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a b s t r a c t

In this paper, we study residues of differential 2-forms on a smooth algebraic surface over
an arbitrary field and give several statements about sums of residues. Afterwards, using
these results, we construct algebraic–geometric codes which are an extension to surfaces
of the well-known differential codes on curves. We also study some properties of these
codes and extend to them some known properties for codes on curves.
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0. Introduction

The present paper is divided in two parts. The first part is a theoretical study of residues of differential 2-forms on
algebraic surfaces over an arbitrary field. The second part uses results of the first part to construct differential codes on
algebraic surfaces and to study some of their properties. The reader especially interested in coding theory is encouraged to
read briefly the definitions and the results of the first part and then to jump to the second part.

About residues

If the notion of residue is well known for differential forms on curves, there is no unified definition in higher dimension.
On complex varieties, one can distinguish two objects called residues in the literature. The first one appears for instance in
the book by Griffiths and Harris ([1] chapter V). In this book, given an n-dimensional variety X , the residue of ameromorphic
n-form ω at a point P is a complex number obtained by computing an integral on a real n-cycle. This object depends on
some n-uplet of divisors whose sum contains the poles of ω in a neighborhood of P . Another definition is given in Compact
complex surfaces by Barth, Hulek, Peters and Van De Ven ([2] II.4). In this book, given an n-dimensional variety X and a 1-
codimensional subvariety Y of X , the residue along Y of a q-form on X having a simple pole along Y is a (q−1)-form on Y . The
computation of this residue canbeobtainedby a combinatorialway, or by computing an integral on a real subvariety ([2] II.4).
In algebraic geometry over an arbitrary field, several references deal with residues, for instance Hartshorne [3] or

Lipman [4]. Actually their main objective is to establish duality theorems generalizing Serre’s one. Thus, their first intention
is not to define residues of differential forms on higher-dimensional varieties over an arbitrary field.
The goal of the first part of this paper is to generalize to surfaces over an arbitrary field, the definitions of residues given

for complex varieties in [2] and in [1]. Then, we will establish results of independence on the choice of local coordinates,
and focus on summation properties. Notice that Hartshorne, in [3] III.9, introduces a Grothendieck residue symbol having
slightly the same properties as the residue defined in Griffiths and Harris’s book. Moreover, Lipman (in [4] Section 12) states
a summation residue formula which is closed to Theorem 6.8 in the present paper. Finally, most of the results of this first
part can be considered as consequences of several statements lying in [3] or [4]. Nevertheless, both references are long and
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contain an important functorial machinery which is not necessary to define residues on surfaces, to study their properties
and to obtain summation formulas. That is why we decided to present a self-contained paper for which references [3,4] are
not prerequisites.
Notice that we chose to work only on surfaces. At least two main reasons justify this choice. First, working on n-

dimensional varieties would have given too heavy notations. Second, the most difficult step in algebraic–geometric coding
theory lies between curves and higher-dimensional varieties.

About algebraic–geometric codes

In coding theory, two main problems are frequently studied. The first one is: how to find a lower bound for its minimal
distance of a given code. The second one is: how to find algorithms correcting a suitable number of errors in a reasonable time.
Given an arbitrary code defined by a generator or a parity-check matrix, both problems are very difficult. A good way to
solve them is to get a geometric (or arithmetic) realization of the code. Then, one or both problems may be translated
into geometric (or arithmetic) problems. This is, for instance, successful for the study of Reed–Müller codes. Consequently,
geometric constructions of codes are often interesting.

Codes on curves
In 1981, Goppa introduced a construction of error-correcting codes using algebraic curves (see [5]). Their study has been

a fruitful topic of research during the last thirty years. Hundreds of papers are devoted to this subject. One of the main
reasons why these codes have been so intensively studied is that some families of such codes have excellent asymptotic
parameters. In particular, Tsfasman, Vlăduţ and Zink proved in [6] that some families of algebraic–geometric codes beat the
Gilbert–Varshamov bound. Most of the basic results about codes on curves are summarized in [7], in [8] chapter II and in [9].

Codes on higher-dimensional varieties
In higher dimension, the topic has not been as extensively explored. The first general construction of algebraic–geometric

codes from a variety of arbitrary dimension was given by Manin in the paper with Vlăduţ [10]. Subsequently, codes coming
from some particular varieties have been studied. Among others, in [11], Aubry dealt with codes on quadric varieties. His
results have been improved in dimension 2 and 3 by Edoukou in [12] and [13]. Codes on Grassmannians have been discussed
by Nogin in [14], then by Ghorpade and Lachaud in [15]. Codes on Hermitian varieties have been treated by Chakravarti
in [16], then by Hirschfeld, Tsfasman and Vlăduţ in [17], afterwards by Sørensen in his PhD thesis [18] and by Edoukou
in [19]. In [20], Rodier presented a unified point of view for some of the above-cited examples regarding these varieties as
flag-varieties and gave some more examples of codes. Zarzar studied in [21] the parameters of codes on surfaces having
a small Picard number. The author also proposed a decoding algorithm for such codes in a joint work with Voloch [22].
General bounds on the parameters of codes on algebraic varieties of arbitrary dimension have been given by Lachaud in [23]
and by Søren Have Hansen in [24]. Finally, a survey paper [25] by Little summarizing most of the known works on codes on
higher-dimensional varieties appeared recently.
Notice that almost all the above cited references deal with the question of bounding or evaluating the parameters of

some error-correcting codes. This will not be the purpose of the present paper whose objective is to give general theoretical
statements extending some known results for codes on curves.

Different construction of codes on curves
In the theory of algebraic–geometric codes on curves, one can distinguish two different constructions. Functional codes

are obtained by evaluating elements of a Riemann–Roch space at some set of rational points on a curve. Differential codes are
obtained by evaluating residues of some rational differential forms at these points. For higher-dimensional varieties, only
the functional construction has been extended and studied (see references below). The differential one does not seem to
have a natural generalization and this question has never been treated before.

Motivations
There are at least threemotivations for an extension to surfaces of the differential construction. The first one is historical.

Indeed, the first construction of algebraic–geometric codes given by Goppa in [5] used differentials. This construction
generalized that of classical Goppa codes which can be regarded as differential codes on the projective line. The second
one is that the orthogonal of a functional code on a curve is a differential one. Moreover, this statement is used in almost all
known algebraic decoding algorithms (see [26]). The thirdmotivation is that, as said before, it is always interesting to have a
geometric realization of a code. To finish with motivations, notice that the introduction of the above cited survey paper [25]
of Little contains the following sentences.
‘‘In a sense, the first major difference between higher dimensional varieties and curves is that points on X of dimension ≥ 2

are subvarieties of codimension≥ 2, not divisors. This means that many familiar tools used for Goppa codes (e.g. Riemann–Roch
theorems, the theory of differentials and residues etc.) do not apply exactly in the same way.’’
Thus, finding another way of applying residues and differentials for codes on surfaces must be interesting. This is the

purpose of the second part of this paper, which starts with the presentation of a construction of codes using residues
of differential 2-forms on surfaces. Then, connections between these codes and the functional ones are studied. We



A. Couvreur / Journal of Pure and Applied Algebra 213 (2009) 2201–2223 2203

proves that any differential code is included in the orthogonal of a functional one but that the reverse inclusion is
false, which is an important difference with the theory of codes on curves. Notice that Voloch and Zarzar suggested
the existence of such a difference in [22] Section 3 without proving it. Finally, we prove that, as for codes on curves, a
differential code can always be regarded as a functional one associated with some parameters depending on a canonical
divisor.

Contents

The first part contains Sections 1–6. In Section 1, we recall the definition of 1-codimensional residues along a curve C of
a differential 2-form ω having C as a simple pole. Then, we define naturally the 2-codimensional residue of ω along C at a
smooth point P ∈ C to be the residue at P of the 1-codimensional residue. In Section 2 we study Laurent series expansions
in two variables, in order to have a combinatorial definition for residues, which will be more convenient for computations.
In Section 3, we introduce new definitions of 1- and 2-codimensional residues holding for any rational 2-form. Then, we
prove that the 2-codimensional residue at a point P along a curve C 3 P of a rational 2-form does not depend on a choice
of local coordinates. In Section 4, we study some properties of 1- and 2-codimensional residues. In Section 5, we define 2-
codimensional residues along a curve at a singular point of it. Finally, Section 6 contains three statements about summations
of residues.
The second part contains Sections 7–10. Section 7 is a quick review of the theory of codes on curves. In Section 8, after a

brief overviewof functional codes on higher-dimensional varieties, we define differential codes on surfaces. Then, properties
of these codes and their relations with functional ones are studied in Section 9. In particular, we prove that a differential
code is contained in the orthogonal of a functional one. Finally, Section 10 proves that the reverse inclusion may be false by
treating the elementary example of the surface P1 × P1.

Part 1. Residues of a rational 2-form on a smooth surface

Notations

For any irreducible variety X over a field k, we denote by k(X) its function field. If Y is a closed irreducible subvariety
of X , then the local ring (resp. its maximal ideal) of regular functions in a neighborhood of Y , that is functions which are
regular in at least one point of Y , is denoted by OX,Y (resp. mX,Y ). The mX,Y -adic completion of the ring OX,Y is denoted by
ÔX,Y and its maximal ideal mX,Y ÔX,Y by m̂X,Y . For any function u ∈ OX,Y , we denote by ū its restriction to Y . Recall that, if
Y has codimension 1 in X and is not contained in the singular locus of X , then OX,Y is a discrete valuation ring with residue
field k(Y ). In this situation, the valuation along Y is denoted by valY . Finally, we denote by Ω ik(X)/k the space of k-rational
differential i-forms on X .

1. About 1- and 2-codimensional residues

Context

In this section, k denotes an arbitrary field of arbitrary characteristic and S a smooth geometrically integral quasi-
projective surface over k. Moreover, C denotes an irreducible geometrically reduced curve embedded in S and P a smooth
rational point of C .

1.1. First definitions for residues

Given a 2-form ω ∈ Ω2k(S)/k, one can construct two objects called residues in the literature. The first one is a rational
1-form on a curve embedded in S and the second one is an element of k (or of some finite extension of it). Their definitions
will be the respective purposes of Definitions 1.3 and 1.4. We first need the next proposition, asserting the well-definition
of 1-codimensional residues (Definition 1.3).

Proposition 1.1. Let v be a uniformizing parameter of OS,C andω be a rational 2-form on S having mS,C -valuation greater than
or equal to−1. Then, there exists η1 ∈ Ω1k(S)/k and η2 ∈ Ω

2
k(S)/k, both regular in a neighborhood of C and such that

ω = η1 ∧
dv
v
+ η2. (1)

Moreover, the differential form η1|C ∈ Ω
1
k(C)/k is unique and depends neither on the choice of v nor on that of the decomposition

(1).

Proof. We first prove the existence of a decomposition (1). Recall that

dimk(S)Ω1k(S)/k = 2 and dimk(S)Ω2k(S)/k = 1, (2)
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(see [27] thm III.5.4.3). Consequently, there exists a rational 1-formµ, which is non-k(S)-colinear with dv
v
. Thus,µ∧ dv

v
6= 0.

From (2), there also exists a unique function f ∈ k(S) satisfying

ω = fµ ∧
dv
v
.

Since valC (ω) ≥ −1, the 1-form fµ has no pole along C . We obtain a decomposition (1) by setting η1 := fµ and η2 := 0.
Obviously, this decomposition is far from being unique. Only η1|C is unique. To prove the uniqueness and independence

of η1|C under the choice of v, see [2] II.4. Even if this book only deals with complex surfaces, the very same proof holds for
surfaces over an arbitrary field. �

Remark 1.2. Another proof of Proposition 1.1 will be given in Section 3 in a more general context (see Lemma 3.9).

Definition 1.3. Under the assumptions of Proposition 1.1 and given a decomposition of the form (1) for ω, the 1-form
η1|C ∈ Ω

1
k(C)/k is called the 1-codimensional residue (or the 1-residue) of ω along C and is denoted by

res1C (ω) := η1|C .

Definition 1.4. Under the assumptions of Proposition 1.1, let P be a k-rational point of C . The 2-codimensional residue (or
the 2-residue) of ω at P along C is the residue at P of the 1-residue of ω along C . That is,

res2C,P(ω) := resP(res
1
C,P(ω)).

Notice that to define residues in this way, ω needs to have valuation greater than or equal to −1 along C . However, 2-
codimensional residues can actually be defined for any rational differential form even if it has a multiple pole along C . This
will be the purpose of Sections 2–4.

Remark 1.5. It would have been natural to define 2-residues at a closed point P of C . Nevertheless, we decided to keep a
more geometric point of view, even if the base field is not supposed to be algebraically closed. Notice that any geometric
point of S (i.e. a closed point of S×k k̄) is a rational point of S×k L for a suitable finite scalar extension L/k. Consequently, if
we define residues at rational points of S, it is easy to extend this definition to geometric points using such a scalar extension.
The only arithmetic statementwewill need in the second part of the present paper is that, if C is defined over k and P ∈ C(k),
then the 2-residue along C at P of a k-rational 2-form is in k. That is whywe keep considering non-algebraically closed fields
in Sections 1–3 and 5.
However, in Sections 4 and 6, when we deal with properties of residues and particularly with summations of them, we

work over an algebraically closed field.

2. Laurent series in two variables

As is well known, the residue at a point P on a curve C of a 1-form can be computed using Laurent series expansions. The
residue of a differential form at a point P is the coefficient of degree−1 of its Laurent series expansion. We look for a similar
definition in the two-dimensional case. For this purpose we introduce Laurent series in two variables.

Context. The context of this section is exactly that of Section 1.

2.1. Laurent series expansion, the first construction

Recall that C is assumed to be a geometrically reduced irreducible curve over k embedded in S and P a smooth rational
point of C .

Definition 2.1. A pair (u, v) ∈ O2S,P is said to be a strong (P, C)-pair if the following conditions are satisfied.

(1) (u, v) is a system of local parameters at P .
(2) v is a uniformizing parameter of OS,C .

Lemma 2.2. Let (u, v) be a strong (P, C)-pair, then there exists a morphism φ : k(S) ↪→ k((u))((v)) sending OS,P into k[[u, v]]
and OS,C into k((u))[[v]].

Proof. Wewill prove the existence ofφ0 : OS,C ↪→ k((u))[[v]] entailing that ofφ, thanks to the universal property of fraction
fields. From [27] II.2, any element of OS,P has a unique Taylor series expansion in the variables u, v. Then, notice that OS,C
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and OS,P (v) are isomorphic and consider the following diagram.

OS,P� _

��

loc
// OS,C comp

//
� _

∃!

��

ÔS,C

∃!

��
k[[u, v]] loc // k[[u, v]](v)

comp // ̂k[[u, v]](v)

The horizontal arrows in the left-hand square correspond to localizations and the ones in the right-hand square correspond
to (v)-adic completions. Vertical arrows are obtained by applying respectively universal properties of localization and
completion. We now have to prove that ̂k[[u, v]](v) is isomorphic to k((u))[[v]], which is a consequence of Cohen’s structure
theorem (see [28] thm 7.7 or [29] thm 9 for an historical reference). �

2.2. Laurent series, the second construction

Let (u, v) be a strong (P, C)-pair. Cohen’s structure theorem asserts that ÔS,C is isomorphic to k(C)[[v]]. Unfortunately,
this isomorphism is not always unique. Indeed, [29] thm 10(c) asserts that, if Char(k) > 0, then there are infinitely many
subfields of ÔS,C which are isomorphic to the residue field k(C). Therefore, to use this isomorphism for Laurent series
expansions, we have to choose a representant of k(C)which is, in some sense, related to u.

Proposition 2.3 (The FieldKu). Let u ∈ OS,C whose restriction ū to C is a separating element (see [8] p. 127 for a definition)
of k(C)/k. Then, there exists a unique subfield Ku ⊂ ÔS,C containing k(u) and isomorphic to k(C) under the morphism
ÔS,C → ÔS,C/m̂S,C . Furthermore, this field is generated over k(u) by an element y ∈ ÔS,C .

Proof. The extension k(C)/k(ū) is finite and separable. Thus, from the primitive element theorem, there exists a function
ȳ ∈ k(C) generating k(C) over k(ū). From Hensel’s lemma, ȳ lifts to an element y ∈ ÔS,C and the subringKu := k(u)[y] ⊂
ÔS,C is the expected copy of k(C). The uniqueness ofKu is a consequence of the uniqueness of the Hensel lift y of ȳ. �

Corollary 2.4. Under the assumptions of Proposition 2.3, any element f ∈ ÔS,C has a unique expansion inKu[[v]].

Proof. Existence. Let f be an element of ÔS,C and f0 be the Hensel lift inKu of f mod m̂S,C . The m̂S,C -adic valuation of f − f0 is
greater than or equal to one. By induction, using the same reasoning on v−1(f − f0)we obtain an expansion f = f0+ f1v+· · ·
for f .
Uniqueness. Assume that f has two distinct expansions

∑
j fjv

j and
∑
j f̃jv

j inKu[[v]]. Let j0 be the smallest integer such that
fj0 6= f̃j0 . From Proposition 2.3, a nonzero element ofKu ⊂ ÔS,C has m̂S,C -adic valuation zero. Consequently, 0 has m̂S,C -adic
valuation j0, which is absurd. �

The second Laurent series expansion using Cohen’s structure theorem needs weaker conditions on the pair (u, v). Thus,
before we define it, we give a new definition.

Definition 2.5. A pair (u, v) ∈ O2S,C is said to be a weak (P, C)-pair if ū is a uniformizing parameter of OC,P and v is a
uniformizing parameter of OS,C .

Remark 2.6. Obviously, a strong (P, C)-pair is weak, but the converse statement is false (see next example).

Example 2.7. Assume that S is the affine plane over C, the curve C is the line of equation y = 0 and P is the origin. Set
u := (x+y)(x−y)

x and v := xy. Then, (u, v) is a weak (P, C)-pair which is not strong.

Now, we can define the second way of Laurent series expansion.

Lemma 2.8. Given a weak (P, C)-pair (u, v), there is an injection ϕ : k(S) ↪→ k((u))((v)) sending OS,C in k((u))[[v]].

Proof. As in the proof of Lemma 2.2, we just have to prove the existence of a morphism ϕ0 : OS,C ↪→ k((u))[[v]]. The
curve C is assumed to be geometrically reduced; thus from [30] prop II.4.4 (i), the extension k(C)/k is separable and hence
has a separable transcendence basis. Moreover, the function ū is a uniformizing parameter of OC,P ; thus its differential dū
is nonzero and, from [31] thm V.16.7.5, it is a separating element of k(C)/k. From Proposition 2.3, there is an injection
OS,C ↪→ Ku[[v]]. Furthermore, there is a natural extension Ku ↪→ k((u)), coming from the (ū)-adic completion of
k(C) ∼= Ku. Applying this extension coefficientwise onKu[[v]]we obtain the morphism ϕ0. �

The next proposition links both Laurent series expansions.

Proposition 2.9. If (u, v) is a strong (P, C)-pair, then the Laurent series expansions of Lemmas 2.2 and 2.8 are the same. That
is, φ = ϕ.



2206 A. Couvreur / Journal of Pure and Applied Algebra 213 (2009) 2201–2223

Proof. Consider again the diagram in 2.1 including the new expansion

OS,P //

��

OS,C //

��

ϕ0

))

UUUUUUUUUUUU

φ0

**UUUUUUUUU

ÔS,C

��

∼ // Ku[[v]]

γ

��

δ // k((u))[[v]].

id

yy
k[[u, v]] // k[[u, v]](v) // ̂k[[u, v]](v)

∼ // k((u))[[v]]

Maps γ and δ correspond respectively to the first and the second expansion. We have to prove that φ0 = ϕ0, which is
equivalent to γ = δ.
Recall that, from Proposition 2.3, the field Ku is generated over k(u) by an element y ∈ ÔS,C . Thus, a local morphism

Ku[[v]] → k((u))[[v]] is entirely determined by the images of u, v and y. Obviously, δ sends u and v respectively on
themselves, and from the commutativity of the left part of the diagram, so does γ . The only nonobvious part is to prove
that γ sends y on ψ(u), where ψ(ū) denotes the (ū)-adic expansion of ȳ.
Let F ∈ k(ū)[T ] be the minimal polynomial of ȳ over k(ū). The formal function y is the unique root of F in ÔS,C whose

class in the residue field k(C) is ȳ. Therefore, the morphism γ must send y on the unique root of F in k((u))[[v]] which is
congruent toψ(u)modulo (v). Moreover,ψ(ū) = ȳ, then F(ū, ψ(ū)) = 0; thus the formal series F(X, ψ(X)) ∈ k[[X]] is zero.
Consequently, F(u, ψ(u)) is zero in k((u)) and hence is zero in k((u))[[v]]. Then, ψ(u) is a root of F(u, T ) ∈ k((u))[[v]][T ]
whose class in the residue field k((u)) equals ψ(u). Such a root is unique. Thus, γ (y) = ψ(u). �

2.3. Change of coordinates

In this subsection, we define 1- and 2-residues of any differential 2-form ω using weak (P, C)-pairs. These definitions
hold even if C is a multiple pole of ω. Afterwards, we prove that the new definition of 2-residue does not depend on the
choice of a weak (P, C)-pair. For that, we must describe changes of weak (P, C)-pairs.

Lemma 2.10. Let (u, v) and (x, y) be two weak (P, C)-pairs; then the Laurent series expansions of u and v in k((x))[[y]] are of
the form{

u = f (x, y) with f (x, 0) ∈ xk[[x]] r x2k[[x]]
v = g(x, y) with g ∈ yk((x))[[y]] r y2k((x))[[y]]

. (CV)

Proof. Functions ū and x̄ are both uniformizing parameters in OC,P ; thus ū = f (x̄, 0) ∈ x̄k[[x̄]] r x̄2k[[x̄]]. Both functions v
and y are uniformizing parameters of OS,C ; then v/y is invertible in OS,C , that is v/y ∈ k((x))[[y ]]×. �

3. General definition of 2-codimensional residues

Laurent series have been introduced in Section 2 because they are useful for computations. Using them, one can define
1- and 2-residues in a more general context.

Context

The context of this section is exactly that of Section 1.

Definition 3.1. Let ω ∈ Ω2k(S)/k and (u, v) be a weak (P, C)-pair. Then, there exists an unique function h ∈ k(S), such that
ω = hdu ∧ dv and h has a Laurent series expansion h =

∑
j hj(u)v

j.

(1) The (u, v)-1-residue of ω along C in a neighborhood of P is defined by

(u, v)res1C,P(ω) := h−1(ū)dū ∈ Ω
1
k(C)/k.

(2) The (u, v)-2-residue of ω at P along C is defined by

(u, v)res2C,P(ω) := resP((u, v)res
1
C,P(ω)) = h−1,−1 ∈ k.

Remark 3.2. Proposition 2.9 asserts that (u, v)res1C,P(ω) is a rational differential formandnot a formal one. This is the reason
why we introduced this second way of Laurent series expansion.

Remark 3.3. Obviously, if valC (ω) ≥ −1, Definition 3.1 coincides with Definitions 1.3 and 1.4.
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Remark 3.4. In this definition of 1-codimensional residues, we specify the point P . This 1-form is supposed to give us
information about ω only in a neighborhood of P . However, we will see in Section 4.2 that this 1-codimensional residue
is actually a global object on C and hence independent of P .

Now we will prove the following statements.

(1) The 1-codimensional residues do not depend on the choice of v.
(2) The 2-codimensional residues do not depend on the choice of u and v.

Caution. In what follows, we sometimes deal with formal differential forms, that is objects of the form fdu ∧ dv, where
f ∈ k((u))((v)). Using such a general point of view is necessary in some parts of the next proofs (for instance those of
Theorem 3.6 and Proposition 4.6). Definitions of 1- and 2-codimensional residues extend naturally to formal forms.

Lemma 3.5. The morphism k((u))((v)) → k((x))((y)) given by a change of variables (CV) in Lemma 2.10 is well defined and
sends series (resp. formal forms) with (v)-adic valuation n ∈ Z on series (resp. formal forms) with (y)-adic valuation n.

Proof. See Appendix A. �

Theorem 3.6 (Invariance of 2-Residues Under (CV)). Let ω = h(u, v)du ∧ dv be a formal 2-form and (x, y) ∈ k((u))((v))2
connected with (u, v) by a change of variables of the form (CV). Then,

(u, v)res2C,P(ω) = (x, y)res
2
C,P(ω).

The proof of this proposition will use forthcoming Lemmas 3.7 and 3.9. First, notice that the change of coordinates (CV) in
Lemma 2.10 can be applied in two steps. First, from (u, v) to (u, y), then from (u, y) to (x, y). That is,

first (CV1)
{
u = u
v = γ (u, y) , then (CV2)

{
u = f (x, y)
y = y ,

where γ is a series in yk((u))[[y]]ry2k((u))[[y]] satisfying g(x, y) = γ (f (x, y), y). Wewill prove successively that 2-residues
are invariant under (CV1) and (CV2).

Lemma 3.7 (Invariance of 1-Residues Under (CV1)). Let ω be a formal 2-form. For all y linked to (u, v) by a change of
variables (CV1): v = γ (u, y), we have

(u, v)res1C,P(ω) = (u, y)res
1
C,P(ω).

Proof. The 2-form ω is of the form ω = hdu ∧ dv for some h ∈ k((u))((v)). After applying (CV1) we get

ω = h(u, γ (u, y))
∂γ

∂y
du ∧ dy.

The field k((u))((v)) is the (v)-adic completion of the k((u))(v) regarded as a function field over k((u)). From [8] IV.2.9,
the coefficient of v−1 in h(u, v) equals that of y−1 in h(u, γ (u, y))∂γ /∂y. �

Remark 3.8. Notice that, in the whole chapter IV of [8], the base field is assumed to be perfect, which is not true for k((u))
if Char(k) > 0. However, the proof of IV.2.9 is purely formal and holds for non-perfect base fields.

Operation (CV2) might change 1-residues. Nevertheless, we will see that it preserves 2-residues.

Lemma 3.9. Let ω be a formal 2-form, ω = h(u, v)du ∧ dv with h ∈ k((u))((v)) such that val(y)(h) ≥ −1. Then, for any pair
(x, y) ∈ k((u))((v))2 related to (u, v) by a change of variables (CV) of Lemma 2.10, we have

(u, v)res1C,P(ω) = (x, y)res
1
C,P(ω).

Remark 3.10. Notice that the proof of Proposition 1.1 is a direct consequence of Lemma 3.9.

Proof. From Lemma 3.7, (u, v)res1C,P(ω) = (u, y)res1C,P(ω). Thus, we only study the behavior of residues under (CV2).
Decompose ω by isolating its degree−1 term,

ω =
h−1(u)
y
du ∧ dy+

(∑
j≥0

hj(u)yj
)
du ∧ dy = ω−1 + ω+.
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The formal form ω+ has positive (y)-adic valuation. From Lemma 3.5, the change of variables (CV2) does not change this
valuation. Consequently, the (x, y)-1-residue of ω is that of ω−1, and after applying (CV2), we have

ω−1 =
h−1(f (x, y))

y
∂ f
∂x
dx ∧ dy.

From Lemma 3.5, h−1(f (x, y)) has (y)-adic valuation zero. Thus,

(x, y)res1C,P(ω) = h−1(f0(x̄))f
′

0(x̄)dx̄ = h−1(f0(x̄))d(f0(x̄)),

where f0(x) := f (x, 0). This formal 1-form equals (u, y)res1C,P(ω) = h−1(ū)dū, using the change of variables ū = f (x̄, 0). �

For the proof of Theorem 3.6, we need also the following lemma.

Lemma 3.11. Let A, B ∈ k((u))((v)); then for all pair of series (x, y) associated with (u, v) by a change of variables (CV), we
have

(x, y)res2C,P (dA ∧ dB) = 0.

Proof. See Appendix B. �

Proof of Theorem 3.6 if Char(k) = 0. From Lemma 3.7 we already know that 1-residues are invariant under (CV1). Thus,
we will only study their behavior under (CV2). Consider any formal 2-form

ω =

−2∑
j=−l

hj(u)yjdu ∧ dy+
∑
j≥−1

hj(u)yjdu ∧ dy = ω− + ωinv.

From Lemma 3.9, the formal formωinv has an invariant 1-residue under (CV); thus so is its 2-residue. We now have to study
ω−. Since extraction of (x, y)-1- and -2-residues are k-linear operations, we may only consider 2-forms of the form

ω = φ(u)du ∧
dy
yn

with φ ∈ k((u)) and n ≥ 2.

The formal 2-form ω has a zero (u, y)-2-residue because its (u, y)-1-residue is also zero. Then, we have to prove that its
(x, y)-2-residue is zero too. Before applying (CV2), we will work a little bit more on ω. First, isolate the term in u−1 of the
Laurent series φ.

φ(u) = φ̃(u)+
φ−1

u
, where φ̃i =

{
φi if i 6= −1
0 if i = −1.

The series φ̃ has a formal primitive Φ̃ . Set s := 1
(1−n)yn−1

, which is a primitive of 1/yn (this makes sense because Char(k)
is assumed to be zero). Then, we have

ω = dΦ̃ ∧ ds+ φ−1
du
u
∧ ds = ωr + φ−1ω−1.

From Lemma 3.11, the form ωr has a zero 2-residue for all pairs (x, y) ∈ k((u))((v))2 connected to (u, v) by a change of
variables (CV). Now consider ω−1 = du

u ∧
dy
yn and apply (CV2),

ω−1 =
df (x, y)
f (x, y)

∧
dy
yn
.

Recall that f is of the form
∑
j≥0 fj(x)y

j with

f0(x) = f1,0x+ f2,0x2 + · · · and f1,0 6= 0.

Thus, one can factorize f0 in

f0(x) = f1,0x
(
1+

f2,0
f1,0
x+ · · ·

)
.

Set

r(x) :=
f2,0
f1,0
x+

f3,0
f1,0
x2 + · · · ∈ k[[x]]

and µ(x, y) :=
f1(x)
f0(x)

y+
f2(x)
f0(x)

y2 + · · · ∈ k((x))[[y]].
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The series f has the following factorization:

f (x, y) = f1,0x(1+ r(x))(1+ µ(x, y)). (3)

Moreover, for every series S in xk[[x]] (resp. in yk((x))[[y]]) we define the formal logarithm of 1+ S to be

log(1+ S) :=
+∞∑
k=0

(−1)k+1
Sk

k
.

This makes sense because Char(k) = 0 and this series converges for the (x)-adic (resp. (y)-adic) valuation. Furthermore,
d(1+S)
(1+S) = d log(1+ S). Using factorization (3), we obtain

ω−1 =
dx
x
∧
dy
yn
+ d log(1+ r) ∧ ds+ d log(1+ µ) ∧ ds.

From Lemma 3.11, the second and third term of the sum have zero (x, y)-2-residues and the first one has zero (x, y)-1-
residue and hence a zero (x, y)-2-residue. �

Proof of Theorem 3.6 in positive characteristic. The idea is basically the same as in the proof of invariance of residues of
1-forms on curves (cf. [8] IV.2.9 or [32] prop II.7.5). One proves that the (x, y)-2-residue of ω is a polynomial expression in
a finite family of coefficients of f . This polynomial has integer coefficients and depends neither on f nor on the base field k.
Thus, using the result of the proof in characteristic zero and the principle of prolongation of algebraic identities ([31] prop
IV.3.9), we conclude that this polynomial is zero. For more details see Appendix C. �

Consequently, from now on, when we deal with 2-residues at P along C we will not have to specify the (P, C)-pair.

4. Properties of residues

Context

In this section, k is an algebraically closed field and S a smooth geometrically integral quasi-projective surface over k.
Moreover, C denotes an irreducible absolutely reduced curve embedded in S and P a smooth point of C .

4.1. About 2-residues

The next lemma gives a necessary condition on ω to have nonzero 2-residues at P along C .

Lemma 4.1. Let ω ∈ Ω2k(S)/k having the curve C as a pole. Let P ∈ C such that C is the only one pole of ω in a neighborhood of
P. Then, res2C,P(ω) = 0.

Proof. Let (u, v) be a strong (P, C)-pair and n := −valC (ω). There exists a function h ∈ OS,C such that

ω = hdu ∧
dv
vn
.

Furthermore, since ω has no pole but C in a neighborhood of P , the function h is in OS,P . Consequently, h has a Taylor
expansion

∑
i≥0 hi(u)v

i, where hi ∈ k[[u]] for all i. Then, (u, v)res1C (ω) = hn−1(ū)dū, which is regular at P and hence has zero
residue at this point. �

4.2. About 1-residues

We will give a new definition for 1-codimensional residues generalizing the previous one. The goal is, as said in
Remark 3.4, to define 1-residues as global objects on the curve C .

Proposition 4.2. Let u, v be elements of OS,C such that ū is a separating element of k(C)/k and v is a uniformizing parameter
of OS,C . Then, any 2-form ω ∈ Ω2k(S)/k can be expanded as

ω =
∑
j≥−l

fjvjdu ∧ dv, (4)

where the fj’s are elements of the Hensel lift Ku of k(C) over k(u) in ÔS,C (see Proposition 2.3). Furthermore, the 1-form f̄−1dū is
rational on C and does not depend on the choice of the uniformizing parameter v of OS,C .

Proof. Recall that, from [27] thm III.5.4.3, the spaceΩ2k(S)/k has dimension 1 over k(S). Thus, there exists a unique function
f ∈ k(S) such that ω = fdu ∧ dv. From Corollary 2.4, one can expand f inKu((v)), which gives expansion (4). From the
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construction ofKu (see Proposition 2.3), f̄−1 may be identified to a rational function on C . Thus, the 1-form f̄−1dū is rational
on C . To prove its independence on the choice of v, the reasoning is exactly the same as in the proof of Lemma 3.7. �

Definition 4.3. Under the assumptions of Proposition 4.2, we call (u)-1-residue of ω along C and denote by (u)res1C (ω) the
rational 1-form f̄−1dū ∈ Ω1k(C)/k.

Remark 4.4. Using Lemma 3.9, one can prove that, if valC (ω) ≥ −1, then this 1-form is also independent of the choice of u.

Remark 4.5. Let ω ∈ Ω2k(S)/k and u ∈ ÔS,C such that ū is a separating element of k(C)/k. Set

µ := (u)res1C (ω) ∈ Ω
1
k(C)/k.

Then, at each smooth point P of C where ū is a local parameter, we have

(u, v)res1C,P(ω) = µ and res2C,P(ω) = resP(µ). (♠)

This remark asserts that Definition 4.3 generalizes the notion 1-codimensional residue (Definition 3.1). The next
proposition extends (♠) to any smooth point of C .

Proposition 4.6. Let ω ∈ Ω2k(S)/k and u ∈ OS,C such that ū is a separating element of k(C)/k; then at each smooth point Q of
C, we have

res2C,Q (ω) = resQ ((u)res
1
C (ω)).

Remark 4.7. In Section 5, we generalize the definition of 2-residue at P along C when C may be singular at P . Using this
definition, the assumption ‘‘C is smooth at Q ’’ in Remark 4.5 and Proposition 4.6 can be cancelled (see Remark 5.3).

Proof of Proposition 4.6. Set µ := (u)res1C (ω) = f̄−1dū.
Step 1. Let Q ∈ C at which ū is regular and (u − ū(Q ), v) is a weak (Q , C)-pair. Set u0 := u − ū(Q ). The function ū
is a local parameter of OC,Q . Moreover, Ku = Ku0 and du = du0. Consequently, (u0, v)res

1
C,Q (ω) = f̄−1dū0 = µ and

res2C,Q (ω) = resQ (µ).
Step 2. Let Q ∈ C at which ū is regular but ū − ū(Q ) is not a local parameter of OC,Q . Set u0 := u − ū(Q ). We have
ω =

∑
j fjv

jdu0∧dv, but (u0, v) is not aweak (Q , C)-pair. Let (x, v) be aweak (Q , C)-pair. The function x̄ is a local parameter
of OC,Q , and for some φ ∈ k[[T ]], we have

ū0 = φ(x̄) in k(C).

Let σ be the Hensel lift of x̄ in Ku; the last relation lifts in Ku and gives u0 = φ(σ). Consequently, we get a new formal
expression for ω,

ω =
∑
j≥−l

fjvjφ′(σ )dσ ∧ dv. (♣)

Notice that σ ∈ ÔS,C and is congruent to xmodulo (v). Therefore, σ expands in k((x))[[v]] as

σ = x+ σ1(x)v + σ2(x)v2 + · · ·

Thus, the pair (σ , v) is associated with (x, v) by a change of variables (CV). Using (♣) and Theorem 3.6, we conclude that

res2C,Q (ω) = resP
(
f̄−1φ′(σ )dσ

)
= resP

(
f̄−1φ′(x̄)dx̄

)
= resP(µ).

Step 3. Let Q ∈ C at which ū is not regular. Set t := 1/u and notice that

u = 1/t ⇒ k(u) = k(t)⇒ Ku = Kt .

Thus, expansion of ω is of the form

ω =
∑
j≥−l

fjvj
(
−
dt
t2

)
∧ dv,

for some v, and

(t)res1C (ω) = −f̄−1
dt̄
t̄2
= µ.

Applying the arguments of the previous steps, we conclude the proof. �
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Summary.
(1) A 2-residue depends only on a curve and a point. Consequently, fromnowon,wewill dealwith res2C,P and not (u, v)res

2
C,P

(Definition 3.1).
(2) A 1-residue depends only on the curve and the choice of some element u of ÔS,C whose restriction to C is a separating
element of k(C)/k. Moreover, this object gives a global information on C and in a neighborhood of a point. From now on,
we will deal with (u)res1C (Definition 4.3) and not with (u, v)res

1
C,P (Definition 3.1). We will also keep using map res

1
C

for 2-forms having mS,C -adic valuation greater than or equal to−1.

Corollary 4.8. Let u be a function in OS,C whose restriction ū to C is a separating element of k(C)/k. Let π : S̃ → S be the
blowup of S at P and C̃ be the strict transform of C by π . Then,

(π∗u)res1C̃ (π
∗ω) = π∗

|̃C

(
(u)res1C (ω)

)
.

Proof. Surfaces S̃ r E and S r {P} are isomorphic under π . Furthermore, recall that P is assumed to be a smooth point of C;
thus π induces an isomorphism between C̃ and C . The 1-forms (π∗u)res1

C̃
(π∗ω) and (u)res1C (ω) are pullbacks of each other

by π|̃C and its inverse. �

Corollary 4.9. Let (u, v) be a weak (P, C)-pair and π : S̃ → S be the blowup of S at P. Denote by C̃ the strict transform of C by
π and by Q the intersection point between C̃ and the exceptional divisor. Then,

res2C̃,Q (π
∗ω) = res2C,P(ω).

5. Residues along a singular curve

Context

The context of this section is that of Sections 1–3 with only one difference: the curve C may be singular at P .

Proposition 5.1. Let π : S̃ → S be a morphism obtained by a finite sequence of blowups of S and such that the strict transform
C̃ of C by π is a desingularization of C at P. Then, the sum∑

Q∈π−1({P})

res2C̃,Q (π
∗ω)

does not depend on the choice of the desingularization π : S̃ → S.

Proof. Let π1 : S̃1 → S and π2 : S̃2 → S be two morphisms as in the wording of the proposition. Denote by C̃1 and C̃2 the
respective strict transforms of C by these two morphisms. Since both maps π1 and π2 induce desingularizations of C at P ,
the point P has the same number of preimages by π1 and by π2. These preimages are respectively denoted by P1,1, . . . , P1,n
and P2,1, . . . , P2,n. By construction of π1 and π2, there exists an open set U1 ⊆ C̃1 (resp. U2 ⊆ C̃2) containing P1,1, . . . , P1,n
(resp. P2,1, . . . , P2,n) and an isomorphism ϕ : U1 → U2 such that π1|U1 = π2|U2 ◦ ϕ. Moreover, for a suitable ordering of
indexes, ϕ sends P1,i on P2,i for all i.
Let u be an element of OS,C whose restriction to C is a separating element of k(C)/k. From Corollary 4.8, the 1-forms

(π∗1 u)res
1
C̃1
(π∗1ω) and (π

∗

2 u)res
1
C̃2
(π∗2ω) are pullbacks of each other by ϕ and ϕ

−1. Consequently,

∀i ∈ {1, . . . , n}, res2C̃1,P1,i(π
∗

1ω) = res
2
C̃2,P2,i

(π∗2ω).

We conclude by adding the last equalities for all i. �

Definition 5.2. Under the assumptions of Proposition 5.1, the 2-residue of a 2-form ω ∈ Ω2k(S)/k at P along C is defined by

res2C,P(ω) =
∑

Q∈π−1
C̃
({P})

res2C̃,Q (π
∗ω).

Remark 5.3. As said in Remark 4.7, using Definition 5.2, the statement of Proposition 4.6 holds for singular points of C . To
prove this, apply the same arguments as in the proof of Proposition 4.6 on a surface S̃ such that there exists amapπ : S̃ → S
inducing a normalization of C .

6. Residue formulas

We look for an analogous definition of the residue formula on curves ([32] lem II.12.3 or [8] IV 3.3) in the two-dimensional
case. We will give three statements about summations of 2-residues.
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Context

In this section, k is an algebraically closed field and S a smooth geometrically integral projective surface over k.

Theorem 6.1 (First Residue Formula). Let C be a reduced irreducible projective curve embedded in S. Then,

∀ω ∈ Ω2k(S)/k,
∑
P∈C

res2C,P(ω) = 0.

Proof. Let u be an element of OS,C whose restriction ū to C is a separating element of k(C)/k. If C is smooth, then apply
Proposition 4.6 and the classical residue formula on curves to (u)res1C (ω). Else, use Definition 5.2 and apply the same
arguments to a morphism φ : S̃ → S inducing a normalization of C . �

Remark 6.2. If valC (ω) ≥ −1, then fromProposition 1.1 andDefinition 1.3, the 2-formω has a 1-residue along C denoted by
res1C (ω). Thus, in this particular situation, the last theorem is an easy consequence of the classical residue formula on curves
applied to the 1-form res1C (ω). The nonobvious part of this proposition is that the statement holds even if valC (ω) < −1.

Theorem 6.3 (Second Residue Formula). Let CS,P be the set of germs of irreducible reduced curves embedded in S and containing
P. Then,

∀ω ∈ Ω2k(S)/k,
∑
C∈CS,P

res2C,P(ω) = 0.

Remark 6.4. Notice that this sum is actually finite because almost all C ∈ CS,P is not a pole of ω; thus the 2-residue at P
along this curve is zero.

Proof. Let ω ∈ Ω2k(S)/k and C1, . . . , Cn ∈ CS,P be the set of its poles in a neighborhood of P . We will prove the theorem by
induction on n.
Step 1. Assume that, for each pair of curves Ci, Cj with i 6= j, their intersection multiplicity at P is one.
If n = 1. From Lemma 4.1 the sum is obviously zero.
If n = 2. Let u1, u2 be respectively local equations of C1 and C2. Then, (u1, u2) is a strong (P, C2)-pair and (u2, u1) a strong
(P, C1)-pair, because C1 and C2 are assumed to have a normal crossing at P . Thus, for some h ∈ OS,P and some positive
integers n1 and n2, we have

ω = h
du1
un11
∧
du2
un22

.

Expand h in Taylor series h =
∑
hijui1u

j
2. Using the anticommutativity of the external product, a brief computation gives

res2C2,P(ω) = −res
2
C1,P
(ω) = hn1−1,n2−1.

If n ≥ 2. Consider π : S̃ → S the blowup of S at P . Denote by E the exceptional divisor, by C̃i the strict transform of Ci
and by Qi the intersection point between E and C̃i. Points Qi’s are all distinct and curves E and C̃i have normal crossing at
Qi. The curve E is projective and the C̃i’s are the only poles of π∗ω which cross E. Furthermore, the previous case entails
res2
C̃i,Qi

(π∗ω) = −res2E,Qi(π
∗ω) for all i. Consequently, from Corollary 4.9, we have

n∑
i=1

res2Ci,P(ω) =
n∑
i=1

res2C̃i,Qi(π
∗ω) = −

n∑
i=1

res2E,Qi(π
∗ω)

and the last sum is zero from Theorem 6.1.
Step 2. In the general case, a curve Ci might be singular at P or intersect the other Cj’s with higher multiplicity. After a finite
number of blowups, using Definition 5.2 and applying same arguments to the resolution tree, we get the expected result.

�

Remark 6.5. Notice that the valuation of π∗ω along the exceptional divisor E is not always greater than or equal to−1. This
valuation is given by the formula

valE(π∗ω) = 1+
∑
C∈CS,P

valC (ω),

where the set CS,P is that of Theorem 6.3. For a proof of this formula see [33] prop V.3.3 and V.3.6. Therefore, Theorem 6.1 is
necessary to conclude in the first step of the last proof.
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To state the third residue formula we need to extend the definition of 2-residues at a point along a curve to 2-residues at a
point along a divisor.

Definition 6.6. Let D = n1C1 + · · · + npCp be a divisor on S and ω ∈ Ω2k(S)/k. We define the 2-residue of ω at P to be

res2D,P(ω) :=
n∑
i=1

res2Ci,P(ω).

N.B. By convention, if P 6∈ C , then the map res2C,P is zero onΩ
2
k(S)/k.

Remark 6.7. Notice that the coefficients ni’s of D are not involved in this definition. Actually, res2D,P depends only on the
support of the D. The most logic notation would have been ‘‘res2Supp(D)’’, which is too heavy.

Theorem 6.8 (Third Residue Formula). Let Da,Db be two divisors such that the set Supp(Da) ∩ Supp(Db) is finite. Let ∆ be the
zero-cycle given by the set-theoretic intersection∆ := Da ∩ Db. Set D := Da + Db. Then,

∀ω ∈ Ω2(−D),
∑

P∈Supp∆

res2Da,P(ω) =
∑
P∈S

res2Da,P(ω) = 0.

Proof. From Theorem 6.1, for each irreducible component Ci of the support of Da, we have
∑
P∈Ci
res2Ci,P(ω) = 0. From The-

orem 6.3, if a point P is out of the support of∆, then res2Da,P(ω) = 0. A combination of both claims concludes the proof. �

Remark 6.9. From Theorem 6.3 and under the assumptions of Theorem 6.8, for all P in S, we have

res2Da,P(ω) = −res
2
Db,P(ω).

Consequently, the statement in Theorem 6.8 holds replacing Da by Db.

Part 2. Application to coding theory

Notations

Let X be a variety defined over finite a field k. We denote by Divk(X) the group of rational Weil divisors on X , that is,
the free Abelian group spanned by irreducible 1-codimensional closed subvarieties of X . If G ∈ Divk(X), then we use the
following notations.
(1) G+ denotes the effective part of G.
(2) L(G) denotes the Riemann–Roch space of rational functions

L(G) := {f ∈ k(X), (f )+ G ≥ 0} ∪ {0}.
(3) Ω2(G) denotes the Riemann–Roch space of rational 2-forms

Ω2(G) :=
{
ω ∈ Ω2k(X)/k, (ω)− G ≥ 0

}
∪ {0}.

(4) If G′ ∈ Divk(X) such that the supports of G and G′ have no common component in a neighborhood of P , we denote by
mP(G,G′) ∈ Z the intersection multiplicity of these divisors at P .

7. About codes from curves, classical constructions

In this section, C is a smooth projective absolutely irreducible curve over a finite field Fq. Let G be a rational divisor on C
and P1, . . . , Pn be a family of rational points of C avoiding the support of G. Set D := P1 + · · · + Pn ∈ DivFq(C) and

evD :
{
L(G)→ Fnq
f 7→ (f (Pi))i=1...n

, resD :
{
Ω1(G− D)→ Fnq
ω 7→ (resPi(ω))i=1...n

.

We define the codes CL(D,G) := Im(evD) and CΩ(D,G) := Im(resD), called respectively functional code and differential
code.
Both constructions are linked by the following properties.
(OR): CΩ(D,G) = CL(D,G)⊥.
(LΩ): For some canonical divisor K , we have CΩ(D,G) = CL(D, K − G+ D).
See [7,8] or [9] for the proofs of these statements. Relation (OR) is a consequence of the residue formula for inclusion ‘‘⊆’’ and
of Riemann–Roch’s theorem for the reverse one. This relation is used in almost all algebraic decoding algorithms (see [26]).
Relation (L Ω) is a consequence of the weak approximation theorem ([8] thm I.3.1). It allows one to restrict the study of
algebraic–geometric codes to only one class, for example functional codes, which seems to be easier to study. The goal of
this second part is to extend some of these statements to surfaces.
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8. Algebraic–geometric codes on surfaces

Fromnowon, S denotes a smooth geometrically integral projective surface over Fq and S := S×Fq Fq.Moreover,Gdenotes
a rational divisor on S and P1, . . . , Pn a set of rational points of S avoiding the support of G. Set ∆ := P1 + · · · + Pn. Notice
that ∆ is not a divisor but a 0-cycle. Most of the difficulties we will meet come from this difference of dimension between
G and∆.

8.1. Functional codes

As said in the introduction, the functional construction of codes extends to higher-dimensional varieties (see [10] I.3.1).
Define the map

ev∆ :
{
L(G)→ Fnq
f → (f (P1), . . . , f (Pn))

.

The functional code is CL(∆,G) := Im(ev∆). The study of such codes is really more complicated than that of codes on curves.
Particularly, finding aminoration of theminimal distance becomes a very difficult problem. Formore details about this topic,
see the references cited in the introduction.

8.2. Differential codes

To define differential codes, we need more than G and ∆. We want to evaluate 2-residues of some rational differential
forms with prescribed poles. Unfortunately, 2-residues depend not only on a point but on a flag P ∈ C ⊂ S. Thus, we have
to input another divisor.

Definition 8.1. Let D ∈ DivFq(S) and assume that D is the sum of two divisors Da,Db whose supports have no common
irreducible component. Then, one can define the map

res2Da,∆ :
{
Ω2(G− D)→ Fnq
ω 7→ (res2Da,P1(ω), . . . , res

2
Da,Pn(ω))

.

The differential code is defined by CΩ(∆,Da,Db,G) := Im(res2Da,∆).

Remark 8.2. We can also define a map res2Db,∆, but, from Theorem 6.3, we have res
2
Db,∆
= −res2Da,∆. Thus, both maps have

the same image and

CΩ(∆,Da,Db,G) = CΩ(∆,Db,Da,G).

8.3. ∆-convenience

Actually, if one chooses an arbitrary divisor D, the last definition is not very convenient. Recall that, from Lemma 4.1 and
Theorem 6.3, res2Da,Pi(ω) is nonzero only if the supports of D

+
a and D

+

b intersect at Pi. Therefore, if we want to have a code
which is linked to the functional code CL(∆,G), the divisor Dmust be itself related to the 0-cycle∆. We will first define the
notion of a∆-convenient pair of divisors. Afterwards, wewill give a criterion of∆-convenience. Although this criterionmay
look ugly, it is actually easy to handle.
Let Da,Db be a pair of Fq-rational divisors on S whose supports have no common component and set D := Da+Db. From

now on, F denotes the sheaf on S defined by

F (U) =
{
ω ∈ Ω2Fq(S)/Fq

, (ω|U) ≥ −D|U
}
.

Moreover, for all points P ∈ S, the stalk of F at P is denoted by FP (see [33] II.1 p. 62 for the definition of ‘‘stalk’’). Notice
that H0(S,F ) = Ω2(−D)⊗Fq Fq.

Definition 8.3. The pair (Da,Db) is said to be∆-convenient if it satisfies the following conditions.

(i) Supports of Da and Db have no common irreducible components.
(ii) For all points P ∈ S, the map res2Da,P : FP → Fq is OS,P -linear.
(iii) This map is surjective for all P ∈ Supp(∆) and zero elsewhere.

Remark 8.4. The OS,P -module structure of Fq is induced by the morphism f → f (P). Thus, if the map res2Da,P satisfies (ii),
then it vanishes on mS,PFP .
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Remark 8.5. Let P ∈ S and ω ∈ FP . From Remark 6.9, we have

res2Da,P(ω) = −res
2
Db,P(ω).

Consequently, if at a point P ∈ S the map res2Db,P is OS,P -linear and satisfies (ii) and (iii); then so does res
2
Da,P .

Proposition 8.6 (Criterion for ∆-Convenience). Let (Da,Db) be a pair of Fq-rational divisors having no common irreducible
component on S and set D := Da + Db. If (Da,Db) satisfies the following conditions, then it is a∆-convenient pair.
(1) For each P ∈ Supp(∆), there exists an irreducible curve C smooth at P such that, in a neighborhood UP of P, either (D+a )|UP
or (D+b )|UP equals C|UP and mP(C,D− C) = 1.

(2) For each P ∈ S r Supp(∆), either D∗ = Da or D∗ = Db satisfies the following conditions. For each Fq-irreducible component
C of D+

∗
containing P,

(a) the curve C is smooth at P;
(b) this curve C appears in D∗ with coefficient 1;
(c) mP(C,D− C) ≤ 0.

Remark 8.7. In condition (2) of this criterion, the divisor D∗ may be zero in a neighborhood of P (actually, that is what
happens at almost all P). In this situation, conditions (2a), (2b) and (2c) are obviously satisfied.

For the proof of this proposition we need the next lemma and its corollary.

Lemma 8.8. Let C be an irreducible curve over Fq embedded in S and P be a smooth point of C. Let ω ∈ Ω2Fq(S)/Fq having a simple

pole along C. Then

valP(res1C (ω)) = mP(C, (ω)+ C),

where valP denotes the valuation at the point P onΩ1Fq(C)/Fq .

Proof. Let ϕ,ψ and v be respective local equations of
(
(ω)+ C

)+
,
(
(ω)+ C

)−
and C in a neighborhood of P . Let u ∈ Fq(S)

such that (u, v) is a strong (P, C)-pair; then for some h ∈ O×
S,P
, we have

ω = h
ϕ

ψ
du ∧

dv
v
.

Thus, res1
C
(ω) = h̄ϕ̄ψ̄−1dū and, since h̄ ∈ O×

C,P
, we have valP(h̄dū) = 0. Consequently,

valP(res1C (ω)) = valP(ϕ̄)− valP(ψ̄).

Furthermore,

mP(C, (ω)+ C) = mP(C, ((ω)+ C)+)−mP(C, ((ω)+ C)−)
= dimFq OS,P/(ϕ, v)− dimFq OS,P/(ψ, v)

= dimFq OC,P/(ϕ̄)− dimFq OC,P/(ψ̄)

= valP(ϕ̄)− valP(ψ̄). �

Corollary 8.9. Let C be an irreducible curve embedded in S and P be a smooth point of C. Let ω ∈ Ω2
Fq(S)/Fq

such that

valC (ω) ≥ −1 and mP(C, (ω)+ C) ≥ −1. Then,

∀f ∈ OS,P , res2C,P(fω) = f (P)res
2
C,P(ω).

Proof. Let (u, v) be a strong (P, C)-pair and f be an element of OS,P . Since valC (ω) ≥ −1, there exists ψ ∈ OS,C such that

ω = ψdu ∧
dv
v
.

Set µ := res1
C
(ω) = ψ̄dū. The condition valC (ω) ≥ −1 also entails

res1C (fω) = f̄ ψ̄dū = f̄µ.

From Lemma 8.8, we have valP(µ) = mP(C, (ω)+ C) ≥ −1. Thus,

res2C,P(fω) = resP(f̄µ) = f̄ (P)resP(µ) = f (P)res
2
C,P(ω). �
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Proof of Proposition 8.6. Let (Da,Db) be a pair of divisors satisfying the conditions of Proposition 8.6. Condition (i) of
Definition 8.3 is obviously satisfied, because supports of Da and Db are assumed to have no common irreducible component.
Now, we prove that (ii) and (iii) are satisfied. First, recall that F denotes the sheaf of rational 2-forms ω on S satisfying
locally (ω) ≥ −D = −Da − Db.
Condition (ii). Let P ∈ Supp(∆) andω ∈ FP , whereFP denotes the stalk of the sheafF at P . From (1), there is an irreducible
curve C , smooth at P such that either D+a or D

+

b equals C in a neighborhood of P . Using Remark 8.5, we may assume that
D+a = C without loss of generality. Thus, C is the only one irreducible component of Supp(D

+
a ) in a neighborhood of P .

Therefore, res2Da,P(ω) = res
2
C,P(ω). Consequently, valC (ω) ≥ −1 and Corollary 8.9 asserts that res

2
C,P (and hence res

2
Da,P ) is

OS,P -linear.

Condition (iii). Let P ∈ S be a point out of the support of∆. From Remark 8.5, wemay assumewithout loss of generality that
condition (2) in Proposition 8.6 is satisfied by Da (i.e. D∗ = Da at P). Let C be an Fq-irreducible component of Supp(D+a ) and
ω ∈ FP . From (2b), valC (ω) ≥ −1 and, from Lemma 8.8 and (2c), we have valP(res

1
C
(ω)) ≥ 0. Consequently, res2

C,P
(ω) = 0,

which concludes the proof. �

Example 8.10. Let S = P2 and let ∆ be the sum of the rational points of an affine chart U . Let x, y be affine coordinates on
U . For all α, β ∈ Fq, set Da,α the line {x = α} and Db,β := {y = β}. Now, set Da :=

∑
α∈Fq Da,α and Db :=

∑
β Db,β . The

pair (Da,Db) satisfies the criterion of Proposition 8.6 and hence is∆-convenient. Notice that the components ofDa (resp.Db)
intersect themselves at a point lying on the line at infinity, which does not represent any contradiction with the definition
of∆-convenience.

Notice that, in the definition, neither Da nor Db are assumed to be effective. In some situations, it is necessary to use
noneffective divisors. This happens in next example.

Example 8.11. Consider again S = P2 and assume that the base field is Fq with q odd. Set ∆ = P1 + P2 + P3 with
P1 = (0 : 0 : 1), P2 = (1 : 0 : 1) and P3 = (0 : 1 : 1). The pair (Da,Db), defined by Da = {Y = 0} + {Y = 1}
and Db = {X = 0} + {X = 1} − {X + Y − 2 = 0}, is ∆-convenient. However, in this situation, there does not exist any
∆-convenient pair of effective divisors. The proof of the last claim is left to the reader.

9. Properties of differential codes

9.1. Orthogonality

Theorem 9.1. Let (Da,Db) be a∆-convenient pair and set D := Da + Db; then

CΩ(∆,Da,Db,G) ⊆ CL(∆,G)⊥.

Proof. Let ω ∈ Ω2(G− D) and f ∈ L(G); then fω ∈ Ω2(−D), and from the definition of∆-convenient pairs,

∀P ∈ S, res2Da,P(fω) =
{
0 if P 6∈ Supp(∆)
f (P)res2Da,P(ω) if P ∈ Supp(∆).

Thus,

〈ev∆(f ), res2Da,∆(ω)〉 =
∑

P∈Supp(∆)

f (P)res2Da,P(ω) =
∑

P∈Supp(∆)

res2Da,P(fω).

And the last sum is zero from Theorem 6.8. �

In Section 10, we prove that, in some situations, the reverse inclusion is false for any choice of a ∆-convenient pair of
divisors. Thus, in general, we do not have equality. An interpretation of this statement is that, even if a pair of∆-convenient
divisors is linked to∆, it is not involved in the functional construction. This lack of canonicity in the choice of (Da,Db)might
be the reason of this non-equality. In a forthcoming paper we will study how to get the whole orthogonal of a functional
code, using differentials.

9.2. A differential code is functional

Recall that, in Section 7, we discussed two relations denoted by (OR) and (L Ω). We just said that it is not possible to
extend perfectly the orthogonality relation (OR). Nevertheless, the next proposition asserts that relation (L Ω) holds on
surfaces: a differential code is always a functional one associated with some canonical divisor. Recall that the proof of (LΩ)
for curves is a consequence of the weak approximation theorem. Here is the required statement for surfaces.
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Proposition 9.2. Let P1, . . . , Pm and Q1, . . . ,Qn be two families of closed points of S and C be an irreducible curve embedded in
S. Suppose that the Pi’s are contained in C and the Qi’s are out of it. Then, there exists a function u ∈ Fq(S) satisfying the following
conditions.

(i) ∀i ∈ {1, . . . ,m}, u is a local equation of C in a neighborhood of Pi.
(ii) ∀j ∈ {1, . . . , n},Qj 6∈ Supp((u)), i.e. u ∈ O×S,Qi .

Proof. Choose u0, a uniformizing parameter of OS,C . Then (u0) = C + D, where D ∈ DivFq(S), whose support does not
contain C . From the moving lemma ([27] thm III.1.3.1), there exists a divisor D′ linearly equivalent to D and whose support
avoids P1, . . . , Pm,Q1, . . . ,Qn. Thus, for some function f ∈ Fq(S), we have D′ = D + (f ), and u := fu0 is a solution of the
problem. �

N.B. In the whole book of Shafarevich [27], the base field is assumed to be algebraically closed. Nevertheless the very same
proof holds over an arbitrary field.

Corollary 9.3. Let (Da,Db) be a∆-convenient pair and set D := Da + Db; then there exists a differential ω0 ∈ Ω2k(S)/k satisfying
the following conditions.

(1) For some open set U containing Supp(∆), we have (ω0|U) = −D|U .
(2) ∀P ∈ Supp(∆), res2Da,P(ω0) = 1.
(3) ∀P ∈ Supp(∆),∀f ∈ OS,P , res2Da,P(fω0) = f (P)res

2
Da,P(ω0).

Proof. Let X1, . . . , Xr and Y1, . . . , Ys be respectively the irreducible components of Supp(Da) and Supp(Db). That is, Da =
m1X1 + · · · + mrXr and Db = n1Y1 + · · · + nsYr for some integers mi’s and nj’s. From Proposition 9.2 there exists an open
subset U of S containing the support of∆ and functions u1, . . . , ur , v1, . . . , vs such that ui (resp vj) is an equation of Xi (resp.
Yj) in U . Set u :=

∏
i u
mi
i and v :=

∏
i v
ni
i .

Let µ be a rational 2-form on S having neither zeros nor poles in a neighborhood of the support of∆, and set

ω0 :=
µ

uv
.

Replacing U by a smaller open set containing Supp(∆), we may assume that µ has neither zeros nor poles in U . Thus,
statements (1) and (3) are satisfied by ω0. Moreover, from the Definition 8.3 of∆-convenience, we have

∀P ∈ Supp(∆), res2Da,P(ω0) = aP 6= 0.

Choose g ∈ ∩P∈Supp(∆) O×S,P such that g(P) = a
−1
P for all P ∈ Supp(∆). Then, replacing U by a smaller open set containing

Supp(∆) and ω0 by gω0, the three conditions are satisfied. �

Theorem 9.4. Let D = Da + Db such that (Da,Db) is∆-convenient. There exists a canonical divisor K such that

CΩ(∆,Da,Db,G) = CL(∆, K − G+ D).

Proof. From Corollary 9.3, there exists a 2-form ω0 satisfying (1), (2) and (3). Set K := (ω0); this divisor is of the form
K = −D + R, where the support of R avoids that of ∆. Let ω ∈ Ω2(G − D); then, for some function f ∈ L(K − G + D), we
have ω = fω0. Notice that K − G+ D = −G+ R; then any function f ∈ L(K − G+ D) is regular in a neighborhood of each
P ∈ Supp(∆). Consequently, from condition (3) in Corollary 9.3, we have

res2Da,∆(ω) = res
2
Da,∆(fω0) = ev∆(f ). �

Any differential code is actually a functional one. Notice that, if the converse statement is trivial for codes on curves, it is less
easy in our situation. Indeed, to prove that a functional code is differential, we have to build a∆-convenient pair of divisors.

9.3. Converse statement, a functional code is differential

Lemma 9.5. Let Q1, . . . ,Qm be rational points of S and set Γ := Q1+· · ·+Qm. Then, there exists aΓ -convenient pair (Da,Db).

Proof. Step 1: Construction of Da. Choose a curve C (whichmay be reducible) containing the whole support of Γ and regular
at each point of it and set Da :=

∑
k Ck where the Ck’s are the irreducible components of C . Finding such a curve is an

interpolation problem with infinitely many solutions.
Step 2: Construction of Db. Choose another effective divisorD′ interpolating all the points of Supp(Γ ) and having no common
component with Da. LetΛ be the 0-cycle given by the scheme-theoretic intersection Da ∩ D′. Unfortunately, the support of
Λ might be bigger than that of Γ . Thus, we have Λ = Γ + Γ ′, where Γ ′ is an effective 0-cycle. Now choose an effective
divisor D′′ such that D′′ ∩ Da = Γ ′ + Γ ′′, where Γ ′′ and Γ have disjoint supports. Set Db := D′ − D′′. The pair (Da,Db)
satisfies the criterion of Proposition 8.6, which concludes the proof. �
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Theorem 9.6. Let G be a rational divisor on S; then for some canonical divisor K and some divisor D := Da + Db such that
(Da,Db) is∆-convenient, we have

CL(∆,G) = CΩ(∆,Da,Db, K − G+ D).

Proof. Lemma 9.5 asserts the existence of a∆-convenient pair (Da,Db). Then, construct a 2-formω0 using Corollary 9.3. Set
K := (ω0). Now the result is an easy consequence of Theorem 9.4. �

10. The reverse inclusion is false

As said in Section 9.1, if a differential code is included in the orthogonal of a functional one, the reverse inclusion is in
general false. The study of the following example will prove this.
In this section, the surface S is the product of two projective lines S := P1 × P1. Let U be an affine chart of S with affine

coordinates x, y. The complement of U in S is a union of two lines E and F . The Picard group of S is generated by the classes
of E and F . Thus, without loss of generality, one can choose for G the divisor Gn,m := mE + nF , with m, n ∈ Z. Finally, ∆ is
defined as the formal sum of all rational points of U .

10.1. Functional codes on P1 × P1

OnU , the vector space L(Gm,n)maybe identifiedwith Fq[x]≤m⊗Fq Fq[y]≤n, where Fq[t]≤d denotes the space of polynomials
in t with degree less than or equal to d. Furthermore, the functional code CL(∆,Gm,n)may be identifiedwith a tensor product
of two codes on the projective line, which are Reed–Solomon codes. Thus,

CL(∆,Gm,n) = RSq(m+ 1)⊗Fq RSq(n+ 1), (�)

where RSq(k) denotes the Reed–Solomon code over Fq of length q and dimension k.

10.2. Orthogonal of functional codes on P1 × P1

In this subsection, we prove that the orthogonal of some functional code on P1 × P1 cannot be differential.

Proposition 10.1. Let m, n be two integers such that 0 ≤ n,m < q− 2; then, for all∆-convenient pair of divisors (Da,Db), we
have

CΩ(∆,Da,Db,Gm,n) CL(∆,Gm,n)⊥.

Proof. From (�) and Lemma D.1 in Appendix D, we have

CL(∆,Gm,n)⊥ = RSq(m+ 1)⊥ ⊗ Fqq + F
q
q ⊗ RSq(n+ 1)

⊥.

Suppose that, for some∆-convenient pair (Da,Db), we had

CΩ(∆,Da,Db,Gm,n) = CL(∆,Gm,n)⊥.

From Theorem 9.4, the code CΩ(∆,Da,Db,Gm,n) is functional. Thus, from (�), it is a tensor product of two Reed–Solomon
codes. But CL(∆,Gm,n)⊥ is of the form A ⊗ Fqq + F

q
q ⊗ B with A, B nonzero and strictly contained in F

q
q. This contradicts

Lemma D.2 in Appendix D. �

Remark 10.2. The condition 0 ≤ m, n < q− 2 asserts that, in the tensor product representation

CL(∆,Gm,n) = RSq(m+ 1)⊗ RSq(n+ 1),

none of the terms of the tensor product is zero or Fqq.

A solution to avoid this lack of reverse inclusion is to try to construct the orthogonal as a sum of differential codes. The
purpose of the next subsection is the realization of CL(∆,Gm,n)⊥ as a sum of two differential codes associated with two
distinct∆-convenient pairs.

10.3. A construction of the orthogonal code

For each α ∈ Fq, consider the lines D1,α := {x = α}, D2,α := {y = α} and D3,α := {x− y− α}. Now set

D1 :=
∑
α∈Fq

D1,α, D2 :=
∑
α∈Fq

D2,α and D3 :=
∑
α∈Fq

D3,α.

Pairs (D1,D3) and (D2,D3) are ∆-convenient. Using them, one can realize the orthogonal of CL(∆,Gm,n) as a sum of two
differential codes.
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Proposition 10.3. The three following relations are satisfied.

(i) CΩ(∆,D1,D3,Gm,n) = Fqq ⊗ RSq(q− 2− n).
(ii) CΩ(∆,D2,D3,Gm,n) = RSq(q− 2−m)⊗ Fqq.
(iii) CL(∆,Gm,n)⊥ = CΩ(∆,D1,D3,Gm,n)+ CΩ(∆,D2,D3,Gm,n).

Proof. As said in last proof, relation (�) and Lemma D.1 entail

CL(∆,Gm,n)⊥ = RSq(m+ 1)⊥ ⊗ Fqq + F
q
q ⊗ RSq(n+ 1)

⊥.

Consequently, (i)+ (ii)⇒ (iii). Furthermore, by symmetry, (i)⇔ (ii). Thus, we only have prove (i). Set

ν :=
dy∏

β∈Fq
(x− β)

∧
dx∏

α∈Fq
(x− y− α)

.

This form satisfies conditions (1), (2) and (3) in Corollary 9.3. Compute the divisor of ν. On U , we have (ν|U) = −D3|U −D1|U .
Moreover, D1 ∼ qE and D3 ∼ q(E + F). Since the canonical class on P1 × P1 equals that of−2(E + F), we have

(ν) = (2q− 2)E + (q− 2)F − D1 − D3

and

CΩ(∆,D1,D3,mE + nF) = CL(∆, (2q− 2−m)E + (q− 2− n)F)
= RSq(2q− 2−m)⊗ RSq(q− 2− n).

To conclude, notice that, ifm ≤ q− 1, then 2q− 2−m ≥ q− 1 and RSq(2q− 2−m) equals Fqq. �

11. Conclusion

This new construction of codes generalizes the differential construction of codes on curves. The main difference is that
it is not always possible to realize the orthogonal of a functional code as a differential (or equivalently functional) one. A
natural question comes from the study of last example.

Question 11.1. Is the orthogonal of a functional code a sum of differential codes? If yes, is there an upper bound on the number
of differential codes involved in this sum?

Moreover, we now know that the orthogonal of a functional code might be non-functional. Consequently, the study of
such codes might be interesting.

Note added in proof

Recently, Oleg Osipov of the Steklov Mathematical Institute informed the author of the existence of the paper [34] of
Paršin which deals with residues on surfaces. In Paršin’s article, the first and second residue formulas (Theorems 6.1 and 6.3
of the present paper) are proved using nearly the same proof.
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Appendix A. Proof of Lemma 3.5

If we prove the well-definition of the morphism k((u))[[v]] → k((x))[[y]], then we conclude about that of the morphism
k((u))((v))→ k((x))((y)), using the universal property of fraction fields. First, we have to define a topology on k((u))[[v]]
(resp. k((x))[[y]]). Recall that

k((u))[[v]] = lim
←−
k((u))[v]/(vn).

Afterwards, using the (u)-adic topology of k((u)), one can define a topology of projective limit on k((u))[[v]]. For this
topology, a sequence (s(n))n∈N defined for all n by s(n) =

∑
j∈N s

(n)
j (u)v

j converges to zero if and only if

∀j ∈ N, lim
n→+∞

s(n)j (u) = 0, for the (u)-adic topology.

Afterwards, using a Cauchy criterion, one proves that, for this topology, a series of elements of k((u))[[v]] converges if and
only if its general term converges to zero.
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Remark A.1. Notice that this topology on k((u))[[v]] is weaker than the (v)-adic one (forwhich the subset k((u)) is discrete).
Thus, if a sequence (resp. a series) converges for the (v)-adic topology, it hence converges for the projective limit topology.

Proof of Lemma 3.5. Step 1. Recall that f is of the form f = f0(x)+ f1(x)v+· · · and such that f0 has (x)-adic valuation 1. We
will prove that the sequence (f n)n∈N converges to zero. Let i be a nonnegative integer; for n large enough, the coefficient of
yi in f n is of the form f n0 Pi(f0, . . . , fi), where Pi is a polynomial which does not depend on n. Thus, for the (x)-adic topology,
this coefficient tends to zero. Consequently, for all Laurent series φ(u) ∈ k((u)), the series φ(f (x, y)) converges in k((x))[[y]].

Step 2. The series g has (y)-adic valuation 1; thus the sequence (gn)n∈N converges to zero for the (y)-adic topology and hence
for the projective limit topology (see Remark A.1). Using step 1, we conclude that, for every seriesψ(u, v) ∈ k((u))[[v]], the
series ψ(f , g) converges in k((x))[[y]]. Moreover, its (y)-adic valuation equals the (v)-adic one of ψ .

Step 3. If ω is a formal form ω = h(u, v)du ∧ dv with (v)-adic valuation n ∈ Z, then we have to prove that the (y)-adic
valuation of h(f , g)df ∧ dg is n too. If we prove that the (y)-adic valuation of df ∧ dg is zero, then we can conclude using
step 2. For that, consider the expression

df ∧ dg =

(
∂ f
∂x
∂g
∂y︸ ︷︷ ︸

val(y)=0

−
∂ f
∂y
∂g
∂x︸ ︷︷ ︸

val(y)≥1

)
dx ∧ dy.

This concludes the proof. �

Appendix B. Proof of Lemma 3.11

If ω = dA∧ dB for some series A, B ∈ k((u))((v)), after a change of coordinates (CV), ω = dF ∧ dG for some other series
F ,G ∈ k((x))((y)). Then, in order to prove the lemmawe only have to prove that the (u, v)-2-residue ofω = dA∧dB is zero.
We first introduce some notations. Let ρ and Jac be the maps

ρ :

k((x))((y))→ k((x))∑
i≥−n

hj(u)vj 7→ h−1(u) , Jac :

{
k((x))((y))2 → k((x))((y))

(A, B) 7→
∂A
∂u
∂B
∂v
−
∂A
∂v

∂B
∂u

.

Thus, ω = dA ∧ dB = Jac(A, B)du ∧ dv. We will prove the following lemma.

Lemma B.1. For all A, B ∈ k((u))((v)), we have ρ(Jac(A, B)) = φ′(u) for some φ ∈ k((u)), where φ′ denotes the formal
derivative of φ.

Proof. Maps Jac and ρ are respectively k-bilinear antisymmetric and k-linear. Then, we can restrict the proof to the three
following situations and extend it by linearity.

(1) A, B ∈ k((u))[[v]].
(2) A ∈ k((u))[[v]] and B = b(u)

vn with n ∈ N
∗ and b ∈ k((u)).

(3) A = a(u)
vm and B =

b(u)
vn withm, n ∈ N

∗ and a, b ∈ k((u)).

Let us consider these three situations.

(1) The series A and B do not have terms with negative powers of v, thus neither do their partial derivatives. Therefore,
ρ ◦ Jac(A, B) = 0.

(2) The series A is of the form A =
∑
j≥0 aj(u)v

j. Then,

ρ(Jac(A, B)) = −n(a′n(u)b(u)+ an(u)b
′(u)) = (−nan(u)b(u))′.

(3) In this situation we have

Jac(A, B) =
(
−n
a′(u)b(u)
vm+n+1

− (−m)
a(u)b′(u)
vm+n+1

)
.

Integersm and n are positive. Therefore, there is no term in v−1 and thus ρ(Jac(A, B)) = 0. �

Conclusion. Using Lemma B.1, we get (u, v)res1C,P(ω) = φ′(ū)dū and the coefficient of u−1 in φ′ is zero, because it is a
derivative.
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Appendix C. Proof of Theorem 3.6 when k has a positive characteristic

We only have to work on the points of the proof of Theorem 3.6 in which we used specific properties of characteristic
zero. Thus, we will study the behavior under (CV2) of differentials of the form

ω = φ(u)du ∧
dy
yn+1

, where φ ∈ k((u)) and n ≥ 1.

Let N be a nonnegative integer. In what follows, we consider a change of variables of the form (CV2):

u = f (x, y), with f =
∑
j≥0

fj(x)yj and f0 ∈ xk[[x]] r x2k[[x]],

such that mink=1...n
{
val(x)(fk)

}
= −N , where val(x) denotes the (x)-adic valuation of an element of k((x)).

Step 1. Assume that ω = umdu ∧ dy
yn+1

withm ∈ N. Then,

ω = (f ′0(x)+ f
′

1(x)y+ · · ·)(f0(x)+ f1(x)y+ · · ·)
mdx ∧

dy
yn+1

.

The (x, y)-1-residue of ω is the coefficient in yn of the series f m∂ f /∂x. This residue is of the form

(x, y)res1C,P(ω) = Pm,n(f0, . . . , fn, f
′

0, . . . , f
′

n)dx̄,

where Pm,n ∈ Z[X0, . . . , Xn, Y0, . . . , Yn] depends neither on the field k nor on f . Actually, Pm,n depends only on m and n. By
the same way, its coefficient of x−1 is a polynomial expression Q in the fi,j’s with 0 ≤ j ≤ n and−N ≤ i ≤ N + 1, such that
Q has coefficients in Z and depends neither on k nor on f . Furthermore, if k has characteristic zero, we know from Section 3
that Q vanishes on the set {f1,0 6= 0}, hence is the zero polynomial.

Step 2. Assume that ω = φ(u)du ∧ dy
yn+1
, with φ =

∑
m≥0 φmu

m
∈ k[[u]]. From step 1, we have

(x, y)res1C,P(ω) =
∑
m≥0

φmPm,n(f0, . . . , fn, f ′0, . . . , f
′

n)dx̄, (5)

where the Pm,n’s denote the polynomials involved in Step 1. The (x, y)-1-residue of ω is well defined. Thus, the series in (5)
converges in k((x)). Consequently, the (x)-adic valuation of it terms is positive for each m greater than or equal to some
positive integerM and

(x, y)res1C,P(ω) =
M∑
m=0

φmPm,ndx̄+
∑
m>M

φmPm,ndx̄.

The right term has nonnegative (x)-adic valuation; thus its residue is zero. The left one has zero residue zero because of step
1 extended by linearity.

Step 3. Assume thatω = du
um ∧

dy
yn+1
, withm ∈ N. Then,ω = 1

fm
∂ f
∂xdx∧

dy
yn+1
. We have to study the fraction 1

fm
∂ f
∂x . First, compute

its coefficient of yn corresponding to the (x, y)-1-residue. We have

1
f m
=
1
f m0

(
1+

Rm,1(f0, f1)
f0

y+ · · · +
Rm,p(f0, . . . , fp)

f p0
+ · · ·

)
, (6)

for some homogeneous polynomials Rm,i ∈ Z[X0, . . . , Xp] of degree p and depending only on m. Thus, the coefficient of yn

in 1
fm

∂ f
∂x is

C(x) :=
1
f m0

(
f ′n + f

′

n−1
Rm,1(f0, f1)

f0
+ · · · + f ′0

Rm,n(f0, . . . , fn)
f n0

)
.

For all k ∈ {1, . . . , n}, set Sm,n,k(f0, . . . , fk) := f n−k0 Rm,k(f0, . . . , fk) and Sm,n,0(f0) := f n0 . The Sm,n,k’s are homogeneous of
degree n and

C(x) :=
1
f m+n0︸ ︷︷ ︸
A(x)

n∑
k=0

f ′n−kSm,n,k(f0, . . . , fk)︸ ︷︷ ︸
B(x)

. (7)

Recall that f0 ∈ xk[[x]], that is f0 := f1,0x+ f2,0x2 + · · ·; then

A(x) =
1

(f1,0x)m+n

(
1+

Rm,1(f1,0, f2,0)
f1,0

x+ · · · +
Rm,p−1(f1,0, f2,0, . . . , fp,0)

f p1,0
xp + · · ·

)
,
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for polynomials Rm,k as in (6). Finally, we want to express the coefficient C−1 of x−1 in C(x). Recall that, for all p, the degree
of Sm,n,p is n. Therefore, there exists an integerM and a polynomial V ∈ Z[Xi,j] with−N ≤ i ≤ max (m+ n, (n+ 1)N + 1)
and 0 ≤ j ≤ n, depending only onm, n and N , and such that

C−1 =
1
f M1,0
V (fi,j).

Over a field of characteristic zero, V vanishes on the set {f1,0 6= 0} and hence is the zero polynomial.

Remark C.1. Notice that, in the whole proof, we deal with the value N such that−N is the minimal valuation of the fi’s, for
0 ≤ i ≤ n. Then, we have proved that the 2-residue is invariant under a change of variables u = f (x, y) such that the fi’s
have valuation minored by−N . But we proved it for all N , which concludes the proof.

Appendix D. About tensor products

Statements in this appendix are quite elementary results of linear algebra.We prove them because of a lack of references.

Lemma D.1. Let (E, 〈, 〉E) and (F , 〈, 〉F ) be two finite-dimensional vector spaces over an arbitrary field k with respective non-
degenerate bilinear forms 〈, 〉E and 〈, 〉F . Let A and B be subspaces respectively of E and F; then for the bilinear form 〈, 〉E⊗F :=
〈, 〉E ⊗ 〈, 〉F on E⊗k F , we have

(A⊗k B)⊥ = A⊥⊗k F + E⊗k B⊥.

Proof. Inclusion ‘‘⊇’’ is obvious. For the reverse one, wewill prove that both spaces have the same dimension. First, we have
to prove that

A⊥⊗k F ∩ E⊗k B⊥ = A⊥ ⊗ B⊥. (8)

Here again, inclusion ‘‘⊇’’ is obvious. For the reverse one, consider bases (ei)i∈I0 and (fj)j∈J0 respectively of A
⊥ and B⊥ and

complete them as bases (ei)i∈I and (fj)j∈J of E and F . Then, for all s =
∑
i,j sijei ⊗ fj ∈ E ⊗ F , we have

s ∈ A⊥⊗k F ∩ E⊗k B⊥ H⇒
(
∀(i, j) ∈ (I r I0)× (J r J0), sij = 0

)
.

Thus, (8) is proved and entails

dim(A⊥ ⊗ F + E ⊗ B⊥) = dim(A⊥ ⊗ F)+ dim(E ⊗ B⊥)− dim(A⊥ ⊗ B⊥).

After an easy computation, we prove that spaces (A⊗B)⊥ and (A⊥⊗F+E⊗B⊥) have the same dimension, which concludes
the proof. �

Lemma D.2. Let E and F be two vector spaces over an arbitrary field k. Let A (resp. B) be a strict nonzero subspace of E (resp F).
Then, the subspace A⊗k F + E⊗k B of E⊗k F cannot be written as an elementary tensor product U ⊗ V .

Proof. Assume that A⊗ F + E ⊗ B = U ⊗ V for some subspace U (resp. V ) of E (resp. F ).
Let (ei)i∈I0 (resp. (fj)j∈J0 ) be a basis of A (resp. B) completed in a basis (ei)i∈I of E (resp. (fj)j∈J of F ). Assume that U 6⊆ A and
choose u ∈ U such that u 6∈ A. Then, for all v ∈ V , the vector u⊗ v is of the form

u⊗ v =
∑
i,j

uivjei ⊗ fj.

From the assumption A ⊗ F + E ⊗ B = U ⊗ V , the product uivj is zero for all couples (i, j) ∈ I r I0 × J r J0. Since u 6∈ A,
there exists at least one index i1 ∈ I r I0 such that ui1 6= 0. Thus, for all j ∈ J r J0, we have ui1vj = 0 which entails that
v ∈ B. This statement works for all v ∈ V ; hence U ⊗ V ⊆ E ⊗ B. Now choose f ∈ F such that f 6∈ B and a ∈ A r {0}. Then,
a⊗ f 6∈ E ⊗ B; thus a⊗ f 6∈ U ⊗ V , which contradicts A⊗ F + E ⊗ B = U ⊗ V .
If U ⊆ A, use the same argument replacing U, A, E by V , B, F . �
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