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Abstract--A general approach for queuing systems in a fuzzy environment is proposed based on 
Zadeh's extension principle, the possibility concept and fuzzy Markov chains. To illustrate the approach, 
analytical results for M/F/! and FM/FM/I systems are presented. Fuzzy queues are much more realistic 
than the commonly used crisp queues in many practical situations. A simple numerical example is also 
presented. 

I N T R O D U C T I O N  

Although Poisson arrival in a queuing system is a fairly reasonable assumption, the service rate 
is really more possibilistic than probabilistic. Furthermore, in many practical situations, the 
parameters 2 and # in the M/M/1 or M/D/1 system are frequently fuzzy and cannot be expressed 
in exact terms. Thus, linguistic expressions for these parameters, such as "the mean arrival rate 
is approx. 5" and "the mean service rate is approx. 10" are much more realistic under these 
circumstances. 

This paper outlines a general approach for a queuing system in a fuzzy environment. 
To illustrate the approach, two typical fuzzy queues denoted by M/F/1 and FM/FM/1 are 
investigated. The former represents a queue with exponential interarrival time and fuzzy service 
rate while the latter represents a queue with fuzzified exponential arrivals and service rates. Zadeh's 
extension principle forms the basic approach for this investigation of these fuzzified stochastic 
processes. 

Although only M/F/1 and FM/FM/I systems are investigated, the general approach can be used 
and extended easily to other fuzzy queuing systems. 

M / F / 1  Q U E U E S  

Consider a queuing system with one server and with Poisson arrival. The mean of the arrival 
rate is 2 and the service discipline is first-come-first-serve. Suppose that the service time g is just 
approximately known and is represented by a possibility distribution n ( t ) =  #g(t) which restricts 
its more or less possible values. This possibility distribution on the possible non-fuzzy values 
of t is induced into all the system measures such that the originally queuing system becomes 
fuzzified. In a broad sense, a fuzzy queuing system may be considered as a perception of a usual 
queuing system which will be called the original of the fuzzy queue. It should be emphasized 
that the location of the original of the fuzzy queuing system is unknown. We only know 
that it is located in a set Q of the queuing systems. This fuzzy queuing system will be 
denoted by M/F/1 and its original by M/D/1. The set Q of all possible originals of M/F/1 can be 
written as Q = {(M/D/I)It~SUP~} where t is the service time of the M/D/1 system and 
sup ,~ = {t ~R +, #s( t )>  0} is the support of S. The statement "M/D/1 is an origianl of M/F/I"  
is fuzzy. By fuzzy logic we know that it has the truth value #s(t). 

The possibility distributions of the system performance measures of M/F/1 can be obtained using 
Zadeh's expansion principle [4] from the solutions of the original problem M/D/1 with t known 
precisely. 
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Symbolically, we have 

#f(~)(x) = SUP{#~(t)I /eF-l(x)} 

where f stands for any entity parametered by ~. A similar idea to solve fuzzy queuing problems 
has been hinted by Prade in Ref. [2]. 

FUZZY MARKOV CHAIN 

On the other hand, we can also define an imbedded fuzzy Markov chain for the M/F/1 queuing 
system. Let X(~) denote the imbedded fuzzy stochastic process which can be shown to be fuzzy 
Markovian by looking at the system immediately after a customer's service is completed and service 
is about to begin on the next customer in the queue. Let/~i be the probability of i arrivals during 
service time ~. Notice that/~; is a fuzzy function such that there exists a possibility distribution, 
induced by /~g on each of its points. Since the arrival process is assumed to be Poisson with 
parameter 2, the fuzzy probability function can be defined by 

Ul~,(x) = sup ( /~( / ) lx  = 
exp( --_2_t)(2t)i~ 

i! J" (1) 

The one-step transition matrix for a fuzzy Markov chain can now be constructed in a straight- 
forward manner. Note that a transition from state zero to state j or a transition from state i to 
state j both require the arrival o f j  customers during the service interval. Moreover, moving from 
state i to state j where j />  i - 1 > 0 requires that ( j  - i + 1) customers arrived during a service 
interval, the extra arrival being necessary to account for the customer known to be departing at 
the transition point. Moving from i t o j  wherej  < i - 1 is clearly impossible as long as service occurs 
only one at a time. 

Denote the transition probability matrix of the imbedded fuzzy Markov chain by P = [Po]. We 
can then write for all j />  i - 1, i >1 1 as 

P = EP,:] = 

where/~i: are defined by 

Vj >~ i -1, i>~1; 

P0, P,, P2, ..ii ] P0, Pl, P2, 
i" p0, :,, 0, po, 

I~P':(xu)=sup+{ #~(t)lxU=exp(-2t)(2t)J-i+l}(j-i+ 1)[ " (2) 

Similarly, a fuzzy Markov chain can be viewed as a perception of a usual Markov chain which 
is called the original of the fuzzy Markov chain. This original is unknown but located in a set U 
of Markov chains. Based on queuing theory we can solve the stationary equations for each possible 
original of  the fuzzy Markov chain. The steady-state solutions are [1, 3] 

1 
Vt, A~R +, t < ~ : I t 0 =  1 - 2 t ,  nl =(1 - 2 t ) [ e x p ( 2 t ) -  1], 

f [(k;tt),-k ( k ~ . t ) , - k -  ~ -] 
~ . = ( 1 - a t )  _ ( - l ) ~ - ~ e x p ( k a t )  t,, ~J: , , - ~  - , j ~ = ~ + ( = - - - c = ~ "  for ~ t>2. (3) 

k = l  

and furthermore, the system performance measures can be shown to be 

2t(2 - 2t) L t(2 - 2t) L = W . . . .  (4) 
2(I - 20' :t 2(I -2t)' 

where n. denotes the steady-state probability of n customers in the system at a departure point, 
L denotes the expected queue length, and W denotes the expected sojourn time. By means of the 
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extension principle the corresponding results in the fuzzy case can be defined by their membership 
functions for the steady-state solutions: 

V2 ~ R+: #~o(X)= ,~RSUPI/z {#g(/)lx --- 1 - 2/}, 

SUP It~,(x) = + {ug(t)lx = (1 - 2t)[e(2/) - 1]}. (5) 
t ~ R  ,t < 1/2 

Vn t>2, ~.(x)= sue ~g(/)lx =(1-At) ~ (-1) ~-* 
t ~ R + , t l / 2  ~ k = l 

(k2t)" - k 
x exp(k2t)I~- ~ -  ~.v 

The system performance measure are 

(~ Z k - - - O !  " (6) 

V2~R +, /~r(x)= SUP f~l ts( t ) lx=2t(2-2t)~ 
, ~m, ,<  J/~ 2(1 - 2 t )  J '  

SUP ~#s(t)lx / (2-2 t ) '~  #w(x) = ,~R+,t< i/~ ( = 2(1 - 2t )J" (7)  

Furthermore, let/Sk denote the k-th factorial moment of the system size and ff'k the regular k-th 
• moment of the system waiting time. Then the important generalization of Little's formula in fuzzy 
case can be given as 

g2~R +, / ~ k ( y ) = S U P  #g(x y =  
x ~  R + 

= 1 -- z exp[2t(1 - z)]] (8) 
x~R÷ ,~R+ | IX = dz* ~= 

y = x/;'J t t < 1/2 ( .  I I 

(FM/FM/I)  FUZZY QUEUES 

Consider a one-server queuing system, denoted by FM/FM/1, in which arrivals and departures 
are both Poisson processes with fuzzy parameters. The density functions for the interarrival times 
and service times are given, respectively, as 

~(t) = 2"0 exp(-,~'0t), 8(0 =/~0 exp(-/~0t) (9) 

where 2 ~ and /~ are both linguistic. Note that there exists a possibility distribution associated 
with the two fuzzy parameters, 2 ~ and/~, in an FM/FM/I queuing system. The original of a fuzzy 
queue FM/FM/1 is a usual queue M/M/l, with membership function #(vM/FM/I)(M/M/1)= 
min {#:(X), #a(g)}. In general, all the fuzzy functions parametered by ~ and/~ can be defined by 
g/(z a)(z ) = SUPx.y~R min{#~(x), g~(y ) ]z = f ( x , y  ) }. 

To define the imbedded fuzzy Markov chains in a FM/FM/1 system, we are again concerned 
with changes in state between successive departure epochs. However, the time between every set 
of transitions is now a fuzzy random variable whose possibility is the possibility distribution of 
the service time, a fuzzy function ~'(t). Since the arrival process is Poisson with fuzzy parameter 
~[, we can consider a conditional possibility distribution for i arrivals, given a service time t, denoted 
by #P~-~r~-t), as 

Vt ~R+; #O(A=iI,=o(Y)= SUP{u~(x)Jy e x p ( - x t ) ( x t ) ' ~  
= E, 3" (lo) 
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To obtain the marginal possibility distribution for i arrivals in an arbitrary service interval t, 
denoted by #p,, we must weight this function by ~'(t) and integrate or sum over all t. That is 

(z) = SUP min ~/~(x),/z~(y) [Vt ~ R +, #p, 
x ,  y e R  + l 

x / y  < 1 

f, ~f y(xt)iexp[-t(x+y)] } z= P{A =nlS=t}b(t)dt= i i  dt . (11) 

Denote the square matrix of  the imbedded fuzzy Markov chain in FM/FM/1 system by P = [Po]. 
Note that P0 = P{x~+ t = J  ]x~ = i} =/~{A = j  - i + 1}. Thus the one-step transition probabilities 
can be defined as Yj >/i - 1, i >I 1, i, jeI; 

{ ~ f  y(xt)/-i+~exp[-t(x+y)] } 
/~p~(z) = SUP min /z:~(x), iz~(y)[Vt ~ R +, z = dt (12) 

Solving each possible original of  the imbedded fuzzy Markov chain, we know the steady-state 
solutions and system performance measures to be 

- < 1 ;  n , =  1 -  , L =  _-----~, W = - -  
# # 

The corresponding results in the fuzzy case for FM/FM/I  are given by 

1 
/~ - 2 "  (13) 

ga(y)lcr --- 1 - , Vn e l : /~ . ( t r )  = SUP min {/~:(x), 
x ,  y e R + , x / y <  I 

#l:(a) = x,y~R+,x/y<SUP 1 min Ira(x)' #a(Y)la = Y----I }x  

and 

/~,(a) = SUP min {/t~(x),/J~(y)l ~ = 1 }. 
x , y ~ R + , x / y <  1 y - x 

Furthermore, Little's formula in higher moments can be obtained from Vk e l :  

~ek(a) = SUP #~(T) I ~ -- = SUP SUP min ~(x), ~(y) z 
t e R +  ~ " - ~  t ~ R +  x , y ~ R  + = " 

= ":/2 k x / y  < 1 z = 1 

A N U M E R I C A L  E X A M P L E  

A special tune-up station has been established at thhe end of  an automotive assembly line to 
make adjustment on those vehicles which can not meet federal exhaust gas emission standards. 
Failures appear to be completely random and hence justify the Poisson arrival assumption with 
2 = 0.1 vehicle per minute. Each arrival is serviced by an adjustment requiring approx. 5 rain which 
can be expressed by a trapezoidal fuzzy number with membership function: 

VteR+: #g( t )=0 ,  t~<2, 

# s ( t ) =  l /2 t  - l ,  2<<.t<<.4, 

/~(t) = 1, 4~<t ~<6, 

~( t )=- l /2 t  +4, 6~<t~<8, 

p.~(t) -- 0, t i> 8. 

In attempting to evaluate storage space requirements, management needs to know (a) the mean 
number of  vehicles in the station, (b) the expected sojourn time per vehicle and (c) the probability 
that there will be more than two vehicles present. 
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Fig. 1. Stationary fuzzy probabilities. 
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Fig. 2. Fuzzy measures of system performance. 

Figures 1 and 2 show the solutions of the problem, in which Fig. 1 gives the stationary fuzzy 
probabilities and Fig. 2 gives the fuzzy measures of the system performances. It is noted that the 
membership functions of the results are no longer trapezoidal fuzzy numbers except for ~0. 

DISCUSSION 

Although only two simple queuing systems are investigated, the approaches presented in this 
paper can be extended easily to other more complicated fuzzy queues. For example, systems like 
M/F/C, M/F/C/k etc., can be easily treated by essentially the same basic approach. The important 
idea is to view a fuzzy queue as a perception of a usual crisp queue. The corresponding fuzzy 
measures of the system performances can then be defined by the membership functions which are 
obtained from the solutions of each of the possible original queues in terms of the extension 
principle. 
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