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Besides lung, postnatal human epidermis is the only epithelium in direct contact with atmospheric oxygen. Skin
epidermal oxygenation occurs mostly through atmospheric oxygen rather than tissue vasculature, resulting in a
mildly hypoxic microenvironment that favors increased expression of hypoxia-inducible factor-1a (HIF-1a).
Considering the wide spectrum of biological processes, such as angiogenesis, inflammation, bioenergetics,
proliferation, motility, and apoptosis, that are regulated by this transcription factor, its high expression level in
the epidermis might be important to HIF-1a in skin physiology and pathophysiology. Here, we review the role of
HIF-1a in cutaneous angiogenesis, skin tumorigenesis, and several skin disorders.
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INTRODUCTION
Since the mid-nineteenth century, skin
atmospheric oxygen uptake has been
documented in vertebrates. Whereas
amphibians use skin as a major respira-
tory surface and fish take up 60% of
their oxygen through the skin, transcu-
taneous oxygen uptake in human adult
skin, accounting for 0.4% of the lung
epithelium uptake, covers most epider-
mal needs (Stucker et al., 2002). The
importance of oxygen sensing by kera-
tinocytes is already known in premature
babies in whom oxygenation through
skin has been used as a surrogate to the
respiratory route (Cartlidge and Rutter,
1988). Moreover, it has been recently
shown that oxygen sensing by keratino-
cytes in a mouse model affects systemic
oxygen delivery to other organs (Boutin
et al., 2008). These data among others
suggest that epidermis has had a leading
role in the adaptation of the organism to
environmental oxygen pressure during
evolution through its oxygen-sensing
capacity.

Metazoan species have evolved a
highly conserved key protein, hypoxia-

inducible factor-1a (HIF-1a), to regu-
late oxygen delivery to tissue. Origin-
ally discovered as the regulator of
oxygen homeostasis through the con-
trol of erythropoietin, HIF-1a was then
found to drive the expression of hun-
dreds of genes (Wenger et al., 2005;
Semenza, 2007) involved in many bio-
logical processes, including neovascu-
larization, angiogenesis, cytoskeletal
structure, survival/apoptosis, adhesion,
migration, invasion, metastasis, glyco-
lysis, and metabolic bioenergetics
(review in Semenza, 2003; Pouyssegur
et al., 2006).

Quantitative evaluation of tissue
oxygenation has shown that physio-
logical oxygen pressure in epidermis is
low compared with other tissues
(Table 1; Evans and Naylor, 1967;
Stewart et al., 1982; Distler et al.,
2004; Bedogni et al., 2005; Evans
et al., 2006). Although dermal oxygen
partial pressure is 10% (corresponding
to 76 mm Hg), the pressure correspond-
ing to the epidermis ranges bet-
ween 0.2 and 8% (Evans et al., 2006).
Indeed, epidermal oxygenation, which

occurs mostly through atmospheric
oxygen (Stucker et al., 2002), results
in a mildly hypoxic microenvironment.
Consistent with this constitutive low
epidermal oxygenation, an accumula-
tion of the hypoxia-detection agent,
nitroimidazole/EF5, as well as high
levels of nuclear HIF-1a have been
detected in both human and mouse
epidermis, especially in the basal layer
(Figure 1; Distler et al., 2004; Bedogni
et al., 2005; Boutin et al., 2008).
Considering the broad spectrum of
HIF-1a effects, its high level of expres-
sion in epidermis could reflect an
important role in local and systemic
adaptation to environmental stresses. In
this review, we highlight the role of
HIF-1a in cutaneous angiogenesis, skin
tumorigenesis, and other skin disorders.

HIF-1a: STRUCTURE, REGULATION,
AND TARGET GENES
Structure of the HIF-1a protein

HIF-1 is related to the family of basic-
helix-loop-helix transcription factors.
It comprises two subunits, HIF-1a,
which is tightly regulated, and the

& 2011 The Society for Investigative Dermatology www.jidonline.org 1793

PERSPECTIVE

Received 11 October 2010; revised 22 February 2011; accepted 6 March 2011; published online 2 June 2011
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constitutively expressed aryl hydrocar-
bon nuclear translocator ARNT also
called HIF-1b (Figure 2a; reviewed by
Maxwell, 2004; Metzen and Ratcliffe,
2004). Three isoforms of the a-subunit,
named HIF-1a, HIF-2a (also referred to
as EPAS-1, MOP2, HLF, and HRF), and
HIF-3a, have so far been identified in
the human genome (Maynard et al.,
2003).

Two transactivation domains, N-ter-
minal and C-terminal, have been
identified in HIF-1a. They interact
with histone acetyltransferases, such
as CBP, p300, and SRC-1, to activate
the transcription of target genes. This
association is regulated by both oxygen
concentration and redox status. The
basic-helix-loop-helix and Per-Arnt-
Sim (PAS) domains are required for

dimerization of HIF-1a with HIF-1b as
well as for DNA binding. In addition to
the binding to DNA and coactivators,
HIF-1a interacts with factors regulating
its stability such as heat shock protein-
90 (Figure 2a; Brahimi-Horn et al.,
2005; Fandrey et al., 2006).

Regulation of HIF-1a
Under atmospheric oxygen pressure
(termed normoxia), HIF-1a is rapidly
targeted for ubiquitination and protea-
somal degradation after binding to the
von Hippel–Lindau E3 ligase. The
hydroxylation of HIF-1a mediated by
prolyl hydroxylases is a prerequisite for
the association of HIF-1a with von
Hippel–Lindau (Maxwell et al., 1999;
Cockman et al., 2000; Kamura et al.,
2000; Ohh et al., 2000). Hydroxylation

by prolyl hydroxylase occurs on two
specific prolines (P402 and P564 in
human) present in the oxygen-depen-
dent degradation domain of HIF-1a in
the presence of iron, oxygen, and
2-oxoglutarate (Ivan et al., 2001; Jaakkola
et al., 2001; Masson et al., 2001).
Concurrently, hydroxylation of the aspar-
agine residue 803 by an asparaginyl
hydroxylase (also named FIH-1) prohibits
binding of p300/CBP to the HIF-1a
subunit, which consequently abolishes
transactivation of HIF-1a (Mahon
et al., 2001). Reduction in prolyl hydro-
xylase activity under hypoxia results in
stabilization and accumulation of HIF-1a.
Hypoxia-mediated reactive oxygen spe-
cies (ROS) modulation and post-
transcriptional modifications (e.g., phos-
phorylation, sumoylation, S-nitrosylation,
and acetylation) of HIF-1a have also
been shown to be crucial in its stabiliza-
tion and/or transcriptional activation
process (Brahimi-Horn et al., 2005;
Fandrey et al., 2006). When stabilized,
HIF-1a translocates to the nucleus,
dimerizes with HIF-1b, and binds to
the hypoxia-response element (with an
(A/G)CGTG core sequence) of target
genes (Figure 2b and Table 2; Wenger
et al., 2005).

In addition to hypoxia, multiple
oncogenic pathways, including growth
factor signaling or genetic loss of tumor
suppressors, can regulate HIF-1a activ-
ity (Figure 2b; Semenza, 2002). Mito-
gen-activated protein kinases are
required for the activation of the
transcriptional activity and/or for HIF-
1a stabilization (Salceda et al., 1997;
Minet et al., 2000; Hur et al., 2001;
Rezvani et al., 2007). The loss of the
tumor suppressor genes, von Hippel–-
Lindau or phosphatase and tensin
homolog, upregulates HIF-1a activity
(Semenza, 2002). HIF-1a stabilization
could also be dependent on the phos-
phatidylinositol 3-kinase, protein ki-
nase B (PKB/AKT), and its effector
mammalian target of rapamycin (Paul
et al., 2004). Basic fibroblast growth
factor, insulin, IL-1, hepatocyte growth
factor, and heregulin induce the ex-
pression of HIF-1a (Zhong et al., 2000;
Sodhi et al., 2001; Tacchini et al.,
2001; Stiehl et al., 2002; Kietzmann
and Gorlach, 2005). ROS, as second
messengers, are other effectors found to

Table 1. Oxygen level in different human tissues

Tissue Oxygen (%) Reference

Skin Evans et al. 2006

Dermis 47

Epidermis 0.2–8

Hair follicles 0.1–0.8

Sebaceous gland 0.1–1.3

Vessels 4–14 Saltzman et al. 2003

Heart 5–10 Roy et al. 2003

Brain 0.5–7 Hemphill et al. 2005; Nwaigwe et al. 2000

Kidney 4–6 Welch and Wilcox, 2001

Atmospheric air contains about 20.9% O2, which represents a partial atmospheric pressure of
160 mm Hg. The qualitative terms physiological, modest hypoxia, moderate hypoxia, severe hypoxia,
and anoxia are used to designate 10–14, 2.5, 0.5, 0.1, and 0% O2, respectively. These percentages
are assigned to partial oxygen pressures of 75–100, 19, 3.8, 0.76, and 0.0 mm Hg, respectively (Evans
et al., 2006).

Figure 1. Hypoxia-inducible factor-1a (HIF-1a) expression in skin. Human skin immunolabeled using a

specific anti-HIF-1a antibody, followed by envisionþhorseradish peroxidase reagent, revealed with

diaminobenzidine and counterstained with hemalun. HIF-1a-positive cells appear brown. Bar¼ 100mm.

1794 Journal of Investigative Dermatology (2011), Volume 131

HR Rezvani et al.
HIF-1a in Epidermis



modulate HIF-1a activation positively
or negatively (Gerald et al., 2004;
Kietzmann and Gorlach, 2005; Rezvani
et al., 2007; Galanis et al., 2008).

HIF-1a targets

Many HIF-1a target genes are impor-
tant in skin physiology (Table 2). These
include genes that encode proteins

involved in cell growth and/or apopto-
sis (e.g., transforming growth factor-b3,
connective tissue growth factor, and
Noxa), cell adhesion and migration
(e.g., integrin-b1 and laminin-332),
DNA repair (e.g., xeroderma pigmento-
sum C (XPC) and XPD), melanogenesis
(e.g., stem cell factor), angiogenesis
and wound healing (e.g., vascular
endothelial growth factor (VEGF), pla-
cental growth factor, and platelet-
derived growth factor), extracellular
matrix (ECM) formation and turnover
(e.g., plasminogen activator inhibitor-
1), chemotaxis (stromal cell-derived
factor-1), and chemokine receptors
(C-X-C chemokine receptor type 4;
Liu et al., 1995; Forsythe et al., 1996;
Takahashi et al., 2000; Fink et al.,
2002; Kelly et al., 2003; Pennacchietti
et al., 2003; Staller et al., 2003;
Ceradini et al., 2004; Choi et al.,
2004; Higgins et al., 2004; Kim
et al., 2004; Nishi et al., 2004a; Patel
et al., 2005; Erler et al., 2006; Bosch-
Marce et al., 2007; Fitsialos et al.,
2008; Keely et al., 2009; Rezvani et al.,
2010a). HIF-1a also mediates glucose
uptake and metabolism by binding to
promoter of genes encoding several
glucose transporters and glycolytic en-
zymes (such as glucose transporter-1,
hexose kinase-1, and 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphate-
3; Semenza et al., 1994; Ebert et al.,
1995; Okino et al., 1998; Fukasawa
et al., 2004; Obach et al., 2004; Roth
et al., 2004), which are important in
metabolic reprogramming from oxida-
tive to glycolytic metabolism (i.e., the
Warburg effect) during carcinogenesis
(Rezvani et al., 2011a, b).

HIF-1a EXPRESSION IN CUTANEOUS
ANGIOGENESIS
A fine-tuned balance between angio-
genic and antiangiogenic factors drives
the angiogenic process. Once the
balance is disrupted, the vasculature
rapidly responds by triggering an an-
giogenic response, the angiogenic
switch (Hanahan and Folkman, 1996).
The process occurs universally in
both physiological and pathological
contexts. Physiological examples of
cutaneous angiogenesis include cuta-
neous blood flow, wound healing, and
the hair follicle cycle. Cutaneous
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Figure 2. Structure and regulation of hypoxia-inducible factor-1a (HIF-1a) under different stimuli.

(a) Schematic representation of human HIF-1a and HIF-1b. Both proteins are related to the basic-helix-

loop-helix–Per-Arnt-Sim (bHLH–PAS) transcription factor family that contains an N-terminal bHLH

domain and two PAS domains. HIF-1a contains an oxygen-dependent degradation domain (ODDD)

that mediates oxygen-regulated stability, and a C-terminal transactivation domain (C-TAD) whose

transcriptional repression in normoxia is controlled through hydroxylation of the asparagine 803 by the

factor-inhibiting HIF-1. Interaction domains with von Hippel–Lindau (VHL) and other cofactors are

indicated, as well as amino-acid numbers for each domain. (b) Under normoxia, HIF-1a is subjected to

oxygen-dependent hydroxylation on proline 402 and 564 in ODDD. Ubiquitination by the VHL targets

HIF-1a to proteasomal degradation. Under conditions of hypoxia, UVB irradiation, or upon activation

of some growth factor signaling pathways, HIF-1a is stabilized, translocates to the nucleus, interacts with

hypoxia-responsive elements (HREs), and finally promotes the activation of target genes. It is important

to note that growth factors, cytokines, and AKT activation can also induce HIF-1a protein synthesis or

coactivator recruitment. AKT, protein kinase B; HGF, hepatocyte growth factor; Hsp-90, heat shock

protein-90; LXXLAP, the motif that is required for interaction with prolyl hydroxylase (PHD) and VHL,

and conserved from Caenorhabditis elegans to human; MAPK, mitogen-activated protein kinase; NLS,

nuclear localization signal; N-TAD, N-terminal transactivation domain; PI3K, phosphatidylinositol

3-kinase; pVHL, protein VHL; ROS, reactive oxygen species.
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angiogenesis is also involved in inflam-
mation and cancer. A myriad of angio-
genic factors are involved in the
angiogenic response of various tissues
(Bouis et al., 2006; Laquer et al., 2009;
Nguyen et al., 2009). Among these
factors, HIF-1a has a critical role by
regulating angiogenesis through the
modulation of several key factors, such
as VEGF-A, fibroblast growth factor-2
(Calvani et al., 2006; Black et al.,
2008), or the VEGF receptors (VEGFR1,
2, and 3; Gerber et al., 1997). More-
over, inducible nitric oxide synthase,
an enzyme producing nitric oxide (NO)
that induces cutaneous vasodilatation
in response to local heat, injury, or
hypoxia (Harbrecht, 2006; Houghton
et al., 2006), is a target of HIF-1a
(Melillo et al., 1995).

HIF-1a in cutaneous vascular blood flow

Cutaneous blood flow is regulated by
vasodilation and vasoconstriction of
blood vessels close to the skin surface,
and it controls physiological para-
meters such as body heat (Minson,
2003; Charkoudian, 2010), as well
as ions, water, and gas exchange
across the skin (Christensen, 1975;
Mahany and Parsons, 1978; Malvin
and Hlastala, 1989; Gniadecka et al.,
1998). Both neuronal and hormonal
regulations of cutaneous vasculature
are involved in cutaneous blood flow
(Langley, 1911; Krogh et al., 1922;
Smith, 1976). Overproduction of the
HIF-1a target gene VEGF in keratino-
cytes induces the formation of leaky
blood vessels and skin ulcerations
(Larcher et al., 1998; Thurston et al.,
1999), whereas overexpression of sta-
bilized HIF-1a itself in keratinocytes
expands skin dermal vasculature with-
out any vascular leakage, edema, or
inflammation phenotype (Elson et al.,
2001; Kim et al., 2006). Furthermore,
an increased number of dilated blood
vessels have been observed in these
mice (Elson et al., 2001). These data
indicate an important regulatory effect
of HIF-1a expression in keratinocytes
upon cutaneous blood vessel growth
and dilation.

HIF-1a in wound healing

Wound healing, a well-defined cas-
cade of events activated following

Table 2. HIF-1a target genes with an important function in skin physiology
Major effects Genes Reference

Cutaneous angiogenesis

Re-epithelialization, granulation tissue
formation, and ECM synthesis and remodeling

VEGF Forsythe et al. 1996; Liu et al. 1995

PLGL Kelly et al. 2003; Patel et al. 2005

PDGF Kelly et al. 2003; Patel et al. 2005

TGF-b3 Nishi et al. 2004a

CTGF Higgins et al. 2004

IGFBP-1 Tazuke et al. 1998

SDF-1 Ceradini et al. 2004

Vascular tone iNOS Melillo et al. 1995

HO Lee et al. 1997

ET1 Hu et al. 1998

ECM metabolism PAI-1 Fink et al. 2002

Lysyl oxidase Erler et al. 2006

Collagen prolyl-4 hydroxylase Takahashi et al. 2000

Cell proliferation, motility, and migration Integrin-b1 Keely et al. 2009

Laminin-332 Fitsialos et al. 2008

Skin tumorigenesis

DNA repair XPC Rezvani et al. 2010a

XPD Rezvani et al. 2010a

CSB Filippi et al. 2008; Rezvani et al. 2010a

MSH-2 Koshiji et al. 2005

Cell growth/apoptosis BNIP3 Bruick, 2000; Kothari et al. 2003

Noxa Kim et al. 2004

MCL-1 Piret et al. 2005

Tert Nishi et al. 2004b; Yatabe et al. 2004

Metabolism GLUT1 Ebert et al. 1995; Okino et al. 1998

HK1 Roth et al. 2004

PFKFB3 Fukasawa et al. 2004; Obach et al. 2004

Phosphoglycerate kinase-1 Semenza et al. 1994

Lactate dehydrogenase A Firth et al. 1995

ENO1 Semenza et al. 1996

GAPDH Graven et al. 1999; Lu et al. 2002

Xenobiotic transporter MDR1 Comerford et al. 2002

Others

Hematopoiesis and melanogenesis SCF Bosch-Marce et al. 2007

Protooncogene, re-epithelialization, and
melanogenesis

C-MET (HGFR) Choi et al. 2004; Pennacchietti et al. 2003

Abbreviations: BNIP3, BCL2/adenovirus E1B 19-kDa-interacting protein; CSB, Cockayne syndrome
B; CTGF, connective tissue growth factor; ECM, extracellular matrix; ENO1, enolase-1; ET1,
endothelin-1; GAPDH, glyceraldehyde phosphate dehydrogenase; GLUT1, glucose transporter-1;
HGFR, hepatocyte growth factor receptor; HIF, hypoxia-inducible factor; HK1, hexose kinase-1; HO,
heme oxygenase; IGFBP-1, IGF-binding protein-1; iNOS, inducible nitric oxide synthase; MCL-1,
myeloid cell leukemia sequence-1; MDR1, multidrug resistance-1; MSH, melanocyte-stimulating
hormone; PAI-1, plasminogen activator inhibitor-1; PDGF, platelet-derived growth factor; PFKFB3, 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphate-3; PLGL, placental growth factor; SCF, stem cell
factor; SDF-1, stromal cell-derived factor-1; Tert, telomerase reverse transcriptase; TGF-b3,
transforming growth factor-b3; VEGF, vascular endothelial growth factor; XPC, xeroderma
pigmentosum C; XPD, xeroderma pigmentosum D.
Only those genes were included in which binding of HIF-1a to the target DNA sequence in a DNA-
binding assay or functional transactivation of reporter gene expression have been reported.
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cutaneous injury to seal the skin defect,
is an interactive process involving
soluble mediators, blood cells, ECM,
and parenchymal cells (Singer and
Clark, 1999; Barrientos et al., 2008).

Following acute injury, the micro-
environment of the skin wound be-
comes more hypoxic due to vascular
disruption and high oxygen consump-
tion by cells at the edge of the wound
(Hunt et al., 1972; Niinikoski et al.,
1972; Varghese et al., 1986). This acute
hypoxia, which has a positive role in
early skin wound healing, is gradually
normalized following neovasculariza-
tion and completion of wound healing
(Tandara and Mustoe, 2004). One of
the mechanisms underlying the bene-
ficial effects of acute hypoxia on
improvement of the wound healing
process could be increased HIF-1a
expression (Elson et al., 2000; Albina
et al., 2001). In support of the positive
role of HIF-1a in wound healing
improvement, Loh et al. (2009) demon-
strated impaired wound healing con-
comitant to decreased HIF-1a in ageing
mice. Moreover, using an epidermal
HIF-1a-deficient mice model, we have
recently found that loss of HIF-1a in
keratinocytes results in a significant
delay in wound healing in aged mice
(Figure 3a; unpublished data). In fact,
HIF-1a could affect the wound healing
process in many ways (Figure 3b):

(i) HIF-1a is known to activate
many angiogenic factors (growth
factors, chemokines, and cyto-
kines) at the transcriptional le-
vel, including VEGF, placental
growth factor, angiopoietins 1
and 2, platelet-derived growth
factor-B, stromal cell-derived
factor-1, transforming growth
factor-b, and stem cell factor
within various cells involved in
wound healing (Forsythe et al.,
1996; Kelly et al., 2003;
Ceradini et al., 2004; Tandara
and Mustoe, 2004; Tang et al.,
2004; Patel et al., 2005; Bosch-
Marce et al., 2007; Simon et al.,
2008). These angiogenic factors
bind to cognate receptors (e.g.,
VEGFR1/VEGFR2/VEGFR3, pla-
telet-derived growth factor re-
ceptor-a/b, C-X-C chemokine

receptor type 4, and C-KIT),
which are expressed on the sur-
face of vascular endothelial cells
and vascular pericytes/smooth
muscle cells. Receptor–ligand
interaction activates these cells
and promotes the formation of
new capillaries from existing
vessels. In agreement, gene ther-
apy by overexpression of HIF-1a
has recently been found to im-
prove wound healing in diabetic
mice (Mace et al., 2007; Botusan
et al., 2008; Liu et al., 2008).

(ii) Besides activation of cells in
existing vessels, HIF-1a could
promote angiogenesis and vas-
cular remodeling in wound heal-
ing by mobilizing angiogenic
cells from distant sites (including
bone marrow and pericytes
and endothelial cells from other
tissues) to home to the wound
(Ceradini et al., 2004; Bosch-
Marce et al., 2007; Chang
et al., 2007; Sarkar et al., 2009).
Expression of a constitutively
active form of HIF-1a in mouse
skin is sufficient to mobilize
circulating angiogenic cells and
to improve healing of wounds in
diabetic mice (Liu et al., 2008).
By contrast, decreased expres-
sion of HIF-1a in HIF-1a hetero-
zygous-null mice is associated
with impaired recruitment of
circulating angiogenic cells to
the wound and deficiency of
wound vascularization and heal-
ing (Zhang et al., 2010).

(iii) HIF-1a could improve wound
healing by affecting skin cell
motility and proliferation, which
are essential factors in the re-
epithelialization phase. HIF-1a
was found to promote human
dermal fibroblast and keratino-
cyte migration, both in vitro
and in vivo, through addressing
the intracellular heat shock pro-
tein-90a into the extracellular
environment (Li et al., 2007;
Woodley et al., 2009). HIF-1a
has been shown to modulate cell
motility and migration by regu-
lating the expression of ECM
proteins and their receptors.
Laminin-332, one of the major

keratinocyte-secreted ECM pro-
tein involved in cell migration
during wound healing (Ryan
et al., 1994; Nguyen et al.,
2000), has been found to be
regulated by HIF-1a (Fitsialos
et al., 2008). Interaction of lami-
nin-332 with its receptors (integ-
rins-a3b1 and -a6b4), activates
signaling pathways that sub-
sequently promote proliferation,
survival, and migration of
keratinocytes (Rousselle and
Aumailley, 1994; Murgia et al.,
1998; Nguyen et al., 2000;
Nikolopoulos et al., 2005). The
effect of HIF-1a on epithelial cell
adhesion and migration could go
beyond its effect on laminin-332
expression. HIF-1a has also
been shown to regulate the
expression of integrin-b1 (Keely
et al., 2009) as well as that
of various metalloproteinases
(Semenza, 2003; Shyu et al.,
2007; Lee et al., 2010). Finally,
HIF-1a functions as an upstream
player in the p21-mediated
growth arrest of keratinocytes
(Cho et al., 2008), suggesting a
role in the regulation of kerati-
nocyte proliferation.

ROLE OF HIF-1a IN UV RESPONSE
AND SKIN TUMORIGENESIS
HIF-1a and keratinocyte responses to UV
irradiation

Solar UVB radiation is the primary
environmental risk factor responsible
for the induction of skin cancers,
including basal cell carcinoma, squa-
mous cell carcinoma (SCC), and mela-
noma. A major deleterious effect of
UVB is the induction of well-defined
structural alterations in DNA (Ravanat
et al., 2001). UVB-induced DNA dam-
age sets in motion a highly complex
well-coordinated series of responses
whereby DNA damage and stalled
replication forks can be detected. This,
in turn, can trigger DNA repair, cell
cycle delay, or apoptosis (Latonen and
Laiho, 2005). The ultimate fate of cells
with damaged DNA is dependent on the
type and extent of damage, DNA repair
capacity, and UVB-induced apoptotic
signaling pathways (Kulms and Schwarz,
2002; Assefa et al., 2005).
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We and others have shown that
HIF-1a expression is modulated after
UVB exposure and that HIF-1a has
an important role in the regulation of
cellular responses to this type of geno-
toxic stress (Rezvani et al., 2007; Turchi
et al., 2008; Wunderlich et al., 2008).
UVB induces ROS, which in turn have a
biphasic effect on HIF-1a expression.
Whereas rapidly produced cytoplasmic
ROS downregulate HIF-1a expression,
delayed mitochondrial ROS production
results in its upregulation (Rezvani et al.,
2007). It is likely that spatiotemporal

repression and activation of HIF-1a has a
substantial influence on the regulation of
keratinocyte responses to UVB irradia-
tion. In fact, downregulation of HIF-1a
protein expression immediately after
UVB irradiation has been found to be
regulated at the translational level and to
be important to release keratinocytes
from UVB-induced cell cycle arrest
(Cho et al., 2009). Late HIF-1a upregula-
tion, which is regulated by mitogen-
activated protein kinase (Rezvani et al.,
2007; Nys et al., 2010), phosphatidyli-
nositol 3-kinase/AKT (Wunderlich et al.,

2008), and/or ATF3 (Turchi et al., 2008),
has a proapoptotic effect in UVB-irra-
diated keratinocytes (Rezvani et al.,
2007; Turchi et al., 2008; Nys et al.,
2010) through upregulation of proapop-
totic genes (such as Noxa, BCL2/adeno-
virus E1B 19-kDa-interacting protein
(BNIP3), or tumor necrosis factor-related
apoptosis-inducing ligand (Turchi et al.,
2008; Nys et al., 2010) and interaction
with p53 (Rezvani et al., 2007). Affecting
DNA repair efficiency is the other means
by which HIF-1a can modulate kerati-
nocyte responses to UVB (Rezvani et al.,

HIF-1α-proficient mice HIF-1α-deficient mice

Wild type

2 6 10

Time after biopsy (days)

14

K14-Cre/HIF-1αflox/flox

CAC homing to
wound site

Neovasculature

EPCs
hematopoietic

stem–progenitor cells
mesenchymal

stem cells
Bone marrow-derived

myeloid cells

Limited
neovasculogenesis

Limited
CAC homing

Limited cell motility
and proliferation

MacrophageMyofibroblast

CACs

Figure 3. Role of hypoxia-inducible factor-1a (HIF-1a) in wound healing. (a) Wound healing is delayed in K14-Cre/HIF-1aflox/flox-aged mice. Wound

healing assay was performed using standardized 8-mm biopsies on the back of the mice. As compared with control wild-type mice, there was a significant

impairment of wound healing in K14-Cre/HIF-1aflox/flox mice. The time course of wound healing in two representative wild-type and HIF-1a-deficient mice

shows dramatic impairment of skin regeneration in the absence of HIF-1a expression in keratinocytes. (b) A model outlining the effects of HIF-1a in

wound healing. The acute wound healing process is derived through interaction among keratinocytes, fibroblasts, endothelial cells, and macrophages. During

wound healing, in HIF-1a-proficient mice (left), numerous chemokines released from keratinocytes, such as vascular endothelial growth factor and stromal

cell-derived factor-1, trigger the mobilization of circulating angiogenic cells (CACs) at the wound site. In mice with depletion of HIF-1a in keratinocytes (right),

the mobilization of CACs and consequently neovascularization are impaired, resulting in limited wound healing. For more explanations, see the text.

EPC, endothelial progenitor cell.
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2010a). Biphasic variation of HIF-1a
upon exposure of keratinocytes to UVB
was also found to regulate the removal
rate of 6–4 photoproducts and cyclobu-
tane pyrimidine dimers, the most fre-
quent types of UVB-induced lesions
primarily removed by nuclear excision
repair. This study showed that the effect
of HIF-1a on the nuclear excision repair
machinery relies on the transcriptional
regulation of XPC, XPD, XPB, XPG, and
Cockayne syndrome A and B expression
by direct HIF-1a binding to the hypoxia-
response elements of these genes in their
promoter region (Rezvani et al., 2010a).

HIF-1a in skin cancer

The effects of HIF-1a in cancer are
not straightforward. On one hand,
HIF-1a can contribute to solid tumor
progression via multiple mechanisms,
including promotion of angiogenesis,
modulation of metabolism through
regulation of glycolysis flux and oxida-
tive phosphorylation, and inhibition of
apoptosis (Maxwell et al., 1997; Ryan
et al., 2000; Hockel and Vaupel, 2001).
Elevated levels of HIF-1a protein are
often associated with a poor prognosis
in several human cancers (Birner
et al., 2000; Talks et al., 2000; Zhong
et al., 2000; Beasley et al., 2002;
Koukourakis et al., 2002).

On the other hand, in certain cancer
cells, such as renal or lung cancers,
HIF-1a directly and indirectly inhibits
c-Myc function, resulting in either p21-
mediated cell cycle arrest or apoptosis
(Savai et al., 2005; Gordan et al.,
2007). Direct or indirect interaction of
HIF-1a and p53 also contributes to the
regulation of tumor development
(Hammond and Giaccia, 2006). Induc-
tion of the proapoptotic target genes
such as BINP3 may also explain the
tumor suppressor capability of HIF-1a
(Sowter et al., 2001). Considering the
many functions and effects of HIF-1a
(Semenza, 2003), it is likely that its
contribution in tumor progression is
complex and dependent on the cell
origin and status of other activated or
inactivated genes.

HIF-1a expression in non-melanoma skin
cancer

HIF-1a expression has not yet been
studied in basal cell carcinoma, and

little is known about the role of HIF-1a
in skin SCC. HIF-1a gain of function in
keratinocytes results in an increased
number of papillomas, a benign neo-
plasm that sometimes converts to a
premalignant lesion, after chemical
carcinogenesis induction (Scortegagna
et al., 2009). This observation can
partially be explained by HIF-1a over-
expression-mediated increased angio-
genesis, which was documented to be
an early event in papilloma develop-
ment (Bolontrade et al., 1998; Elson
et al., 2001; Scortegagna et al., 2009).
Although these papillomas appear ear-
lier, their proliferation is lower and
their cells are more differentiated,
suggesting suppression of epithelial–-
mesenchymal transition. Furthermore,
conversion of these papillomas to SCCs
is largely inhibited compared with
those formed in control mice (Scorte-
gagna et al., 2009). The effect of HIF-1a
upregulation on SCC differentiation
may be related to HIF-1a-mediated
upregulation of p21, which has a key
role in the onset of keratinocyte growth
arrest and differentiation upon different
stimuli (Missero et al., 1995; Todd and
Reynolds, 1998). Consistently, the in-
tradermal injection of HIF-1a small
interfering RNA was recently found to
diminish p21 expression in rat epider-
mis and to induce skin hyperplasia
(Cho et al., 2008, 2010).

In addition to the role of HIF-1a
in SCC formation, it may have
another role in tumoral invasion for
the following reasons: (1) several an-
giogenic factors, namely, VEGF, fibro-
blast growth factor-2, platelet-derived
growth factor, and angiopoietin are
expressed in SCCs (Czubayko et al.,
1997; Strieth et al., 2000; Hawighorst
et al., 2002; Bran et al., 2009); (2)
HIF-1a regulates the expression of
numerous angiogenic factors and me-
talloproteinases; and (3) VEGF can
increase HIF-1a mRNA translation into
protein via phosphoinositol-3 kinase
and AKT (Semenza, 2000; Kilic et al.,
2006). Consistently, overexpression of
VEGF-A in immortalized keratinocytes
leads to invasive and malignant SCCs
following xenografting into immune-
deficient mice (Lederle et al., 2010),
whereas the metastatic ability of trans-
formed VEGF-null keratinocytes is

completely abolished (Mirones et al.,
2009). Although the incidence and
angiogenic status of chemically in-
duced SCCs in mice overexpressing
the angiogenesis inhibitor endostatin
in keratinocytes is comparable to the
incidence in control mice, both lymph
vessels and lymphatic metastases are
highly reduced in tumors carrying these
keratinocytes, indicating an inhibitory
role for endostatin in the aggressiveness
of the tumor (Brideau et al., 2007).

HIF-1a and melanoma

This cancer has a high propensity to
metastasize early, which results in high
mortality. Alteration of several signal-
ing pathways, such as NRAS, BRAF,
phosphatase and tensin homolog/
phosphatidylinositol 3-kinase/AKT, and
p16/ARF, occurs in melanoma and leads
to acquisition of growth advantages,
resistance to apoptosis, and invasive/
metastatic behavior (Cannon-Albright
et al., 1996; Demunter et al., 2001;
Davies et al., 2002; Stahl et al., 2004).

Constitutive activation of AKT char-
acterizes a high percentage of human
melanomas and is associated with a
poor prognosis. AKT has been shown to
transform melanocytes only when cells
are grown in a hypoxic environment in
an HIF-1a-dependent manner (Bedogni
et al., 2005, 2008). Melanomas harbor-
ing the BRAF mutation, BRAFV600E,
have higher expression of HIF-1a
(Kumar et al., 2007). Enhanced
HIF-1a expression in these melanoma
cells results in a higher cell survival in
hypoxic conditions, suggesting that the
effects of the oncogenic BRAFV600E

mutation may be partially mediated
by the HIF-1a pathway (Kumar et al.,
2007). However, melanocytic nevi, the
pigmented lesions that are usually
quiescent/senescent and rarely progress
to melanoma, also comprise cells with
the BRAFV600E mutation (Garraway
et al., 2005), suggesting that these
melanocytes have to acquire additional
alterations to escape senescence and
become cancerous. Amplification of
microphthalmia-associated transcrip-
tion factor might be one of these
modifications. In fact, microphthal-
mia-associated transcription factor has
been shown to be amplified in a large
number of melanomas containing the
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BRAF mutation (Garraway et al., 2005).
It has been found that microphthalmia-
associated transcription factor can reg-
ulate HIF-1a expression by binding
directly to the HIF-1a promoter, and
that overexpression of HIF-1a has
prosurvival effects on melanoma cells
(Busca et al., 2005).

Besides BRAF and AKT, increased
ROS level, NFkB activation (Kuphal
et al., 2010), and overexpression of
endothelin B receptor (Spinella et al.,
2007) could all result in increased HIF-
1a expression and activity in melano-
mas. An endothelin-mediated increase
in HIF-1a expression can promote
VEGF secretion and matrix metallopro-
teinase activation in melanoma cells,
which in turn affects their invasion
capacity (Spinella et al., 2007). Alto-
gether, these studies suggest a
tumor-promoting effect of HIF-1a in
melanoma.

HIF-1a IN NON-CANCER SKIN
DISORDERS
HIF-1a in microbial infection

In addition to serving as the body’s
outermost protective covering, the skin
protects the body against infectious
diseases by its innate immune re-
sponses, especially the production of
antimicrobial peptides capable of
inactivating many microorganisms
(Boukamp et al., 1988; Ganz, 2002;
Braff and Gallo, 2006). It has been
reported that HIF-1a is upregulated in
the skin upon infection with various
bacterial, viral, fungal, or parasitic
infections both in vitro or in vivo
(Werth et al., 2010). Using a keratino-
cyte-targeted deletion of HIF-1a, it has
been shown that HIF-1a provides pro-
tection against necrotic skin lesions
induced by bacteria via upregulation
of cathelicidin, an antimicrobial pep-
tide coded by the human LL-37 gene
(Peyssonnaux et al., 2008). Interest-
ingly, cathelicidin production is de-
creased in some inflammatory skin
disorders such as atopic dermatitis
(Ong et al., 2002).

HIF-1a in psoriasis
Several lines of evidence suggest
that HIF-1a could have an important
role in psoriasis, a chronic skin
disease characterized by keratinocyte

hyperproliferation, epidermal inflam-
mation, and angiogenesis. In fact,
pivotal angiogenic genes such as VEGF
and its receptors are upregulated in
psoriasis (Detmar et al., 1994). Trans-
genic mice with VEGF upregulation in
keratinocytes show inflammation and
all the hallmarks of psoriasis, suggest-
ing a causative role of VEGF in this
disease (Xia et al., 2003). On the other
hand, transgenic delivery to the skin of
inflammatory mediators, such as tumor
necrosis factor-a or keratinocyte
growth factors like transforming
growth factor-a, did not completely
reproduce the psoriatic phenotype
(Vassar and Fuchs, 1991; Cheng et al.,
1992; Guo et al., 1993; Carroll et al.,
1997; Schon, 1999), suggesting that
VEGF upregulation is an early step in
the pathophysiology of this disease
(Detmar, 2004). HIF-1a has been
found to be upregulated in psoriatic
epidermis, in an expression pattern
similar to VEGF mRNA expression
(Rosenberger et al., 2007; Tovar-
Castillo et al., 2007; Ioannou et al.,
2009), thereby suggesting a possible
application of HIF-1a inhibitors in
the therapy of psoriasis.

HIF-1a in systemic sclerosis and keloids

Apart from infection and psoriasis,
upregulation of HIF-1a has been
reported in systemic sclerosis and
keloids. Systemic sclerosis is character-
ized by microvascular alterations and
excessive fibrosis of the skin and the
internal organs. Activation of HIF-1a in
dermal fibroblasts of systemic sclerosis
patients might contribute to the pro-
gression of skin fibrosis (Hong et al.,
2006; Distler et al., 2007) via upregula-
tion of connective tissue growth factor,
a cytokine expressed by the endothe-
lium and fibroblasts (Hong et al.,
2006). Keloids are skin fibrotic condi-
tions characterized by an excessive
accumulation of ECM components in
response to cutaneous injury. Upregu-
lation of plasminogen activator inhibi-
tor-1 in an HIF-1a-dependent manner
contributes to keloid pathogenesis
(Zhang et al., 2004). Metabolic
analysis of keloid fibroblasts indicated
a bioenergetics similar to that of
most cancer cells, i.e., increased
glycolysis and decreased oxidative

phosphorylation, which might be rela-
ted to increased HIF-1a expression
(Vincent et al., 2008).

In summary, growing evidence
strongly supports an important role of
HIF-1a signaling in non-cancer skin
pathophysiology, although the detailed
mechanistic aspects and therapeutic
applications remain relatively unex-
plored.

CONCLUSION AND PERSPECTIVES
Although fetal skin develops in a liquid
milieu, adult epidermis is in contact
with the atmospheric oxygen and its
oxygenation depends heavily on atmo-
spheric oxygen (Stucker et al., 2002).
Thus, the skin faces dramatically differ-
ent environments between the fetal and
neonatal periods. It is well known that
skin barrier maturation is important
immediately after birth in humans and
that premature babies can be oxyge-
nated through the skin (Fluhr et al.,
2010). Considering the functions of
HIF-1a, its role could be crucial in the
context of neonatal adaptation to atmo-
spheric conditions to increase the
maturation of the epidermal barrier
as well as to adapt neonatal dermal
vascularization. Some of the HIF-1a-
regulated genes such as XPD (Rezvani
et al., 2010a) are involved in the
transcriptional machinery, and their
mutation can affect epidermal differ-
entiation, which manifests at birth with
a collodion membrane engaging the
skin, as noted in the disease trichothio-
dystrophy (Morice-Picard et al., 2009;
Rezvani et al., 2010b).

Besides the neonatal period, it is
likely that HIF-1a has an important role
in the regulation of physiological
skin responses to different stressors.
By affecting the expression of various
key cutaneous genes, HIF-1a regulates
cutaneous angiogenesis, controls in-
flammatory and innate immune re-
sponses, modulates skin responses to
sunlight by affecting the DNA repair
machinery, apoptosis, and lastly the
tumorigenic processes. Thus, its impor-
tance in dermatology deserves closer
attention.
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