Topology Vol. 20, pp. 97-99 © Pergamon Press Ltd., 1981. Printed in Great Britain 0040-9383/81/0301-0097/\$02.00/0

AN ELEMENTARY GEOMETRIC PROOF OF TWO THEOREMS OF THOM

SANDRO BUONCRISTIANO and DEREK HACON

§1. STIEFEL WHITNEY NUMBERS

Notation. All manifolds will be smooth, unoriented; $H_*(-)$, $H^*(-) \mathbb{Z}_2$ -homology and cohomology; [M] either bordism class of M or homology fundamental class, depending on the context; τ_M classifying map of the stable tangent bundle of $M \approx$ isomorphism or diffeomorphism depending on the context. Il disjoint union.

THEOREM A (Thom). If $(\tau_M)_*[M] = 0$ then M bounds.

Proof. The theorem is trivially true for n = 1. So let n > 1 and assume the theorem for dimensions < n. Let M be a closed n-manifold such that $(\tau_M)_*[M] = 0$. Let X be the Grassman manifold of K-planes in \mathbb{R}^{K+L} (K,L large) and X^k the k-skeleton consisting of all Schubert cells of dimension $\leq k$. ($X^{-1} = \text{empty set.}$)

Step 1. After a homotopy we may assume $\tau_M: M \to X^n$. After a further homotopy in X^n , we may assume τ_M is smoothly *t*-regular to the center \hat{e} of each *n*-cell *e* of X^n . Now $H_n(X^n) \cong H_n(X)$ by inclusion and $(\tau_M)_*[M] = 0$ in $H_n(X^n)$ since it is zero in $H_n(X)$.

Thus $\tau_M^{-1}(\hat{e})$ consists of an even number of points for each e. An obvious surgery now produces a bordism between τ_M and $f_1: M_1 \to X^{n-1}$.

Step 2. Suppose that $F: Q \to X$ is a bordism between $f: N \to X$ and $\tau_M: M \to X$ with $f(N) \subseteq X^k$ and 0 < k < n. After a homotopy in X^k , we may assume f is t-regular to \hat{e} for each k-cell e of X.

Claim. $V = f^{-1}(\hat{e})$ bounds.

Notice that V is framed in N so the claim implies that f (and hence τ_M) is bordant to $f': N' \to X$ with $f'(N') \subseteq X^{k-1}$, by a surgery which replaces the projection $D^k \times V \to D^k$ by the projection $\partial D^k \times W \to \partial D^k$ (D^k is a small k-disk in e, center \hat{e} ; $\partial W = V$).

Proof of claim. dim V = n - k < n. By Theorem A for dimension n - k, it suffices to show that $\langle \tau_V^* w, [V] \rangle = 0$ for all $w \in H^{n-k}(X)$. Now observe that

(1) $\tau_V = \tau_N \circ j$, where $j: V \subseteq N$, since V is framed in N.

(2) $j_*[V] = f^* \Delta \cap [N]$, where $\Delta \in H^k(X^k)$ takes the value 1 on *e* and zero on all other *k*-cells of *X*.

(3) $(i_M)_*[M] = (i_N)_*[N]$ (because $\partial Q = M \amalg N$) where $i_M \colon M \subseteq Q$, $i_N \colon N \subseteq Q$. Then

$$\langle \tau_V^* w, [V] \rangle = \langle \tau_N^* w, j_*[V] \rangle = \langle \tau_N^* w, f^* \Delta \cap [N] \rangle = \langle \tau_N^* w \cup f^* \Delta, [N] \rangle$$

$$= \langle \tau_Q^* w \cup F^* \Delta, (i_N)_*[N] \rangle = \langle \tau_Q^* w \cup F^* \Delta, (i_M)_*[M] \rangle = \langle \tau_M^* w \cup \tau_M^* \Delta, [M] \rangle$$

$$= \langle w \cup \Delta, (\tau_M)_*[M] \rangle = 0.$$

Step 3. By iterating Step 2 we obtain a bordism $F: Q \to X$ between τ_M and $f: N \to X$ where f(N) = point. Since the pair BO(K), BO(n+1) is (n+1)-connected $(K \ge n+1)$ we may assume that $F: Q \to BO(n+1)$ and $F|M = \tau_M$, F(N) = point.

Step 4. F pulls back an (n + 1)-disk bundle ξ which restricts to (the disk bundle of) τ_M over M and to a trivial bundle ϵ_N over N. Let $S(\xi)$, $S(\tau_M)$, $S(\epsilon_N)$ be the associated sphere bundles, and $A(\xi)$, etc. the fibrewise antipodal involution on ξ etc. Consider $U = M \times M \times [-1, 1]$ with involution T(x, y, t) = (y, x, -t). This has fixed point set $F = \{(x, x, 0) | x \in M\}$. We may identify T in a neighbourhood, R, of F in W with the antipodal involution on τ_{M} . Now remove the interior of R from U and attach $S(\xi)$, by identifying ∂R and $S(\tau_M)$, to obtain a smooth manifold W with $\partial W =$ $\partial U \parallel S(\epsilon_N)$ and involution T, which, on ∂W , restricts to $T(x, y, \pm 1) = (y, x, \pm 1)$ and $A(\epsilon_N)$. The double cover $W \to W/T$ is classified by a map $\varphi: W/T \to \mathbb{P}^4$ (\mathbb{P}^4 a projective space, q large). Its restriction to $\partial U/T$ is trivial and its restriction to $S(\epsilon_N)/T$ may be identified with $Id_N \times g$ (where $g: S^n \to \mathbb{P}^n$ is the usual double cover). Now g is classified by the inclusion $\mathbb{P}^n \subseteq \mathbb{P}^q$ so the restriction of φ to $S(\epsilon_N)/T$ can be identified with projection $N \times \mathbb{P}^n \to \mathbb{P}^n \subseteq \mathbb{P}^q$. Let \mathbb{P}^{q-n} be a projective space in \mathbb{P}^q meeting \mathbb{P}^n transversely in one point. After a homotopy of φ we may assume that $\varphi \setminus \partial(W/T)$ is transverse to \mathbb{P}^{q-n} with inverse image N (in particular $\varphi(\partial U/T)$ does not meet \mathbb{P}^{q-n}). Now make φ t-regular to \mathbb{P}^{q-n} keeping φ fixed on $\partial(W/T)$. Then $\partial \varphi^{-1}(\mathbb{P}^{q-n}) \cong N$, so N (and hence M) bounds, as required. This completes the proof of Theorem A.

§2. STEENROD REPRESENTATION

THEOREM B (Thom). Any \mathbb{Z}_2 -homology class is representable by a smooth manifold.

Proof. Let X be a finite simplicial complex and X^k its k-skeleton. If $f: N \to X^k$ is smoothly t-regular to the center \hat{A} of each k-simplex A of X, define $C(f) = \sum_{A} A \otimes [V]$, where the coefficient [V] is the bordism class of $V = f^{-1}(\hat{A})$. If f bounds in X^k then C(f) = 0, by relative transversality.

LEMMA 1. If $C = \sum_{B} B \otimes [W_{B}]$ is a simplicial (k + 1)-chain then there exists a manifold Q and a map $G: Q \to X^{k+1}$ with $\partial C = C(G | \partial Q)$.

Proof. Let D_B be a (k + 1)-disk in B, center \hat{B} , of small radius. Let $p_B: D_B, \partial D_B \rightarrow B$, ∂B be the obvious radial map. Let $G_B: D_B \times W_B \rightarrow X^{k+1}$ be projection followed by p_B and take $G: Q \rightarrow X^{k+1}$ to be $\coprod G_B$.

LEMMA 2. C(f) is a cycle.

Proof. Let $W_B = f^{-1}(\hat{B})$ for each k-simplex B. After a homotopy, we may identify f near $f^{-1}(\coprod D_B)$ with G (notation as in Lemma 1, with k + 1 replaced by k), and assume that $G \setminus \partial Q$ bounds in X^{k-1} so that $C(G \setminus \partial Q) = 0$. But $g^{-1}(\hat{A}) \cong \coprod_{B > A} W_B$. Thus $\partial C(f) = C(G \mid \partial Q) = 0$.

COROLLARY. If C(f) is homologous to zero then f is bordant in X^{k+1} to g where $g(N) \subseteq X^{k-1}$.

Suppose now that z is a simplicial (n + 1)-cycle in X. Lemma 2 may be applied to produce a map $F: Q, \partial Q \to X^{n+1}, X^n$ with $C(F|\partial Q) = \partial z = 0$. (Here W_B = point.) To complete the proof of the theorem we need

LEMMA. If $F: Q, \partial Q \to X^{n+1}, X^k$ (k < n) then $C(F|\partial Q)$ is homologous to zero.

Proof. Write $N = \partial Q$ and f = F|N. By Theorem A choose a \mathbb{Z}_2 -basis $\{[V_{\lambda}]\}$ for the bordism group of (n-k)-manifolds and let $\{w_{\lambda}\}$ be dual to these in $H^{n-k}(BO)$ (i.e. $\langle \tau_{V_{\lambda}}^* w_{\mu}, [V_{\lambda}] \rangle =$ Kronecker $\delta_{\lambda\mu}$). We have $C(f) = \sum_{A} A \otimes [V] = \sum_{\lambda} C_{\lambda} \otimes [V_{\lambda}]$ where $C_{\lambda} = \sum_{A} \langle \tau_{V}^* w_{\lambda}, [V] \rangle A$, a cycle in X^k .

Claim 1. $f_*(\tau_N^* w_\lambda \cap [N]) =$ the class of C_λ in $H_k(X)$.

Proof. f factors through a map $\tilde{f}: N \to X^k$. Therefore it suffices to prove $\tilde{f}_*(\tau_N^* w_\lambda \cap [N]) = \text{class of } C_\lambda$ in $H_k(X^k)$. To do this, define, for any $A, \ \Delta \in H^k$) by the simplicial cocycle which takes the value 1 on A and 0 elsewhere. Then, by trans versality of $f, j_*[V] = \tilde{f}^* \Delta \cap [N]$ where $j: V \subseteq N$. Thus

$$\begin{split} \langle \Delta, \tilde{f}_*(\tau_N^* w_\lambda \cap [N]) \rangle &= \langle \tilde{f}^* \Delta \cup \tau_N^* w_\lambda, [N] \rangle \\ &= \langle \tau_N^* w_\lambda, \tilde{f}^* \Delta \cap [N] \rangle = \langle \tau_N^* w_\lambda, j_*[V] \rangle \\ &= \langle \tau_V^* w_\lambda, [V] \rangle \text{ as required.} \end{split}$$

Claim 2. $f_*(\tau_N^* w_\lambda \cap [N]) = 0$ in $H_k(X)$.

Proof. Let $\alpha \in H^k(X)$. Then $\langle \alpha, f_*(\tau_N^* w_\lambda \cap [N]) \rangle$

$$= f^* \alpha \cup \tau_N^* w_{\lambda}, [N] \rangle$$
$$= \langle F^* \alpha \cup \tau_Q^* w_{\lambda}, (i_N)_* [N] \rangle = 0 \text{ since } (i_N)_* [N] = 0$$

(where $i_N: N \subseteq Q$). Thus $f_*(\tau_N^* w_\lambda \cap [N]) = 0$. This completes the proof of the lemma.

Therefore by Lemma 2, f is bordant, in X^{k+1} , to $f': N' \to X^{k-1}$. Starting from F: Q, $\partial Q \to X^{n+1}$, X^n representing z, as above, we iterate the lemma to obtain F: Q, $\partial Q \to X^{n+1}$, X^{-1} , i.e. a closed manifold representing z. This proves Theorem B.

Remark. In the important special case when M is stably parallelizable, the argument of Step 4 in Theorem A gives a geometric proof that M bounds.

Istituto Matematico "R. Caccioppoli" Università di Napoli and Department of Mathematics University of Manchester Manchester England