2) × (−r, r)],

where 2 < r < τ . For each x′ ∈ B ′
1, view ηh as a function of (t, x1) ∈ (0,∞) × R. Then by

Lemma 3.4

sup
0�s<∞

∥∥(ηh)(s, ·, x′)
∥∥

W 1
2 (R)

� 2
∥∥(ηh)(·, x′)

∥∥
W

1,2
2 ((0,∞)×R)

for each x′ ∈ B ′
1. Note that the pth power of the left side of the above inequality is greater than

or equal to a constant times the left side of the inequality (3). Also note that the right side of the
above inequality is no greater than a constant times∥∥h(·, x′)

∥∥
W

1,2
2 ((0,r2)×(−r,r))

. (4)

Now notice that there exists an integer k such that, for each t ∈ (0, r2) and x1 ∈ (−r, r),

sup
x′∈B ′

1

∣∣h(
t, x1, x′)∣∣ � N

∥∥h
(
t, x1, ·)∥∥

Wk
2 (B ′

1)
.

This inequality remains true if we replace h with ht , hx1 , or hx1x1 . Hence, for all x′ ∈ B ′
1, the

square of (4) is not greater than a constant times

r2∫
0

r∫
−r

(∥∥h
(
t, x1, ·)∥∥2

Wk
2 (B ′

1)
+ ∥∥ht

(
t, x1, ·)∥∥2

Wk
2 (B ′

1)

+ ∥∥hx1

(
t, x1, ·)∥∥2

Wk
2 (B ′

1)
+ ∥∥hx1x1

(
t, x1, ·)∥∥2

Wk
2 (B ′

1)

)
dx1 dt,

which is, by Lemma 3.3, less than or equal to a constant times ‖h‖2
L2(Qτ ). The lemma is

proved. �
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Let Lp_Lq((S,T ) × Ω), Ω ⊆ Rd , be the space of functions u(t, x) on (S,T ) × Ω such that

‖u‖Lp_Lq((S,T )×Ω) :=
( T∫

S

(∫
Ω

∣∣u(t, x)
∣∣q dx

)p/q

dt

)1/p

< ∞.

By W
1,2
p,q((S,T ) × Rd) we mean the collection of all functions defined on (S,T ) × Rd such that

‖u‖
W

1,2
p,q ((S,T )×Rd )

:= ‖u‖Lp_Lq((S,T )×Rd ) + ‖ux‖Lp_Lq((S,T )×Rd )

+ ‖uxx‖Lp_Lq((S,T )×Rd ) + ‖ut‖Lp_Lq((S,T )×Rd ) < ∞.

We say u ∈ W̊
1,2
p,q((S,T ) × Rd) if u ∈ W

1,2
p,q((S,T ) × Rd) and u(T , x) = 0.

The following theorem is taken from [7]. Note that in the theorem coefficients aij are inde-
pendent of t .

Theorem 3.6. Let p > q � 2, 0 < T < ∞, and L be the operator defined in (2). That
is, coefficients aij , bi , and c satisfy Assumptions 2.1 and 2.2. In addition, we assume that
aij are independent of t and, in case q = 2, aij are functions of only x1 ∈ Rd . Then for any
f ∈ Lp_Lq((0, T ) × Rd), there exists a unique u ∈ W̊

1,2
p,q((0, T ) × Rd) such that Lu = f in

(0, T ) × Rd . Furthermore, there is a constant N , depending only on d , δ, K , p, q , T , and the
function ω, such that, for any u ∈ W̊

1,2
p,q((0, T ) × Rd),

‖u‖
W

1,2
p,q ((0,T )×Rd )

� N‖Lu‖Lp_Lq((0,T )×Rd ).

In the lemmas below we use the following notation:

[f ]μ,ν;Qr
:= sup

(t,x),(s,y)∈Qr
(t,x) �=(s,y)

|f (t, x) − f (s, y)|
|t − s|μ + |x − y|ν .

Lemma 3.7. Let p > 4 and 2/p < β < 1/2. Assume that h is a sufficiently smooth function
defined on Q4 such that Lh = 0 in Q4. Then

[hxx′ ]μ,ν,Q1 � N‖h‖L2(Q3),

where μ = β/2 − 1/p, ν = 1/2 − β , and N = N(d, δ,p,β).

Proof. First we note that 0 < μ < 1 and 0 < ν < 1. We prove

[h]μ,ν,Q1 + [hx1 ]μ,ν,Q1 � N‖h‖L2(Qτ ), (5)

where 2 < τ < 3. Once this is proved, the lemma follows from the argument in the proof of
Lemma 3.5 (i.e., use Lhx′ = 0, Lhx′x′ = 0, and Lemma 3.3).

For the proof of the inequality (5) it is enough to prove the following: for all s, t ∈ (0,1) and
x′ ∈ B ′

1,∥∥h(t, ·, x′) − h(s, ·, x′)
∥∥

C1(−1,1)
� N |t − s|μ‖h‖L2(Qτ ), (6)∥∥h(t, ·, x′)

∥∥
C1+ν (−1,1)

+ ∥∥hx′(t, ·, x′)
∥∥

C1(−1,1)
� N‖h‖L2(Qτ ), (7)
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where h(t, x1, x′) is considered as a function of only x1 ∈ (−1,1). Indeed, observe that, for
(t, x), (s, y) ∈ Q1,∣∣h(t, x) − h(s, y)

∣∣ �
∣∣h(

t, x1, x′) − h
(
t, y1, x′)∣∣

+ ∣∣h(
t, y1, x′) − h

(
t, y1, y′)∣∣ + ∣∣h(

t, y1, y′) − h
(
s, y1, y′)∣∣

� sup
−1<z1<1

∣∣hx1

(
t, z1, x′)∣∣∣∣x1 − y1

∣∣ + sup
|z′|<1

−1<z1<1

∣∣hx′
(
t, z1, z′)∣∣|x′ − y′|

+ sup
−1<z1<1

∣∣h(
t, z1, y′) − h

(
s, z1, y′)∣∣

� N
(|x − y| + |t − s|μ)‖h‖L2(Qτ ),

where the last inequality is due to (6) and (7). This proves

[h]μ,ν,Q1 � N‖h‖L2(Qτ ).

Similarly, (6) and (7) imply

[hx1 ]μ,ν,Q1 � N‖h‖L2(Qτ ).

We now prove (6) and (7), but instead of (7), we prove∥∥h(t, ·, x′)
∥∥

C1+ν (−1,1)
� N‖h‖L2(Qr ), (8)

where 2 < r < τ . If this holds true, then, as in the proof of Lemma 3.5, by the fact that Lhx′ = 0
it follows that∥∥hx′(t, ·, x′)

∥∥
C1+ν (−1,1)

� N‖hx′ ‖L2(Qr ).

This and (8) along with Lemma 3.3 prove (7).
Let η be an infinitely differentiable function defined on R2 such that

η
(
t, x1) =

{
1 on [0,1] × [−1,1],
0 on R2 \ (−4,4) × (−2,2).

Also let

g
(
t, x1, x′) = −

∑
i �=1 or j �=1

aij
(
t, x1)hxixj

(
t, x1, x′),

so that

ht + a11(x1)hx1x1 = g.

Then

(ηh)t + a11(x1)(ηh)x1x1 = ηg + 2a11ηx1hx1 + (
ηt + a11ηx1x1

)
h.

For each x′ ∈ B ′
1, consider ηh as a function of (t, x1) ∈ (0,∞) × R. Then by Theorem 3.6 (note

that ηh = 0 for t � 4), we have

‖ηh‖
W

1,2
p,2((0,∞)×R)

� N
∥∥ηg + 2a11ηx1hx1 + (

ηt + a11ηx1x1

)
h
∥∥

Lp_L2((0,∞)×R)
,

where N = N(δ,p). We see that, for each x′ ∈ B ′
1, the right-hand side of the above inequality is

not greater than a constant times

‖h‖Lp_L2((0,4)×(−2,2)) + ‖hx‖Lp_L2((0,4)×(−2,2)) + ‖hxx′ ‖Lp_L2((0,4)×(−2,2)),
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which is, by Lemma 3.5, less than or equal to a constant times ‖h‖L2(Qr ). Hence it follows that∥∥(ηh)(·, x′)
∥∥

W
1,2
p,2((0,∞)×R)

� N‖h‖L2(Qr ) (9)

for all x′ ∈ B ′
1. Again we view ηh as a function of (t, x1) ∈ (0,∞) × R. Then by Theorem 7.3

in [12]∥∥(ηh)(t, ·, x′) − (ηh)(s, ·, x′)
∥∥

H
2−β
2 (R)

= N |t − s|μ∥∥(ηh)(·, x′)
∥∥

W
1,2
p,2((0,∞)×R)

(10)

for each x′ ∈ B ′
1, where N is independent of s, t , and ηh. Using an embedding theorem, we have∥∥(ηh)(t, ·, x′) − (ηh)(s, ·, x′)

∥∥
C1+ν (R)

� N
∥∥(ηh)(t, ·, x′) − (ηh)(s, ·, x′)

∥∥
H

2−β
2 (R)

,

where, as noted earlier, ν = 1/2 − β . From this, (9) and (10), we finally have∥∥(ηh)(t, ·, x′) − (ηh)(s, ·, x′)
∥∥

C1+ν (R)
� N |t − s|μ‖h‖L2(Qr )

for all x′ ∈ B ′
1. This proves (6). To prove (8), we set s = 4 in the above inequality. The lemma is

proved. �
Let u ∈ C∞

0 (Rd+1) and f := Lu, where, as we recall, Lu = ut + aijuxixj . Assume that
a11(x1), aij (t, x1), i �= 1 or j �= 1, are infinitely differentiable. Then there exists a sufficiently
smooth function h defined on Q4 such that{Lh = 0 in Q4,

h = u on ∂ ′Q4.

In the following lemma we establish an inequality for the functions u, f and h in the above.

Lemma 3.8. Let p > 4 and 2/p < β < 1/2. There exists a constant N = N(d, δ,p,β) such that

[hxx′ ]μ,ν,Q1 � N‖f ‖L2(Q4) + N‖uxx‖L2(Q4),

where μ = β/2 − 1/p and ν = 1/2 − β .

Proof. We need only follow the argument in Lemma 4.6 in [10] along with Lemmas 3.1
and 3.7. �

Denote by (u)Qr(t0,x0) the average value of a function u over Qr(t0, x0), that is,

(u)Qr(t0,x0) = −
∫

Qr(t0,x0)

u(t, x) dx dt.

Lemma 3.9. Let κ � 4 and r > 0. Let aij be infinitely differentiable. For u ∈ C∞
0 (Rd+1), we find

a smooth function h defined on Qκr such that Lh = 0 in Qκr and h = u on ∂ ′Qκr . Then there
exists a constant N = N(d, δ) such that

−
∫
Qr

∣∣hxx′ − (hxx′)Qr

∣∣2
dx dt � Nκ−1/4[(|Lu|2)

Qκr
+ (|uxx |2

)
Qκr

]
. (11)
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Proof. We first prove that the inequality (11) holds under the assumption that the inequality is
true for the case r = 1. In fact, this is done by the dilation argument shown in [10,11]. However,
rather than referring to these papers, we repeat here the argument. Let r > 0, κ � 4, and h be a
sufficiently smooth function such that Lh = 0 in Qκr and h = u on ∂ ′Qκr . Set

ĥ(t, x) = r−2h
(
r2t, rx

)
, L̂= ∂

∂t
+ aij

(
r2t, rx1) ∂2

∂xi∂xj
.

Then ĥ is defined on Qκ and

L̂ĥ(t, x) = (Lh)
(
r2t, rx

) = 0 in Qκ, ĥ = û on ∂ ′Qκ,

where û(t, x) = r−2u(r2t, rx). Note that L̂ satisfies the same ellipticity condition as L does.
Thus by the assumption that the inequality (11) holds true for the case r = 1, we have

−
∫
Q1

∣∣ĥxx′ − (ĥxx′)Q1

∣∣2
dx dt � Nκ−1/4[(|L̂û|2)

Qκ
+ (|ûxx |2

)
Qκ

]
.

Notice that

−
∫
Q1

∣∣ĥxx′ − (ĥxx′)Q1

∣∣2
dx dt = −

∫
Qr

∣∣hxx′ − (hxx′)Qr

∣∣2
dx dt,

(|L̂û|2)
Qκ

+ (|ûxx |2
)
Qκ

= (|Lu|2)
Qκr

+ (|uxx |2
)
Qκr

.

Therefore, the inequality (11) is proved for r > 0.
For the case r = 1, set p = 8 and β = 3/8 in Lemma 3.8, so 2μ = ν = 1/8. Then using

Lemma 3.8 and the dilation argument in the above, we obtain

[hxx′ ]2
μ,ν,Qκ/4

� Nκ−1/4[(|Lu|2)
Qκ

+ (|uxx |2
)
Qκ

]
. (12)

On the other hand, by the fact that κ � 4, we have

−
∫
Q1

∣∣hxx′ − (hxx′)Q1

∣∣2
dx dt � N [hxx′ ]2

μ,ν,Q1
� N [hxx′ ]2

μ,ν,Qκ/4
.

This and (12) prove the case r = 1. The lemma is proved. �
Lemma 3.10. There exists a constant N = N(d, δ) such that, for any κ � 4, r > 0, and u ∈
C∞

0 (Rd+1), we have

−
∫
Qr

∣∣uxx′ − (uxx′)Qr

∣∣2
dx dt � Nκd+2(|Lu|2)

Qκr
+ Nκ−1/4(|uxx |2

)
Qκr

.

Proof. Use Lemmas 3.9, 3.2, 3.1 and the argument in the proof of Lemma 4.8 in [10] (also see
Lemma 4.7 in [11]). �
4. Proof of Theorem 2.4

We assume in this section that all assumptions in Section 2 are satisfied. Especially, by L we
mean the operator defined in (2). In this section we set

L0u = ut + aij (t, x)uxixj .
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Let Q be the collection of all Qr(t, x), (t, x) ∈ Rd+1, r ∈ (0,∞). For a function g defined
on Rd+1, we denote its (parabolic) maximal and sharp functions, respectively, by

Mg(t, x) = sup
(t,x)∈Q

−
∫
Q

∣∣g(s, y)
∣∣dy ds,

g#(t, x) = sup
(t,x)∈Q

−
∫
Q

∣∣g(s, y) − (g)Q
∣∣dy ds,

where the supremums are taken over all Q ∈ Q containing (t, x).

Theorem 4.1. Let μ, ν ∈ (1,∞), 1/μ + 1/ν = 1, and R ∈ (0,∞). There exists a constant N =
N(d, δ,μ) such that, for any u ∈ C∞

0 (QR), we have

(uxx′)# � N
(
a#
R

) α
ν
[
M

(|uxx |2μ
)] 1

2μ + N
[
M

(|L0u|2)]α[
M

(|uxx |2
)]β

,

where α = 1/(8d + 18) and β = (4d + 8)/(8d + 18).

Proof. Let κ � 4, r ∈ (0,∞), and (t0, x0) = (t0, x
1
0 , x′

0) ∈ Rd+1. We introduce another coeffi-
cients āij defined as

ā11(x1) = −
∫

Γκr (t0,x
′
0)

a11(s, x1, y′)dy′ ds if κr < R,

ā11(x1) = −
∫
ΓR

a11(s, x1, y′)dy′ ds if κr � R.

In case i �= 1 or j �= 1,

āij
(
t, x1) = −

∫
B ′

κr (x
′
0)

aij
(
t, x1, y′)dy′ if κr < R,

āij
(
x1) = −

∫
B ′

R

aij
(
t, x1, y′)dy′ if κr � R.

Set L̄0u = ut + āij uxixj . Then by Lemma 3.10, we have

(∣∣uxx′ − (uxx′)Qr (t0,x0)

∣∣2)
Qr(t0,x0)

� Nκd+2(|L̄0u|2)
Qκr (t0,x0)

+ Nκ−1/4(|uxx |2
)
Qκr (t0,x0)

. (13)

Note that∫
Qκr (t0,x0)

|L̄0u|2 dx dt � 2
∫

Qκr (t0,x0)

|L0u|2 dx dt + N(d)
∑
i,j=1

χij , (14)

where
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χij =
∫

Qκr (t0,x0)

∣∣(āij − aij
)
uxixj

∣∣2
dx dt =

∫
Qκr (t0,x0)∩QR

· · · � I
1/ν
ij J

1/μ
ij ,

Iij =
∫

Qκr (t0,x0)∩QR

∣∣āij − aij
∣∣2ν

dx dt,

Jij =
∫

Qκr (t0,x0)∩QR

|uxixj |2μ dx dt.

Using the definitions of āij and assumptions on aij , we obtain the following estimates for Iij . If
κr < R,

I11 � N

x1
0+κr∫

x1
0−κr

∫
Γκr (t0,x

′
0)

∣∣ā11 − a11
∣∣dx dt � N(κr)d+2O(t,x′)

κr

(
a11) � N(κr)d+2a#

R.

In case κr � R,

I11 � N

R∫
−R

∫
ΓR

∣∣ā11 − a11
∣∣dx dt � NRd+2O(t,x′)

R

(
a11) � N(κr)d+2a#

R.

Now let j �= 1 or k �= 1. If κr < R,

Iij � N

∫
Λκr (t0,x0)

∣∣āij − aij
∣∣dx′ dx1 dt � N(κr)d+2Ox′

κr

(
aij

)
� N(κr)d+2a#

R.

In case κr � R,

Iij � N

∫
ΛR

∣∣āij − aij
∣∣dx′ dx1 dt � NRd+2Ox′

R

(
aij

)
� N(κr)d+2a#

R.

From the inequality (14) and the estimates for Iij , it follows that(|L̄0u|2)
Qκr (t0,x0)

� N
(
a#
R

)1/ν(|uxx |2μ
)1/μ

Qκr (t0,x0)
+ N

(|L0u|2)
Qκr (t0,x0)

.

This, together with (13), gives us(∣∣uxx′ − (uxx′)Qr(t0,x0)

∣∣2)
Qr(t0,x0)

� Nκd+2(a#
R

)1/ν(|uxx |2μ
)1/μ

Qκr (t0,x0)

+ Nκd+2(|L0u|2)
Qκr (t0,x0)

+ Nκ−1/4(|uxx |2
)
Qκr (t0,x0)

(15)

for any r > 0 and κ � 4. Let

A(t, x) = M
(|L0u|2)(t, x), B(t, x) = M

(|uxx |2
)
(t, x),

C(t, x) = (
M

(|uxx |2μ
)
(t, x)

)1/μ
.

Then we observe that (|L0u|2)Qκr (t0,x0) � A(t, x) for all (t, x) ∈ Qr(t0, x0). Similar inequalities
are obtained for B and C. From this and (15) it follows that, for any (t, x) ∈ Rd+1 and Q ∈ Q
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such that (t, x) ∈ Q,(∣∣uxx′ − (uxx′)Q
∣∣2)

Q
� Nκd+2(a#

R

)1/νC(t, x) + Nκd+2A(t, x) + Nκ−1/4B(t, x)

for κ � 4. Moreover, the above inequality also holds true for 0 < κ < 4 because

−
∫
Q

∣∣uxx′ − (uxx′)Q
∣∣2

dx dt �
(|uxx′ |2)

Q
�

√
2κ−1/4B(t, x)

for any (t, x) ∈ Q ∈ Q. Therefore, we finally have(∣∣uxx′ − (uxx′)Q
∣∣2)

Q
� Nκd+2(a#

R

)1/νC(t, x) + Nκd+2A(t, x) + Nκ−1/4B(t, x)

for all κ > 0, (t, x) ∈ Rd+1, and Q ∈ Q such that (t, x) ∈ Q. Take the supremum of the left-hand
side of the above inequality over all Q ∈ Q containing (t, x), and then minimize the right-hand
side with respect to κ > 0. Also observe that(∣∣uxx′ − (uxx′)Q

∣∣)2
Q

�
(∣∣uxx′ − (uxx′)Q

∣∣2)
Q

.

Then we obtain[
u#

xx′(t, x)
]2 � N

[(
a#
R

)1/νC(t, x) +A(t, x)
] 1

4d+9
[
B(t, x)

] 4d+8
4d+9 ,

where N = N(d, δ,μ). Upon noticing B(t, x) � C(t, x), we arrive at the inequality in the theo-
rem. This finishes the proof. �
Corollary 4.2. For p > 2, there exist constants R = R(d, δ,p,ω) and N = N(d, δ,p) such that,
for any u ∈ C∞

0 (QR), we have

‖uxx‖Lp(Rd+1) � N‖L0u‖Lp(Rd+1).

Proof. In this proof we set Lp := Lp(Rd+1). Let μ be a real number such that p > 2μ > 1.
Then by applying the Fefferman–Stein theorem on sharp functions, Hölder’s inequality, and the
Hardy–Littlewood maximal function theorem on the inequality in Theorem 4.1, we obtain

‖uxx′ ‖Lp � N
(
a#
R

) α
ν ‖uxx‖Lp + N‖L0u‖2α

Lp
‖uxx‖2β

Lp
, (16)

where, as noted in Theorem 4.1, 1/μ + 1/ν = 1 and 2α + 2β = 1. On the other hand, let

g = L0u + Δd−1u −
∑

j �=1,k �=1

aijuxixj ,

where Δd−1u = ux2x2 + · · · + uxdxd . Then

ut + a11ux1x1 + Δd−1u = g.

Note that the coefficients of the operator a11ux1x1 +Δd−1u satisfy the assumptions in [11]. Thus
by Corollary 5.2 in [11] there exists R = R(d, δ,p,ω) and N = N(d, δ,p) such that

‖ux1x1‖Lp � N‖g‖Lp, u ∈ C∞
0 (QR).

This leads us to

‖ux1x1‖Lp � N
(‖L0u‖Lp + ‖uxx′ ‖Lp

)
, u ∈ C∞

0 (QR).
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This and (16) allow us to have

‖uxx‖Lp � N‖L0u‖Lp + N
(
a#
R

) α
ν ‖uxx‖Lp + N‖L0u‖2α

Lp
‖uxx‖2β

Lp
.

Take another sufficiently small R (we call it R again), which is equal to or smaller than the R in
the above, so that it satisfies

N
(
a#
R

) α
ν � 1/2. (17)

Then we obtain

1

2
‖uxx‖Lp � N‖L0u‖Lp + N‖L0u‖2α

Lp
‖uxx‖2β

Lp
.

This finishes the proof. �
Proof of Theorem 2.4. We have an Lp-estimate for functions with small compact support. Thus
the rest of the proof can be done by following the argument in [14]. �
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