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AN ELEMENTARY GEOMETRIC PROOF OF TWO 
THEOREMS OF THOM 

SANDRO BUONCRISTIANO and DEREK HACON 

§l. STIEFJZL WHITNEY NUMBERS 

Notation. All manifolds will be smooth, unoriented; H,( -), H*( -) Z,-homology 
and cohomology; [M] either bordism class of M or homology fundamental class, 
depending on the context; rM classifying map of the stable tangent bundle of M. = 
isomorphism or diffeomorphism depending on the context. Ll disjoint union. 

THEOREM A (Thorn). If (T~)*[M] = 0 then M bounds. 

Proof. The theorem is trivially true for n = 1. So let n > 1 and assume the theorem 
for dimensions < n. Let M be a closed n-manifold such that (T~)*[M] = 0. Let X be 
the Grassman manifold of K-planes in RKcL (K,L large) and Xk the k-skeleton 
consisting of all Schubert cells of dimension < k. (X-l = empty set.) 

Step 1. After a homotopy we may assume TV: M + X”. After a further homotopy 
in X”, we may assume 7M is smoothly t-regular to the center d of each n-cell e of X”. 
Now H,(X”) 2 H,(X) by inclusion and (T~)*[M] = 0 in I&(X”) since it is zero in 

K(X). 

Thus ~~~‘(6) consists of an even number of points for each e. An obvious surgery 
now produces a bordism between 7M and fr: MI -+X”-‘. 

Step 2. Suppose that F: Q + X is a bordism between f: N + X and TM: M + X 
with f(N) c Xk and 0 < k < n. After a homotopy in Xk, we may assume f is t-regular 
to 6 for each k-cell e of X. 

Claim. V = f-‘(e) bounds. 

Notice that V is framed in N so the claim implies that f (and hence rM) is bordant 
to f’: N’ -+ X with f’(N’) c Xk-‘, by a surgery which replaces the projection Dk x V+ 
D“ by the projection JD” x W + 8Dk (Dk is a small k-disk in e, center I?; 8W = V). 

Proof of claim. dim V = n - k < n. By Theorem A for dimension n - k, it suffices 
to show that (T%w, [VI) = 0 for all w E Hnmk(X). Now observe that 

(1) 7v = TN 0 j, where j: V c N, since V is framed in N. 
(2) j*[ V] = f*A fl [N], where A E Hk(Xk) takes the value 1 on e and zero on all 

other k-cells of X. 
(3) (iM)*[M] = (i,),[N] (because aQ = MLIN) where iM: M c Q, iN: N G Q. 

Then 

(7%~~ [ VI) ; (dw, i*[ VI) ; (7%~~ f *A n [Nl) = (6%’ U f *A, [Nl) 

= (TOW U F*A, (&)*[N]) ; (TOW U F*A, (iM)*[M]) = (~$4’ U T,%, [Ml) 

= (w U A, (T~)*[M]) = 0. 
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Step 3. By iterating Step 2 we obtain a bordism F: Q +X between rM and 
f: N +X where f(N) = point. Since the pair BO(K), BO(n + 1) is (n f l)-connected 
(K 2 n + 1) we may assume that F: Q-BO(n + 1) and F(M = TV, F(N) = point. 

Step 4. F pulls back an (n + I)-disk bundle ,$ which restricts to (the disk bundle 
of) T,,, over M and to a trivial bundle E ,,, over N. Let S(t), S(T~), S(+) be the 
associated sphere bundles, and A(5), etc. the fibrewise antipodal involution on 5 etc. 
Consider U = M x M x [- 1, l] with involution T(x, y, t) = (y, x, - t). This has fixed 
point set F = {(x, x,0$x E M}. We may identify T in a neighbourhood, R, of F in W 
with the antipodal involution on 7 M. Now remove the interior of R from U and attach 
S(t), by identifying aR and S(T,+,), to obtain a smooth manifold W with 8W = 
aULlS(e,) and involution T, which, on aW, restricts to T(x, y, k 1) = (y, x, i 1) and 
Am. The double cover W+ W/T is classified by a map cp: W/T+p4 (P” a pro- 
jective space, 4 large). Its restriction to au/T is trivial and its restriction to S(q.,)IT 
may be identified with Zd, x g (where g: S” +P” is the usual double cover). Now g is 
classified by the inclusion P” C P4 so the restriction of cp to S(E~)/T can be identified 
with projection N x $” +$” C p4. Let Pq-” be a projective space in Pq meeting P” 
transversely in one point. After a homotopy of IJJ we may assume that cp\a(W/T) is 
transverse to Pq-” with inverse image N (in particular &al-J/T) does not meet Pq-“). Now 
make cp t-regular to P4-” keeping cp fixed on a( W/T). Then &P-~(P~-“) 3 N, so N (and 
hence M) bounds, as required. This completes the proof of Theorem A. 

§2. STEENROD REPRESENTATION 

THEOREM B (Thorn). Any Z2-homology class is representable by a smooth manifold. 

Proof. Let X be a finite simplicial complex and Xk its k-skeleton. If f: N + Xk is 

smoothly t-regular to the center a of each k-simplex A of X, define C(f) = 2 A@[ VI, 

where the coefficient [V] is the bordism class of V = f-‘(A). If f bounds in Xk then 
C(f) = 0, by relative transversality. 

LEMMA 1. Zf C = E B@[ W,] is a simplicial (k + 1)-chain then there exists a 
B 

manifold Q and a map G: Q +Xk+’ with K = C(G IaQ). 

Proof. Let Ds be a (k + I)-disk in B, center & of small radius. Let pe: Ds, aD, -+ 
B, JB be the obvious radial map. Let Gg: DB x W, +Xk+’ be projection followed by 
pB and take G: Q -+ Xk+r to be Ll Ge. 

LEMMA 2. C(f) is a cycle. 

Proof. Let W, = f-‘(B) for each k-simplex B. After a homotopy, we may identify 
f near f-‘(IID,) with G (notation as in Lemma 1, with k + 1 replaced by k), and assume 
that G\aQ bounds in Xk-’ so that C(G\JQ) = 0. But g-‘(A) = BgA W,. Thus aC(f) = 

C(G]aQ) = 0. 

COROLLARY. Zf C(f) is homologous to zero then f is bordant in Xk” to g where 
g(N) C Xk-‘. 
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Suppose now that z is a simplicial (n + 1)-cycle in X. Lemma 2 may be applied to 
produce a map F: Q, aQ+X”“, X” with C(FlaQ) = az = 0. (Here W, = point.) To 
complete the proof of the theorem we need 

LEMMA. If F: Q, dQ+X”+‘, Xk (k < n) then C(FI8Q) is homologous to zero. 

Proof. Write N = aQ and f = FIN. By Theorem A choose a Z,-basis {[V,]} for the 
bordism group of (n - k)-manifolds and let {We} be dual to these in Hnmk(BO) (i.e. 

(r*v,w&, [ VAI) = K ronecker 6hlr). We have C(f) = E A@ [V] = C,C,@ [V,] where C, = 
A 

E (T$w~, [ V])A, a cycle in Xk. 
A 

Claim 1. f*(rzw* n [N]) = the class of C, in Hk(X). 

Proof. f factors through a map fi N --) Xk. Therefore it suffices to prove f*(rEwA fl 
[N]) = class of C, in &(Xk). To do this, define, for any A, A E Hk) by the 
simplicial cocycle which takes the value 1 on A and 0 elsewhere. Then, by trans 
versality of f, j*[ V] = PA n [N] where j: V 5 N. Thus 

(A, f&*Nw f-~ iNI)) = (?+A U T*NWA> [Nl) 

= (++‘A, PA n [Nl) = (r%‘~, i*[ v]) 

= (T$w~, [VI) as required. 

Claim 2. f*(7*Nwn n [N]) = 0 in &(X). 

Proof. Let (Y E Hk(X). Then ((Y, f*(T%W* fl [Nl)) 

= f*a U T;WA, [Nl) 

= (F*cy U TOWS, (&)*[N]) = 0 since (i,.,)*[N] = 0 

(where iN: N C Q). Thus fQ(T$wA fl [N]) = 0. This completes the proof of the lemma. 

Therefore by Lemma 2, f is bordant, in Xk+‘, to f’: N’+ Xk-‘: Starting from 
F: Q, aQ --) X”+‘, X” representing z, as above, we iterate the lemma to obtain 
F: Q, aQ -+ Xn+l, X-‘, i.e. a closed manifold representing z. This proves Theorem B. 

Remark. In the important special case when M is stably parallelizable, the 
argument of Step 4 in Theorem A gives a geometric proof that M bounds. 
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