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Abstract

We call an algebra strictly 1-affine complete iff every unary congruence preserving partial function
with finite domain is a restriction of a polynomial. We characterize finite strictly 1-affine complete
groups with operations, and, in particular, all finite strictly 1-affine complete groups and commutative
rings with unit.

0 2004 Elsevier Inc. All rights reserved.

1. Problem and result

Let A be an arbitrary algebra. By &-ary) polynomial ofA we mean an expression of
the formt(xy, ..., x¢, a1, ..., an), Wheret is a term in the language & anday, ..., a;
are arbitrary elements &. We identify polynomials with the functions they determine. It
is clear that every polynomial preserves all congruencés bfowever, in general there are
congruence preserving functions that cannot be represented by polynomials. The problem
of describing algebras in which every congruence preserving function is a polynomial was
posed in [10, Problem 6]. Following H. Werner [39], we call such algebras affine complete.
They have received considerable attention during the last years [22,31]. Recently, K. Kaarli
and R. McKenzie [21] have shown that every variety in which all algebras are affine
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complete must be congruence distributive. This paper also describes important steps in
the study of affine complete varieties.

The situation is much more complicated if we restrict ourselves to a single algebra.
For example, the groufi; x Z; is affine complete, whereas the variety it generates is
not. Results on affine complete groups and modules can be found in [18,19,28,33,34].
Difficulties also arise if we try to interpolate (congruence preserving) partial functions by
polynomials. An algebra is callestrictly affine complete if every congruence preserving
partial functionT — A with finite domain7 contained in some power ¢f is a restriction
of a polynomial ofA. (The precise meaning @bngruence preserving-affine complete
and strictly k-affine completas given in Definitions 4.1, 4.2, and 4.3.) J. Hagemann
and C. Herrmann [13] have characterized strictly affine complete algebras. From their
characterization one can infer that an algebra from a congruence permutable variety is
strictly affine complete iff it is strictly 2-affine complete, i.e., all binary partial functions
(hereT C A?) that respect congruences can be interpolated by polynomials (cf. [2]). On
the other hand, polynomial interpolation for unary (partial) functions remains unsettled,
even for finite algebras. Among strictly 1-affine complete algebras that are not strictly
2-affine complete we have the symmetric grospswith n > 5 [23], the groupsZ,)"
with n > 1, and the ringZ4 [30]. Recent ideas concerning polynomial interpolation in
groups are contained in [7,36]. From these results, one gets the impression that (strict)
affine completeness imposes a restricted structure even if the concept is applied to a single
algebra.

In the present paper, we develop techniques for polynomial interpolation that work for
all algebras that have a group reduct; we will call those algebxpaanded groupdn
particular, our techniques work for all groups, all rings, all ring-modules, and-gjfoups
in the sense of [24]. Using these techniques, we obtain a full characterization of finite
strictly 1-affine complete expanded groups; as a consequence of the extension principle for
compatible functions [20], this characterization also describes all finite 1-affine complete
expanded groups among those with distributive congruence lattice. (By K. Kaarli’s result
[20, Theorem 3], a finite algebra in a congruence permutable variety with distributive
congruence lattice is strictly 1-affine complete if and only if it is 1-affine complete.)

The groups we consider will be written additively, although they need not be abelian. An
ideal of an expanded grouly, +, —, 0, f1, f2, ...) is a normal subgroup of (V, +, —, 0)
such that for all additional operatiohswe have

fior+ie, ..., +i) —Fj(ve, ..., v) el

whenevei, io, ..., iy € I andvy, va, ..., v € V. Similar to [14,24], we find that there is a
bijective correspondence between ideals and congruences of an expanded group; however,
we note that an ideal of the expanded gr&dujs not necessarily a subuniverse\af
The lattice of the ideals of the expanded graupiill be denoted bydV, and the sum
of the ideals andJ by I v J. We writel < J if J coversl, i.e., if I C J and there is no
other ideal betweeth andJ. If I is a strictly meet irreducible element mfV and/ < J,
we write It for this uniqueJ. If I is strictly join irreducible and/ < 7, we write I~ for
this J. We abbreviate the set of altary polynomials oV by Pol; V, and the domain of a
partial functionf by dom f.
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Commutator theory usually works with congruences, but in expanded groups we rather
work with ideals. For two ideald, B € I1dV, the commutatofA, B] is the ideal generated
by the set

{p(a,b)|ac A, beB, pePolV, Vx € V: p(x,0) = p(0, x) =0}.

This is the actual definition given by S.D. Scott [36] f@rgroups. It differs from the one
previously used by P.J. Higgins [14] and A.G. Kurosh [24], but coincides with the modular
commutator widely used in general algebra [8,11,12,37].

Given two idealsl, J € I1dV, the centralizerof J modulo, written as(Z: J), is the
largest ideal” € 1dV such thalC, J]1 < .

We need two conditions for characterizing strictly 1-affine complete expanded groups.
The first one has already been isolated in [16].

Definition 1.1. An expanded grouly satisfies the conditioiSCY) if for every strictly
meet irreducible ideal/ of V we have(M :MT) < M.

The condition(SCY is equivalent to the following: In every subdirectly irreducible
quotient ofV, the centralizer of the monolith is not strictly larger than the monolith.
The following condition requires that abelian parts of the expanded group are small:

Definition 1.2. An expanded grouly satisfies the conditiofAB?2) if for all A, B € IdV
with A < B and[B, B] < A the idealB contains exactly two cosets df.

The special role of idealst < B with [B,B] < A and |B/A| = 2 has also been
highlighted in [36, p. 136]. We are now ready to state our main result.

Theorem 1.3. For a finite expanded grouy the following are equivalent

(1) V satisfiegSC1 and (AB2).

(2) V is strictly 1-affine complete.

(3) Every homomorphic image df is strictly 1-affine complete.
(4) Every homomorphic image dfis 1-affine complete.

The proof of Theorem 1.3 is concluded at the end of Section 10. Along the proof, we
also obtain a fairly good description of unary polynomials on expanded groups3ath.

Theorem 1.3 was initially obtained using Tame Congruence Theory [15] together with the
techniques from [16]; the proof given here, however, does not use TCT.

2. Notation

Let V be an expanded group. Then for V, the smallest ideal o¥ that contains
will be denoted byZy (v). We define the sePy(V) by

Po(V) = {p ePol1V | p(0) = O}.
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It is known that a subsef of V is an ideal ofV if s1 +s2 € S andp(s) € S for all
5,581,852 € S andp € Pp(V) [29, Theorem 7.123]. We note that— y lies in the ideal
Iv (v — w) iff there is ap € Pol1 V with p(v) = x andp(w) = y. This observation allows
to interpolate every congruence preserving function at every 2-element subset of its domain
by a polynomial.

Let A1, Ao beinldV suchthatd; < As. ThenI[A1, A2]l:={B €ldV | A1 < B < A)}.
We say thatf[A1, A2] projects up tol[B1, Bo] iff A1 = A2 A By andBz; = A v By and
write I[A1, A2] /' I[B1, B2] or I[B1, B2] \, I[A1, A2]. The smallest equivalence relation
that contains” will be abbreviated by~. If I[A1, A2] «~ I[B1, B2], we say that the two
intervals areprojective

The intervall[A1, A2] is calledabelianiff [A2, A2] < A1. Obviously, this is equivalent
to (A1:Ap) > Ao.

We list some important properties of the commutator operation in the following
proposition:

Proposition 2.1. Let A, B, C be ideals of the expanded groip Then we have

(1) [AVB,C]=[A,C]VI[B,C].

(2) [A, B]=[B, Al.

(3) [A, B]< AAB.

(4) Let A < B. Then an elemente V liesin(A: B) iff s(z, b) € A for all b € B and for
all se PolyV that satisfyvv € V: s(v, 0) = s(0, v) =0.

Although the first three properties are well known in commutator theory [8] and
number (4) follows from [36, Proposition 9.5], the differences in notation justify that we
state a proof.

Proof. We call a binary polynomial functios a commutator polynomiaiff s(v,0) =
s(0,v) = 0 for all v € V. For (1), we only show<. Fora € A,b € B,c € C and a
commutator polynomiad, we haves(a + b, ¢) =s(a+b, ¢) —s(b, ¢)+s(b, ¢). Considering
si(x,y) :=S(x + b,y) — s(b, y), we sees(a + b,c) — S(b,c) = s1(a, c) € [A, C]. The
second terns(b, ¢) obviously lies in[B, C].

For (4), we are done if we show that the set

Z:={zeV|s(z,b) € Aforall b e B and all commutator polynomiaty

is an ideal ofV. We show this using [29, Theorem 7.123]. To this end zldte in Z,
and letp € Po(V). We want to show thap(z) is in Z. We fix » € B and a commutator
polynomials, and compute(p(z), b). Sincez € Z, we know thatt(z, b) lies in A, where
t(x,y) =s(p(x), y). Thuss(p(z), b) € A. For showing thatZ is closed under addition,
let z1,z2 € Z. We write s(z1 + z2,b) as S(z1 + z2,b) — S(z2, b) + S(z2, b). Defining
t(x,y) :=s(x + z2,y) — S(z2, ¥), we see thas(z1 + z2,b) — S(z2, b) lies in A; since
S(z2, b) also lies inA, we gets(z1 + z2, b) € A. HenceZ is also closed under addition,
and therefore an ideal.OJ
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From these properties, it is easy to infer the following well-known properties of
projective intervals indV, which we restate for easier reference. For two idefl8
of V with A < B, we define the seB/A by

B/A:={b+A|beB).

Proposition 2.2 (cf. [8, Remarks 4.6, p. 35])Let V be an expanded group and let
A1, Ao, B1, B> € 1dV such that/[A1, A] «~ I[B1, B2]. Then we have

(1) (A1:A2) = (B1:Bo).
(2) I[A1, A2] is abelian iffI[B1, B2] is abelian.
(3) Az contains as manyi1-cosets a3, containsBi-cosets, i.e.}A2/A1| = |B2/Bi|.

Proof. The first two properties can be checked immediately. Property (3) is a consequence
of the isomorphism theore 1 + B2)/A1 = B2/A1 N B, for groups. O

The commutator puts the following linearity condition on polynomials:

Proposition 2.3 (cf. [8, Proposition 5.7])Let A, B € IdV andp € Py(V). Then we have
p(a) + p(b) =p(a + b) (mod[A, B]) forallac A, b € B.

3. Propertiesof expanded groupswith (SC1)

As in [8, p. 77], we say that an expanded grodatisfies the conditionCl) iff for
all ideals A, B € IdV the equalityA A [B, B] = [A A B, B] holds. In [16], a stronger
version of condition(C1), as well as many other techniques applied in this paper, has been
developed to describe those algebras in which every function preserving certain properties
of the congruence lattice is a polynomial; this condition has been n&&8@d for “strong
(C1)” there. We need the following consequences of the cond{&Zy).

Proposition 3.1. Let V be an expanded group satisfying the condit{&tC1). Then the
following holds

(1) Forall A, BeIdV with A <[B, B] we haveA = [A, B].
(2) Forall A, B<l1dV we haveA A [B, Bl =[A A B, B].
(3) Forall A, BcldV we havd A, B] = ([A, A]A B) v (A A [B, B)).

Proof. For (1), suppose that in an expanded group W81), we have idealst and B
such thatA < [B, B] and A > [A, B]. Since every proper ideal of is the intersection
of strictly meet irreducible ideals, we have a strictly meet irreducible ideaf V such
that E > [A, B], E # A. First of all we observe thaE™ is abelian overE: Obviously,
we haveE v A > E. SinceE # A, we haveE v A > ET. From this, we conclude
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[ET,ET]<[EVA,EVAI<SEVI[A,AI<EVIA,[B,B]I<EVI[A,B]l<E.Now,
condition(SCJ) implies

(E:ET)=E™".
We will now show
[E*.EVB]<E. (3.1)

We already know thakE v A > E*. From this, we gefE", EV BI<[EV A,E Vv B] <
EVI[A, B] < E, which proves claim (3.1). Hence, B$C1), we haveE v B < (E:E1) =
E™T. Altogether, we obtaim < [B, Bl <[EV B,E Vv B]<[E™, ET] < E, which gives
A < E. Butthis is a contradiction to the choice Bf The items (2) and (3) were proved to
be equivalentto (1) in [8, p. 79] and [8, Theorem 8.1{1

Proposition 3.2. Let V be an expanded group witt5C1), and letA € I1dV. Then the
commutatoffA, A] is the intersection of all subcovemsof A that satisfyB > [A, A], and
equal toA if no such subcover exists.

Proof. We let Ag be the intersection of all subcoveBs< A with B > [A, A], and we set
Ap := A if no such subcover exists. Then cleafly, A] < Agp. Suppose thatA, A] < Ap.
Then letE be a strictly meet irreducible ideal &f with E > [A, A], E # Ao. Since
E # Ao, we haveE # A, and thusE v A > E*. Hence we have

[ET.EVA|<[EVA EVAI<EVI[A AILE.

Now condition (SC1) implies thatE v A = E™. This equality yields/[E, ET] \,
I[A A E, A]. By the modularity of the latticedV, A A E < A. Furthermore, sinc&™
is abelian ovelr, Proposition 2.2 gives that is abelian overA A E. Therefore A A E is
one of the subcovers appearing in the in the intersection that fagnand therefore, we
haveAg < A A E < E. But this is a contradiction to the choice Bf O

Proposition 3.3. For a finite expanded grouy the following are equivalent

(1) V satisfies the conditio(SCJ).
(2) There is no pair(A, B) of join irreducible ideals inldV such thatA < B and
[A,B]<A™.

Proof. (1) = (2). Suppose that there are su¢land B. SinceA < B, we haveA < B™.
By Proposition 3.2, we hav8~ < [B, B]. Hence we haved < [B, B], and therefore
Proposition 3.1 implieg\ = [A, B], which contradict$A, B] < A™.

(2) = (1). We assume that does not satisfy the conditioqfC1. Let M be a meet
irreducible ideal ofV such that(M: M%) > M*, and letN := (M :M™). Let B be an
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ideal of V that is minimal with respect to the propertiBs< N, B £ M. Obviously,B is
join irreducible andB~ < M*. Now we prove

B~ £ M. (3.2)

Suppose thaB~ < M. By the choice ofB, we knowM™* A B = B~. Hence we have
M=B"VvM=(M"AB)Vv M. By modularity of the latticeldV, this is equal to
M* A (B vV M). SinceM is meet irreducible, we ge& v M = M. This impliesB < M,
which contradicts the choice @& and thus proves condition (3.2).

Let A be minimal withA < B~, A £ M. We see thad is join irreducible. Furthermore,
I[M, M1\ I[A™, A]. Therefore, Proposition 2.2 gived~: A) = (M:M™) > N. This
implies(A~: A) > B, hencd A, B] < A™. This contradicts condition (2).O

4. (SC1) and (AB2) are necessary

4.1. Necessary conditions for strictlyaffine complete expanded groups

We first state the definitions of two types of affine completeness that we are going to
investigate in this paper.

Definition 4.1. Let A be a universal algebra, léte N and letD be a subset oAX. Then

a functionf : D — A is acompatibleor congruence preservinfyinction onA iff for all
a,b e D we have

f@ = f(b) (modOa(a. b)),
where®a (a, b) is the congruence generated @y, b1), (az, b2), ..., (ax, by).

Definition 4.2. We call an algebrad k-affine completéff every congruence preserving
function fromA* to A is a polynomial function.

Definition 4.3. We call an algebr& strictly k-affine completéff every k-ary partial
congruence preserving function with finite domain is a restriction of a polynomial function.

Every finite strictly 1-affine complete expanded group satigft31):

Proposition 4.4. Let V be a finite strictlyl-affine complete expanded group. Thén
satisfies the conditio(SCJ).

Proof. Suppose thaV does not satisfSC1). Then by Proposition 3.3 there are join
irreducible idealsA, B with A < B and[B, A] < A™. SinceA and B are join irreducible
ideals, they are principal. Let, b € V be such thafy (¢) = A andZy (b) = B. We define
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afunctionf by f:{0,a,b,a+b} — V, f(0) = f(a)= f(b) =0, f(a+b) =a. Firstwe
show thatf is a compatible function: for this we have to show

a €Ty(a+b) ATy(b) ALy(a). (4.1)

We clearly have: € Zy (b) AZv(a) = B A A = A. We also hav&y (a + b) = B: For this,
we observe thaly (a + b) < B. Furthermoreb lies inZy (a + b) v Iy (a). From this we
get

Iv(a+b)VvIy(a)=B.

SinceB is join irreducible, this yieldgy (a + b) = B. Therefore (4.1) holds.

SinceV is strictly 1-affine complete, we may assume tliais a polynomial. Now by
Proposition 2.3 we get = f(a + b) € [A, B]. Hencea € A™, a contradiction to the fact
thata generatest. O

Proposition 4.5. Let V be a finite strictlyl-affine complete expanded group. Thén
satisfies the conditio(AB2).

Proof. Seeking a contradiction, we suppose that we hay8 < I1dV such thatA < B,
I[A, B] is abelian, andB/A has more than two elements. LBt be minimal with the
propertyB, < B, B, & A. ThenB, isjoinirreducible. LetA, be its unique subcover. Since
the intervals/[A, B] andI[A, B,] are projective, Proposition 2.2 gives thHa# ., B, ] is
abelian, andB./A«| > 2. Now letb; be in B, such thath; ¢ A, and letb, be in B,
such thathy ¢ A, b2 ¢ —b1 + A,. We define a functiory : {0, b1, b2, b1 + b2} — V by
f(0) = f(b1) = f(b2) =0, f(b1+ b2) = b1. We want to show that thig is compatible.
For this, we have to prove

b1 € Iy (b1 + b2) ALy (b2) ALy (b1). (4.2)

Since every element irB, \ A, generatesB,, (4.2) holds. Using thaV/ is strictly
1-affine complete, we may assume tlfats a polynomial. Hence Proposition 2.3 yields
f(b1+ b2) € [Bx, Bi]. Thush; € Ay, a contradiction. O

4.2. Necessary conditions for expanded groups in which each homomorphic image is
1-affine complete

Proposition 4.6. Let V be an expanded group all of whose homomorphic images are
1-affine complete. Thew satisfies the conditio(SCJ).

Proof. Suppose that conditiodSC1 is not satisfied, and le/ be a strictly meet
irreducible element ol V such that there is an ide@l > M+ with [MT,C1<M.
Let ) be the canonical epimorphism froxato V/M, and letV :=V/M, M+ :=
(M), C :=mm(C), 0:=my(0). ThenV is subdirectly irreducible with monolith/ .
Now, letin € M+ such thatm # 0, and letc € C such thatz # 0, ¢ £ —im. Then we
define a mapping :V — V by f(m + ¢) = m and f(x) = O for all otherx € V. Since
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f maps into the unique minimal ided+, it is compatible. We know tha¥ is 1-affine
complete, thereforg is a polynomial. Now Proposition 2.3 yield&(i + ¢) € [M+, C].
But since[M*, C] < M, [8, Proposition 4.4(1)] (or [26, Exercise 4.156(11)]) yields
[M+,C]=0. So, we obtaim = f(in + ¢) =0, a contradiction. O

Proposition 4.7. LetV be an expanded group such that every homomorphic imaydof
1-affine complete. Thevi satisfies the conditioPAB2).

Proof. Suppose that, B are ideals oV with the properties that < B, [B, B] < A, and
B contains more than two cosets 4f We have a strictly meet irreducible idedl of V
with M > A, M # B. We will now see thai[A, B] projects up ta/[M, M™]. To this end,
we observe that we havd A B < BandM A B > A. SinceA < B, we getM A B = A.
Thereforel[A, B] projects up to/[M, M v B]. By modularity, we havel < M Vv B,
and thusM™ = M v B. By Proposition 2.2 the ideald ™ contains as many cosets bf
as B contains cosets of.. Therefore, there are elementsn € M such thatc ¢ M,
andm ¢ M,m ¢ —c + M. The same construction ¢f:V/M — V /M as in the proof of
Proposition 4.6 yields a contradictionC

5. Outline of the proof that (SC1) and (AB2) are sufficient

In the next sections we prove that every congruence preserving function on a finite
expanded group witiSC1 and (AB2) is a polynomial. We proceed as follows: First of
all, we try to find an idealU of V with U # 0, U # V that is the range of an idempotent
polynomial. Not every ideal can be such arangé! K= e(V) with ece=¢, e Pol1 V, and
if A andB are join irreducible ideals of with A < U andI[A—, A] «~ I[B~, B], then
B < U. (For proving this, observe th&t — id)(A) = 0, and thuge —id)(A) € A~. One
of the properties of polynomials that we shall prove in the sequel, namely Proposition 6.1,
implies(e—id)(B) € B~. So for everyb € B we have

bZ e 2o,

This yields B < B~ v U. HenceB = B A (B~ v U), and, by modularityB = B~ v

(B A U). Since B is join irreducible, we obtainB A U = B, and thereforeB < U.

A detailed account of this argument is given in [3].) We will single out certain ideals of
that satisfy this criterion, and call themomogeneous idealBor a homogeneous ideél

of V, we are able to describe the polynomial functions with range contain&d Wsing

this description, we obtain that every partial compatible function with the range contained
in U is a polynomial. Once this is established, we can use induction on the height of the
congruence lattice 0¥ to show thatV is strictly 1-affine complete: Lat be any partial
compatible function orV. Taking the idealU chosen above, we first observe that, by
induction,V /U is strictly 1-affine complete. Lgt be the polynomial that interpolates
“modulo U”. The differencec — p then mapsV into U, it is compatible, and hence also

a polynomial. This gives that— p is equal to some polynomial, and thereforg’ + p
interpolates:.
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6. Propertiesof polynomials
6.1. The action of polynomials on the idealsof

We study how polynomials act on the ideal36fThe methods developed in this section
will then be used in Propositions 7.13 and 7.14 to produce certain polynomials. First, we
observe that the third property of Proposition 2.2 can be sharpened as follows.

Proposition 6.1. Let V be an expanded group, let, B,C, D € IdV with I[A, B] «~
I[C, D], letk e N, and letp € Pol; V with p(0, ..., 0) = 0. On the setB/A we define a
k-ary operationf by

fb1+ A,...,bx + A) :=p(b, ..., by) + A.
On the setD/C we define &-ary operationg by

9d1+C,....di+C):=p(4,...,d)+C.
Then the two algebragB /A, f) and(D/C, g) are isomorphic.

Proof. We assumd|[A, B] 7 I[C, D]. Then every element id € D can be written as
d=b+cwithbeB, ceC.Themappingi:D/C — B/A,(b+c)+C+— b+ Aisan
isomorphism. O

Actually, the same result holds under weaker assumptiorns éinis enough to claim
thatp is a congruence preserving function froth to A with p(0, ..., 0) =0.

6.2. Near-rings of polynomials

For an expanded groug, we will study the near-ring?o(V) := (Pp(V), +, o) of
zero-preserving unary polynomials, where addition is the pointwise addition of functions
and o denotes functional composition. We will investigate how this near-ring acts on
its moduleV. All results that are given in this subsection are well-known in near-ring
theory [27,29]. However, our notation differs significantly from these books. Therefore,
in the following few paragraphs, we have summarized the concepts from near-ring theory
that we will need. Other applications of the near-ring theoretic methods developed in this
section can be found in [1,3].

One aim of near-ring theory is to make the concepts of ring-theory available to non-
linear functions® For a near-rindR, anR-moduleis an algebrdM, +, —, 0, (f, | € R))

3 By a near-ring we mean an algebréR, +, o), where (R, +) is a (not necessarily abelian) groug, o)
is a semigroup and the two operations are connected by the distributive-dawro) org =riorg+roors.
Near-rings arise by studying functions on groups: Gelbe a group. Oi(G) :={f:G — G | f(0) = 0} we
define addition pointwise and as functional composition. The algeb{#y(G), +, o) is a near-ring. It will be
important in the sequel that this near-ring is simple [27, Theorems 1.40, 1.42].
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such thatM, +, —, 0) is a group and for alk € M andr, s, t € R the following equalities
hold:

f+(fs@) = fi(a) whereros=rinR,

, (6.1)
fr@)+ fs(a)= fi(a) wherer +s=rtinR.

IntheR-moduleM, we writer xm for f,(m). The laws of (6.1) then read agx (r2 xm) =

(rior2) *m and(ry +r2) xm = ry xm + rp * m. We are mainly interested in the following

example: we start with an expanded gratipnd takeR := Po(V),M :=(V, 4+, —,0, (fp |

p € Po(V))) with the operationg, (v) :=p(v) forall p e Po(V),ve V.

We note that thér-modulesM 1, M2 are isomorphic if there is a group isomorphism
from (M1, +) to (M2, +) such thatp(r * m1) =r x ¢(m1) for r € R, m1 € M1. A normal
subgroup of theR-moduleM is called arideal of the moduleM iff r«(m+i) —rxme I
forall r €e Nym € M,i € I. |deals correspond to the congruences of the motiile
Every near-ringR has one obviouR-module, namelyR, +, —, 0, (f; | r € R)), where
the operationg, are defined by, (+') :=r or’. Asin ring theory, the ideals of this module
are also called left ideals of the near-riRgA normal subgroug. of (R, +) is aleft ideal
of the near-ringR, +, o) iff rio(rp+1)—riorpe Lforallri,r» € R, I € L. Since every
near-ringR is an expanded group, we defildealsof R as those normal subgroupf
(R, +) satisfyingrio(rp+i) —riorpel andior el forallr,ri,rp e R, i €1. For
everyR-moduleM, the set AngaM :={r € R |Vm € M. r x m =0} is an ideal ofR.

We need only one result of near-ring theory; it generalizes the fact that for a finite
simple ring with unitR, all faithful simple unitaryR-modules are isomorphic (cf. [32,
Proposition 2.1.15, p. 154], [5, Theorem 4.3], [29, Theorem 4.56(a)], [3, Lemma 1.3]). We
will use the following version:

Proposition 6.2. LetR be a near-ring withr o 0= 0 for all r € R, let I be an ideal oRR,
and letM be anR-module that satisfieSnng M = I andRxm = M forallm € M, m # 0.
We assume that we have a left idéabf R such thatL > I and there is no left ideal’ of
RwithL > L' > 1.

Then theR-moduleM is isomorphic to th&-module with universé /I ={l+1 |l € L}
and operations(iy + I) + (o + 1) :=U1+ )+ 1, rx({ +1):=(rol)+ 1 for
I1,lo,le L, r €R.

Proof. SinceL £ Anng M, we have elemenig € L, mo € M with Io x mg # 0. We define
a mappingy by

o:L—> M, [+ Ixmg.
Itis easy to see thatis a homomorphism from the-moduleL into M. Sincelg xmg # 0,
the assumptions oM yield R * lp x mg = M. SinceR x lp C L, we getL x mo= M, and

hencey is surjective. We také.’ to be the kernel 0p, i.e.,

L'={leL|l*mg=0}.
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Using the definition of left ideals, one can check thais a left ideal ofR. Furthermore,
every elementof = Anng M liesinL’. So we have

I <L <L.

Since by the assumptioris covers/ in the lattice of left ideals oR, L’ has to be either
L or I. The elemeniy showsL’ < L, and soL’ = I. The homomorphism theorem yields
that the moduld. /L’ = L/I is isomorphictoM. O

We associate Ry(V)-module with every interval in the ideal lattice gt

Definition 6.3. Let V be an expanded group, and ket B be ideals oV with A < B. We
defineM[A, B] to be thePg(V)-module

(B/A,+,—.0,(fp I pe Po(V)))
with fp(b+ A) =p(b) + A.
The subalgebras a#f[ A, B] correspond to the ideals ¥f from the intervall[A, B].

Proposition 6.4. LetV be an expanded group, and lat B be ideals ofV with A < B.
Then we have

(1) Every submodule a¥/[A, B] is an ideal of the modul&/[A, B].

(2) The mapping: that maps anideal’ of VwithA < C < Btou(C):=C/A={c+A|
¢ € C} is a bijection from the interval[A, B] of IdV to the set of all submodules of
M[A, B].

We will now give some information on the modul¢[ A, B] for a covering paitA < B
of ideals. We recall that Angv)(M[A, B]) is equal to{p € Po(V) | p(B) € A}.

Proposition 6.5. Let V be an expanded group, let, B be ideals ofV with A < B and
[B, B1< A, and let] := Annp,)(M[A, B]). Then we have

(1) Forall p e Py(V) the operationfp satisfiesfp ((b1 + A) + (b2 + A)) = fp(b1+ A) +
fo(b2+ A) for all by, by € B.
(2) The near-ringPo(V)/1 is a ring; this ring is primitive onM[A, B].

Proof. SinceA < B, Proposition 6.4 yields tha#/[A, B] has no non-trivial submodules.
The item (1) is a consequence of Proposition 2.3. Item (2) is a different formulation of the
fact thatM[A, B] has no proper nonzero submodules)
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Proposition 6.6. Let V be an expanded group, and lat B be ideals ofV with A < B
and [B, B] £ A. We assume thaB/A is finite. We definés := (B/A,+). Let I :=
Annp,vy(M[A, B]), and letg be the mapping defined by

¢ Po(V) = Mo(G),
e(P)(b+A):=pD)+A.

Then the mapping is a near-ring epimorphism fromPy(V), +, o) onto (Mo(G), +, o)
with kernell .

Proof. We show that for every finite subsét of B/A with 0+ A ¢ X and for every
functiong: X — B/A, there is a polynomiab € Po(V) such that the restrictiotfp|x is
equal tog. We prove this by induction opX|. For |X| = 1, the result follows from the
fact thatM[A, B] has no non-trivial submodules, and Be(V) * (b + A) = B/A for all
b e B\ A. Now we assumeéX| > 2. Letx1, x2 be two elements oX. By the induction
hypothesis there is a polynomigke Po(V) with f4|x\(x,) = g- Itis then sufficient to find
p with fplx =g — fqlx. Such a function exists if the sétdefined by

S:={fo(x1) [ p € Po(V), Plx\(xy) = O}

is equal toB/A. To show this equality, we lat;, v € B be such that; + A = x;1 and
v2 + A = x2, and we define:

Ml = {fp(x:l_) | p [S PO(V)7 fp'X\{Xl,XZ} = O}’
M2 :={ fo(x1) | p € Pol1(V), p(v2) = 0}.

The setsM1 and S are universes of submodulesMfA, B]. By the induction hypothesis,
M1 = B/A. We will now show thatS contains an element different fronH0 A, which
provesS = B/A. To this end, we obsenje, B] £ A. Letby, by be elements oB, and let
sbe a polynomial irPoly V such thas(v, 0) = s(0, v) = 0 for all v € V, ands(b1, b2) ¢ A.
Sinceb1 + A € M1, we have polynomigb; € Pp(V) with

Jor(x)=b1+ A, foilx\{xy.x0} =0.

The setM; is an ideal ofV. The functionp defined byp(z) = z — v2 showsM> £ A.
Sincevs, v2 € B, we haveM» < B, and thusM, + A = B. Hence there is a polynomial
p2 € Pol1 V such thatpa(v2) = 0 andp2(v1) € b2 + A. Now we consider the polynomial
Pp3 := S(P1, P2). We omit the straightforward check thag € Po(V) and fp;|x\(x,) = 0. So
fps(x1) lies in S. Then we have

fps(x1) = p3(v1) + A = s(p1(v1), P2(v1)) + A.
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We havep1(v1) + A = fp, (x1) = b1+ A. Thisyieldss(p1(v1), p2(v1)) + A =s(b1, bp) + A.
Sinces(by, bp) does not lie in4, we havefp,(x1) # 0+ A. ThusS contains an element
differentfrom 0+ A. O

A similar result is [35, Theorem 8.4]. The last two propositions have the following
consequence:

Corollary 6.7. Let A, B be ideals of the expanded grodpwith A < B. We assume that
B/ A is finite. Then the annihilatoknnp,/) (M[A, B]) is a maximal ideal of the near-ring
Po(V).

Proof. We are done if we show that the quotidit= Po(V)/Annp,(M[A, B]) is a
simple near-ring. IfiB, B] < A, then by Proposition 6.5 the near-rifyis a primitive
ring with unit, hence isomorphic to the ring ¢f x n)-matrices over a field and thus
simple. If[B, B] £ A, then Proposition 6.5 shows thRtis isomorphic to the near-ring
of all zero-preserving mappings on the finite grd#y A, +). This near-ring is simple by
[27, Theorem 1.40] (cf. [29, Theorem 7.30], [4])C

6.3. Isomorphid®y(V)-modules
Proposition 6.1 and its proof yield the following consequence:

Proposition 6.8. Let V be an expanded group, let, B,C, D € IdV with I[A, B] e~
I[C, D]. Then the twd’y(V)-modulesM[A, B] and M[C, D] are isomorphic.

Some of the properties that hold if A, B] is projective tol[C, D] still hold if we
assume the weaker fact thet{ A, B] andM[C, D] are isomorphic.

Proposition 6.9. Let V be an expanded group, and ldt, B, C, D € IdV with A < B,
C < D suchthatM[A, Bl and M[C, D] are isomorphic. TheA : B) = (C : D).

We remark that this has been proved in [36, Theorem 12.1]. Since our notation is entirely
different, we state a proof.

Proof. We show(C: D) < (A: B). By Proposition 2.1(4), we know théd : B) is given by

{zeV sz b)yc Aforallbe B
ands € Poly V with Vv € V: s(v, 0) = s(0, v) = 0}. (6.2)

Let z be an element ofC: D). We fix a binary polynomiak € Pol,V with s(v, 0) =
s(0, v) =0forallv e V,and we also fix € B. We compute(z, b). Since[(C: D), D] < C,
the polynomialp(x) := s(z, x) has the propertyp(D) < C, so the operatiory, in the
moduleM[C, D] is the zero function. Sinc#/[C, D] is isomorphic toM[A, B], the op-
eration fp in the moduleM[A, B] is also the zero function. S®(B) € A. This implies
p(b) € A, which meanss(z, b) € A. Thusz lies in the centralizefA : B), and we have
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(C:D) < (A: B). Interchanging the roles of, B with those ofC, D, we obtain the re-
quired equality. O

Proposition 6.10. Let V be an expanded group, and ldt, B, C, D be ideals oV with
A < B, C < D such that the module¥[A, B] and M[C, D] are isomorphic. Iff[A, B] is
abelian, then/[C, D] is abelian.

Proof. We assuméD, D] & C. Then there aréy, d> € D and a binary polynomias
Pol2 V with s(v, 0) = s(0, v) =0 for all v € V ands(d1, d2) ¢ C. SinceC < D, M[C, D]
has only two subuniverses, hamely=0C/C and D/C. Therefore,Po(V) * (d1 + C) =
D/C. Hence we have a polynomiple Po(V) such thap(di) € d> + C. We consider the
polynomialt(x) := s(x, p(x)). We know that(d1) = s(d1, p(d1)) is congruent tas(ds, d2)
moduloC; thus we get(d1) ¢ C. So we have(D) € C. Since the modulea/ [C, D] and
MI[A, B] are isomorphic, we haw€B) Z A. Therefore there is an elemént B such that
t(b) =s(b, p(b)) ¢ A. Buts(x, y) :=s(x, p(y)) is 0 whenever one of its arguments is 0;
sot(b) liesin[B, B]. This showg B, B] &« A, and thus/[A, B] is not abelian. O

The following proposition helps to find isomorphic sectionsdN':
Proposition 6.11 (cf. [3, Lemma 1.5])LetV be an expanded group and l&t B, C, D €
IdV suchthatC < D, A < B, and both set8/A and D/ C are finite. We assume that each
polynomialp € Po(V) with p(D) C C satisfiep(B) € A. Then there are ideal€’, D’ of
V with C < C’ < D’ < D such that there is a module isomorphism frafiiC’, D] onto
MI[A, B].

Proof. We take! to be the ideal Ang,v)(M[A, B]). LetC1 be anyideal o¥ in I[C, D].
Let J1, J2 be the ideals ofy(V) defined by

J1:=Annp,v) (M[C, C]_]), J2 :=Annp,v) (M[Cl, D])
We show
J1CI or JClI. (6.3)

Seeking a contradiction, we suppose that both inclusions fail. For every polynomial
p € Py(V), we letp(p) be the function defined by

¢(p):B/A— BJ/A,
b+ A pb)+A.
The mappingy is a near-ring homomorphism froRy(V) into the near-ring of all zero-

preserving mappings aB/A. The kernel of this homomorphismisand by Corollary 6.7,
I is a maximal ideal oPq(V).



80 E. Aichinger, P.M. ldziak / Journal of Algebra 271 (2004) 65-107

For an ideal/ of Py(V), the imagep(J) is an ideal ofp(Po(V)). Corollary 6.7 leaves
only two choices foip(J) in our casep(J) =0 orp(J) = ¢(Po(V)). SinceJ1 andJ, are
not contained i, we havep(J1) = ¢(J2) = ¢(Po(V)).

We choose an elemehte B \ A. The equalityp(J1) = ¢(Po(V)) yields a polynomial
p1 € J1 with

@(p1) = ¢(id),

whereid is the polynomial given byd(v) = v for all v € V. This means that1(b) + A =
e(P1)(b + A) = p(id)(b + A) = b + A. In the same way, we obtaipy € Jo with
p2(b) + A=b+ A. We consider the polynomial

P3:=p20opP1.

We knowp3z(D) = p2(p1(D)) € p2(C1) € C. Thuspgz lies in Anrp,oy(M[C, D]), and
the assumption Ay (M[C, D]) € Annpyyy(M[A, B]) impliesps(B) € A. Sopz(b)
lies in A. On the other handhz(b) + A = p2(p1(h)) + A = p1(b) + A =b + A. Since

b € B\ A, this yields the contradictiopz(b) ¢ A. This finishes the proof of (6.3). Since
there are only finitely many ideals betwe€nand D, repeating this process allows us to
obtainC’, D’ e 1dV with C < C’ < D' < D and

Annp, vy (M[C,, D,]) <.

By Corollary 6.7, An, vy (M[C’, D']) is a maximal ideal oPg(V), and so it is equal té.
Since Po(V)/1 is finite, Proposition 6.2 yields that the modul#§C’, D'] and M[A, B]
are isomorphic. O

7. Homogeneousideals
7.1. Lattice theoretic properties of homogeneous ideals

In the sequel, we will work with ideals that have certain lattice-theoretic properties in
the latticeld V. For a latticel, we denote the set of its strictly join irreducible elements by
J(L). We define an equivalence relatienon J(L) by a ~ 8: < I[a™, a] «~ I[87, B].

In this case, we say thatand g areprojective inL. The equivalence class of an element
a € J(L) will be denoted byx/~.

Definition 7.1. Let L be a finite lattice. An element € L is calledhomogeneoui§f

(1) w=>0.

(2) Alljoin irreducible elements with o« < u are projective ir_.

(3) There are no join irreducible elementss € L with o < i1, B &  such thax andg
are projective irL.
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We illustrate this definition by an example. Llet be the lattice of normal subgroups of
As x Z4 x Zy. Then the normal subgroups®.4 x Z, andAs x 0 x 0 are the homogeneous
elements ot ;.

Proposition 7.2. LetL be a finite lattice, lefx be a homogeneous elementgfand leta
be ajoinirreducible element &f with @ < . Then the element is the join of all elements
ina/~.

Proof. We have to show

= \/ B. (7.1)
Bea/~
For >, supposen # \/gc,/~ B- Then there isp’ € a/~ such thatp’ £ u, which
contradicts (3) of Definition 7.1. For showing equality in (7.1), suppose \/ﬁea/wﬂ.
Since every element of a finite lattice is the join of the join irreducibles below it, there

is a join irreducible elemeny € L with y < u andy ¢ a/~. This contradicts (2) of
Definition 7.1. O

Proposition 7.3. LetL be a finite lattice, lefx be a homogeneous elementoflet« be a
joinirreducible element df with o < i, and lety ands be elements ih withy <§ < u.
Then the interval [y, 8] is projective tol[a~, «].

Proof. We takeg minimal with 8 < 8, 8 & y. Then the interval[y, §] is projective to
I[8~, B], and so by (2) of Definition 7.1 projective ida ™, «]. O

Proposition 7.4. LetL be a finite modular lattice, and let, 8, y € L. If at least one of the
elements, 8, y is a homogeneous elementigfthen the following two equalities hold

aVv(@BAry)=@VB Al@Vy),
aABVy)=(@AB)V(aAy).

Proof (cf. [26, p. 96, Claim 2]). Lefu be a homogeneous elementlofand letw, 8 be
any elements of . We first show

(av)A(@Vvp)=aV(uAp). (7.2)
We supposéa Vv 1) A(a Vv B) >a Vv (uAB). We leta’ € L be such that
aVvunp)<ad <@vup)A@vp).
Then we have

@V Alavp)=(a" Vi) va). (7.3)
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From o < o’ we obtain< of (7.3). For proving>, we observe that the assumption
a >aVv(uAap)implies

(a/VM)/\(a,VIB)2(O{V(,B/\[L)V,u)/\(O{V(,B/\M)V,B)Z((XVM)/\(O(V,B).

This proves (7.3). We will now show that the interval’, (o’ v 1) A (o' v 8)] projects
down to a section lying under. In every modular latticd., the intervall[a, (a Vv b) A
(a Vv ¢)] projects down to the intervdlla A ¢, (a v b) Ac] forall a, b, c € L. In our case,
this implies

I[o/, (O/V;L) A (O/V,B)] \I[o//\p,, (O/V,B) /\u] (7.4)

and
I[o/, (o/v,u,)/\ (a’vﬁ)] \I[o//\,B, (o/v,u,)/\,B], (7.5)

Let n be minimal inL with respectto; < (o' v ) A B, n £ o’ A B. We obtain/[n~, n]
Ilo' A B, (&' v 1) A B], and thus by (7.4) and (7.5), the intervah—, ] is projective to
I A, (@ v B) A ul.

We now show

n& . (7.6)

Supposey < . Thenn < u A ((@ v ) A B) = u A B. By the choice ofe’, we have
uw A B<a, and thusy < o'. Butthenny <o’ A ((&/ vV u) A B) =a’ A B, which is in
contradiction to the choice of. This proves (7.6).

Sincel[n~, n] is projective tol [a’ A i, (@’ v 8) A ], Proposition 7.3 tells that{n —, 1]
is projective tol [0, p] for every atomp belowu. Thusp andn contradict the 3rd condition
in Definition 7.1. This completes the proof of (7.2).

Property (7.2) yields that a homogeneous element of the ldttisea dually standard
(in the sense of [9, Definition 11.2.1]) element &f. By [9, Corollary 111.2.8 and
Theorem I11.2.5], all equalities stated in Proposition 7.4 holdi

The fact that a homogeneous elemerdf the modular latticd satisfiesu A (@ v 8) =
(uAa) Vv (u A B) allows us to find a pseudocomplemeritof w, i.e., the largest™ with
uAp*=0.

Definition 7.5. Let L be a finite lattice, and let be a homogeneous elementlof We
defineu* as the join of all elementg € L with y A u=0.

If L is a finite modular lattice and is a homogeneous elementlof then the remark
preceding this definition yieldgs A u* = 0.

Definition 7.6. Let L be a finite lattice, and let be any element df . We define® («) as
the intersection of all subcovers @f furthermore® (0) := 0.
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7.2. Homogeneous ideals and commutators

We switch from abstract lattices to the ideal lattice of a finite expanded groljde
definehomogeneous ideats V as those that are homogeneous elements of the lattite
For each homogeneous id€a) the ideall * is the largest ideal such th&tA U* =0, and
for each ideald of V with A > 0, the ideakb (A) is the intersection of all subcovers af

Before giving more information oty andU*, we state the following fact on projective
join irreducible elements dfi V.

Proposition 7.7. LetV be an expanded group, and lét B € J(IdV) with[A, A] = A and
B~ A.ThenB = A.

Proof. Suppose thatt # B. Then eitheB £ A or A £ B.

Case B g A.We haveB A A < B. SinceB is join irreducible, this implieB A A < B,
and hence we havigB, A] < B~. Therefore we havel < (B~ : B). By Proposition 2.2,
this impliesA < (A~ : A), from which we gefA, A] < A~, which is a contradiction.

Case A & B.We first observe that Proposition 2.2 giyés B] = B. In the same way as in
the previous case we obtath< (A~ : A) = (B~ : B), a contradictiont¢B, B]=B. O

This shows that every non-abelian minimal ideal of a finite expanded group is
homogeneous.

Proposition 7.8. LetV be a finite expanded group, and [étbe a homogeneous ideal\f
LetA, B be ideals oV with A < B<U.Then(A:B)=(®U):U).

Proof. Let S be a subcover of/. By Proposition 7.3, the intervdl[ A, B] is projective to
I[S,U]in1dV; hence Proposition 2.2 yieldsi : B) = (S: U). We will now prove

(S:U)=(®W):V). (7.7)

SinceS > @ (U), we have the inclusio: of (7.7). For proving<, let S’ be a subcover
of U. Propositions 2.2 and 7.3 giv&: U) = (5': U), and hencé(S:U), U] < &' for all
subcoverss’ of U. So we havd(S:U), U] < @ (U), and thereforéS:U) < (@(U):U),
which proves (7.7). O

Proposition 7.9. LetV be a finite expanded group, and étbe a homogeneous ideal\6f
Then one of the following two alternatives holds

(1) [U,Ul<Uand(@U):U)>U v U*.
(2) [U,U]=U,UisanatomoidV,and(®U):U)=U*.
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Proof. If [U,U] < U, there is a subcoves of U in IdV with [U, U] < S < U.
Proposition 7.8 yield$S: U) = (@ (U) : U). SincelU < (S:U), we get

U< (2WU):U).

SinceU andU* have zero intersection, we also haw@(U):U) > U*. Altogether, we
have(®(U):U) > U v U*.

We now treat the casfU, U] = U. Let S be a subcover ol/ in IdV. We have
(S:U)>S. We assume that’ is another subcover ot/. We know (S":U) > §'.
Propositions 7.3 and 2.2 yield’: U) = (S:U). Sowe get(S:U) > S v §' = U, which
leads to the contradictiof/, U] < S. So U has only one subcover and is thus join
irreducible. LetA be an atom ofidV with A < U. By Proposition 7.3A and U are
projective join irreducible elements af V. Proposition 7.7 givest = U. What remains
to show is(® (U): U) = U*. To prove this, it is sufficient to show that for evetye 1d V,
[U,A]=0iff U A A =0. The “if"-part follows from[U, A] < U A A = 0. For the “only
if”-part, we assume thdt/, A] =0 butU A A #0. SinceU is an atom ofdV, we have
A > U, andsqU, A]=0 implies[U, U] =0, which is not the case.

Proposition 7.10. Let V be a finite expanded group, |1t be a homogeneous ideal \f
and letA, B €1dV with A< U andB £ (@(U):U). Then we haveA, B] = A.

Proof. SupposgA, B] < A. Thenthereis anidead’ < A with [A, B] < A’. This implies
B < (A’: A). Proposition 7.8 now yield8 < (@ (U):U). O

Proposition 7.11. Let V be a finite expanded group, and let be a homogeneous ideal
of V. Then for each ideaB of V we haveB < (®(U):U)or B> U.

Proof. We assume thak # U. ThisimpliesB AU < U and thugU, B] < U. Sothereisa
subcovetS of U in IdV with [U, B] < S < U. ThisyieldsB < (S: U). By Proposition 7.8,
wegetB<(@WU):U). O

7.3. Homogeneous ideals and polynomials

Since all prime intervals in the ideal lattice that are below a homogeneous ideal are
projective, Proposition 6.1 puts the following restrictions on polynomials.

Proposition 7.12. Let V be a finite expanded group, and [Et be a homogeneous ideal
of V. Let A and B be ideals ofV with A < B < U, and letqg € Py(V) be such that
g(B) € A. Then for evenD € I1dV with D < U we havey(D) C & (D).

Proof. Let C be a subcover oD in the latticeldV. By Proposition 7.3, the intervals
I[C, D] andI[A, B] are projective indV. We apply Proposition 6.1 to the polynomdl
and the set®/C andB/A and obtain that] induces the zero function ab/C, and hence
we haveq(D) C C. Thereforeq(D) is contained in every subcover &f, which implies
q(D) S @ (D). O
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The following proposition is fundamental for constructing polynomial&/on

Proposition 7.13. Let V be a finite expanded group, and let be a homogeneous ideal
of V. Then there are polynomia¢s, e in Po(V) with the properties

el(u +u*) =u forallueU, u*eU*,
ez(u +u*) =u* forallueU, u*ecU*.
Proof. Let T be a subcover of/, and let/ andA be the ideals oPy(V) defined by
I := Annpyy) (M[T, U]),
A= Annpy) (M0, U*]).

By Corollary 6.7,1 is a maximal ideal oPg(V). We show

AL I (7.8)
We supposed C I. Then Proposition 6.11 gives idedis S € IdV with0< S < B < U*
suchthatM[S, BlandM|[T, U] are isomorphic. Lat be thePy(V)-isomorphism. We take
o’ to be a mapping fronB to U such that'(b) + T = a(b + S) for all b € B. We have

p(a/ (b)) =o' (p(b)) (modT) forallpe Po(V), beB
and also
o' (b1 +bp) =0a'(by) +a'(bp) (modT) forall by, by € B.
We define a subs&X of V by
K:={b+d'(b)+s+t|beB, seS, teT}.
We check that foks, k2> € K andp € Py(V) we havek; + k2 € K andp(k1) € K. Therefore
K is anideal ofV. We computeK AU. Letk=b+a'(b)+s+t(beB, se€S, teT)
be an element oK A U. Sinced’(b) andt lie in U, we haveb + s € U. Sinceb ands
are elements of/*, we haveb + s € U* A U, and thush + s = 0. Thereforeb € S. This
impliesa’(b) € T. So all four summands, o’(b), s, andt lie in S v T. We conclude
KAU<LSVT.

Now we computek A U*: Suppose + o'(b) +s +t € U*. Thend/(b) +t € U*. So
a'(b) +1t = 0. This impliese’ (b) € T, henceb € S. Again, all summands are ifiv T, so

we have

KAU*<SVT.
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We knowK =K A (UVU*)=(K AU) Vv (K AU*). Sowe have
K<SvVvT.

We will infer the contradictiorB C S from this fact. We fixb € B. The elemenb + o' (b)
liesin K and hence ir§ v T. Sinceo’(b) liesinU,we havebe SVT vU =S v U. But
b also lies inB, thus we have

be SVUYAB=EAB)VUAB)=5Sv0=S,

SO0 B C §, a contradiction. This yields (7.8).
SinceA £ I, and since is a maximal ideal oPo(V), we haved + I = Py(V). So there
are polynomials € A, i € I such that

a+i=id.
From this equation, we see thasatisfiesi (u*) = u* for all u* € U* andi(U) C T. By
Proposition 7.12, we haviéU) C @ (U). Again by Proposition 7.12 we havéd (U)) C
@ (P (U)), and thug?(U) € & (@ (U)) =: @ (U). In the same way, we obtain
i"(U) < o™ ().

Since for every ideaD > 0 the ideakb (D) is strictly belowD, there is a natural numbér
with i*(U) = 0. Nowe, := i ande; :=id — e are the required polynomials.c

Proposition 7.14. Let V be a finite expanded group, and [Et be a homogeneous ideal
of V. Then there is a polynomiak € Py(V) with the properties

eswu)=u forallueU,
e3(V) < (®(U):U) v U.
Proof. Itis a consequence of Proposition 7.9 thidt U] < U implies(®(U):U) v U =

(@U):U),whereagU, U] =U implies(®(U):U)vU =U*V U.
Let T be a subcover of/ inIdV. Let A and! be the ideals oPy(V) defined by

I := Annpyv) (MIT, U)),
A= Annpy ) (M[(@U):U) v U, V]).
We show
AZI (7.9)
We supposeA C I. Then Proposition 6.11 yields that there are ide@lsD € I1dV

with (®(U):U) v U < C < D <V such that the module®[C, D] and M[T, U] are
isomorphic. Then Propositions 6.9 and 7.8 yiglth D) = (T :U) = (®(U) : U).
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If [U,U]< T, Proposition 6.10 yields that[C, D] is abelian, and s¢D, D] < C.
Hence we haveD < (C:D), and thereforeD < (@(U):U), a contradiction. This
proves (7.9) forthe cadd/, U] < T.

If [U,U] £ T,wehaveT:U) # U, and so by Proposition 7.8, we hawe(U) : U) 2 U.
This implies

(@W):U)vU > (@(U):U)=(C:D)>C,

which is again a contradiction. This completes the proof of (7.9).

The ideall := Annp,)(M[T, U]) is a maximal ideal oPo(V). By Proposition 7.12,
we havel = Annp,(M[®(U), U]). SinceA ¢ I, we havel + A = Po(V). Hence there
are polynomials € I,a€ A with i + a=id. This yields thai satisfies(U) € ¢ (U) and
i(v)ev+ ((@WU):U) v U) for all v e V. Using Proposition 7.12, we obtain that for
some poweif we havei*(U) = 0 andi*(v) e v + (@ (U):U) v U) forall v € V. Then
e3:=id — i* satisfies the required properties:

Propositions 7.13 and 7.14 have the following consequence.

Proposition 7.15. Let V be a finite expanded group with the homogeneous idealff
(@(U):U) < U v U*, then there exists a polynomialwith e(V) € U ande(u) = u for
aluel.

Proof. We use Proposition 7.14 to constregtand Proposition 7.13 to construat Then
e:= e o e3 satisfies the required properties

The following proposition is an extension of [7, Theorem 3.2].

Proposition 7.16. LetV be a finite expanded group, and létbe a homogeneous ideal of
V with (@(U):U) < U v U*. Let f be a partial function orV with domainT C V. We
assumef (T) € U. Then the following are equivalent.

(1) There is a polynomigb € Pol; V with p(V) C U andp(t) = f(¢) forall r € T.
(2) For each coseC :=v + (@ (U):U) with v € V there is a polynomiap¢ € Pol1 V
such thatpc () = f(¢r) forall t e T N C.

Proof. (1) = (2) is obvious; therefore we just prove (2} (1). LetT = {1, 12, ..., ty}.
We proceed by induction om.

Case n = 1. The constant polynomial(x) := f (¢1) fulfills the required properties.

Case n=2.1f 1 =1, (mod (@ (U):U)), then there exists a polynomialwith p|r = f.
Let ey be the idempotent polynomial constructed in Proposition 7.15. The function
q(r) := ey (p(r)) satisfies the required properties.

If 11 # 12 (mod (@(U):U)), Proposition 7.11 givedy (11 —12) > U. Since f (1) —
f(t2) € U, there is a polynomiap € Poli V with p(t1) = f(t1), p(t2) = f(t2). The
functionq(z) := ey (p(¢)) satisfies the required properties.
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Case n > 3. If all elements ofT" are contained in one cosett+ (@ (U):U), we know by
assumption that there is a polynomgied Poly V with p(z) = f(z) forall z suchthat € T'.
Now g(x) := ey (p(x)) interpolatesf on T and has range containedih

We shall now assume that — 2 ¢ (@ (U):U). By induction hypothesis, we find a
polynomialqs € Pol1 V with q1(V) C U that agrees withy on {rp, z3, ..., t,}. Subtracting
g1 from f, we are left with a functiory; which satisfiesfi(t2) = fi(13) =--- = fi(ty) =
0, f1(T) C U, and still f1 can be interpolated at each intersection of its domain with a
coset of(@(U):U) by a polynomial. For interpolating; at 7, we define two subsets
andB of V as follows:

S:={p(t1) |pePolLV, p(V) CU, p(t2) = p(ts) = P(ta) = --- = p(tx) = O},
B:={p(t1) |[pePol1V, p(V) CU, p(tz) =p(ta) = --- = p(t) = O}..

It is obvious that botts and B are ideals ol and thatS € B. By induction hypothesis,
we know f1(t1) € B, and in order to find the polynomial that interpolateat 7', we prove
f1(r1) € S. For this, we show

S=B. (7.10)

Let D :=Zy (11 — 12). We know thatD £ (¢ (U):U) andB < U, hence Proposition 7.10
yields[B, D] = B. We will now show

[B,D]<S. (7.11)

For that purpose, we show that all generatorgRfD] of the forms(b, d) with s€ Pol V,
s(0,x) =s(x,0)=0,b € B,d € D are inS. This can be seen as follows. Sink& B,
there is a functiomj; € Poly V such that

qi(r1) =D, 01(t3) =q1(ta) =--- = qa(tn) =0,

andqi(V) C U. Sinced € D =71y (t1 — t2), there is a functiomj, € Pol; V such that
Oz2(11) =d, gz2(t2) = 0.

Then q(x) := s(q1(x), gq2(x)) is zero onr,1t3,...,t, and the range of] is contained
in U. This impliesq(¢1) € S, which meanss(b,d) € S. Thus we have proved (7.11),
and therefore Eq. (7.10). Hence there is a polynomial whose range is contaitiethdt
interpolatesf1 at 7. This completes the proof of Proposition 7.161

This result yields a complete description of partial compatible functions whose domain
is contained in a hon-abelian minimal ideal. Corresponding results for groups were proved
in [7, Theorem 2.1], [27, Theorem 10.24].

Proposition 7.17. LetV be a finite expanded group, I[EtC V, and letA be a minimal ideal
of V. We assumpA, A] = A. Then for a functior: T — A, the following are equivalent
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(1) The functiorr is a partial compatible function oW'.

(2) Forall x,ye T withx — y € (0: A) we haver(x) = c(y).

(3) There is a polynomigb € Poly V with p|7 = c andp(V) C A.
(4) There is a polynomigb € Pol1 V with p|r =c.

Proof. For (1)= (2), we takex, y € T such thatr —y € (0: A). By Proposition 7.7, every
non-abelian minimal ideal 0¥ is homogeneous. So Proposition 7.9 yie{@sA) = A*.
Sincec is compatible, we have(x) — c(y) € A*. Sincec(x) — ¢(y) also lies inA, we
havec(x) = c¢(y). For (2)= (3), we observe that is constant on eacA*-coset, and so
Proposition 7.16 implies that is the restriction of a polynomigl with p(V) € A. The
implication (3)= (4) is obvious. For (4= (1), we observe that every polynomial is
congruence preserving.c

If we include the case that the homogeneous idéaatisfies[U, U] < U, we can
describe polynomials with range in homogeneous ideak follows:

Proposition 7.18. Let V be a finite expanded group, and Iét be a homogeneous
ideal of V with (@(U):U) < U Vv U*. LetR:={ply | p € Pol1V, p(U) C U}, and let
{vo, v1, v2, ..., vs—1} be a transversal through the cosetslofs U*. We define a mapping

I':R*— {pePolLV|p(V)C U},
where the functioq = I'(ro,r1, ..., rs_1) is defined by
q(v,-—i—u—i—u*):ri(u) forallie€{0,1,...,s =1}, ucU, u* € U".

ThenT is a bijection.

Proof. First, we show that) is really a polynomial. By Proposition 7.16 this is the case if
the restriction ofj to every(® (U) : U)-coset is the restriction of a polynomial. In the case
[U,U]=U,wehave(®@(U):U) = U*. The restriction ofj to aU*-coset is constant, and
therefore a polynomial. Inthe café, U] < U, we know(® (U) :U) = U v U*, and so we
have to show that the restriction@to everyU v U*-coset is a polynomial. We talkeo be
the idempotent polynomial with ran@éconstructed in Proposition 7.15. Definifgx) :=
e(r;(—v; +x)), we obtaing(v; +u +u*) =r;(u) = &, (u)) =1t;(v; +u). By the fact that

t; has range contained i, and byU A U* =0, we havd; (v; +u) =t; (v; + u +u*). So

t; interpolatesy atv; + (U v U*).

For showing that" is surjective, we fix a polynomial with range contained i/, and
definer; (x) := q(v; + x). Sinceq has range contained i, we getq(v; + u + u*) =
g(v; + u), and so the required equality(u) = q(v; +u + u*) foru € U, u* € U* holds.

The mapping’ is injective because (u) #r; (u') impliesq(v; +u) # q(v; +u’). O
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8. Restrictions of polynomialsto homogeneousideals

Proposition 7.18 allows to reduce the problem of describing polynomials on certain
finite expanded groupg to describing the restrictions of polynomials to a homogeneous
ideal. We define the set

R:={plv |pe Po(V)}.

In the case that the homogeneous idéalatisfieqU, U] = U, we know thatJ is an atom
of IdV. So Proposition 6.6 (or Proposition 7.16) implies that every mapping — U is
a polynomial.

In describing polynomials for the ca$&, U] < U, we restrict ourselves to the case
@ (U) = 0. By Proposition 7.9, we then hay&, U] = 0. For a fieldD, let M, (D) be the
ring of (n x n)-matrices oveb, and letD">" denote theM ,(D)-module of all(n x m)-
matrices with entries frorD.

Proposition 8.1. LetU be a homogeneous ideal of the finite expanded gxbuffe assume
that we havep (U) =0and[U, U] = 0. We taker to be the ring with the universe

R:={plu|pePo(V)}

and the operations given by pointwise addition of functions and their composition. We take
U to be theR-module

(U.+.—.0.(fr [T eR)),

where the operation; is defined byf; (1) :=r ().

Then there area field D, natural numbersn, , a ring isomorphisnzz : R — M, (D),
and a group isomorphismy : (U, +) — (D®™*™ 1) such that forr € R andu € U we
have

eu(r)) =er(r)-euu).

This proposition makes it possible to identify the elements ofith (n x m)-matrices,
and the restrictions of polynomials with x n)-matrices.

Proof. Since[U, U] =0, Proposition 2.3 gives th&t is a ring andJ is anR-module. We
observe that the universes®Rfsubmodules ol are the ideals of belowU.

Since® (U) =0, [26, Lemma 4.83] yields that[0, U] is a complemented lattice and
thus, again by [26, Lemma 4.83];, is the join of atoms ofdV. By Proposition 7.3, all
these atoms are projective lithV. Proposition 6.1 yields that these atoms are isomorphic
asR-modules. LetA be one of these atoms. We see that the Rrig faithful on A. To this
end, we fixr € R with r(A) = 0. We show (U) = 0. We fixu € U. SinceU is the join of
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atoms that are projective t, we have elements, b, ..., b, Withu =b1+bo+---+ b,
such that each; lies in some atom projective té. So we have

I'(Xn: b,’) = Xn:r(b,').
i=1

i=1

But sincer (A) = 0, Proposition 6.1 yields(B) = 0 for every atomB that is projective
to A. So each summarrdb;) is 0, which implies (1) = 0.

HenceR is primitive on A; thus by Jacobson’s Density Theorem [17, p. B8]s
isomorphic to the matrix ringM, (D), whereD is the field of allR-endomorphisms of
A, andn is the dimension ofA overD.

We observe that thR-moduleU is the sum of finitely many simplR-modules that are
R-isomorphictoA, and thereforé) is isomorphic taA™ for somem € N. Since the module
A is isomorphic tadd™*D | we obtain that) is isomorphic tag D<)y = ptxm

We will now examine compatible functions on the modDI&*"™) .
Proposition 8.2. Every vector space ové&F(2) is strictly 1-affine complete.

Proof. Let V be a vector space ov&F(2), and letc:T € V — V be a compatible
function. We fix two elements, t> € T with t1 # 2. Sincec is a compatible function,
it can be interpolated dt1, 2} by a polynomialp. Letc1 := ¢ — p. We showe1(T) =0,
and to this end, we fixg € T. Since the intersection of the subspace genergted; with
the subspace generatedy- 2 is zero, we get1(r3) = 0. Hencep is the polynomial that
interpolates. O

Proposition 4.5 shows that a finite module over a finite simple ring with unit can only
be strictly 1-affine complete if every minimal submodule has precisely two elements, and
hence the ring has to be the two element field. But as the 2-dimensional vector space
over GF(3) shows, there are modules that are 1-affine complete, but not strictly 1-affine
complete. More examples of affine complete modules are given in the following result
due to [33], which we will not need for characterizing strictly 1-affine complete expanded
groups, but which will help us to characterize all 1-affine complete expanded groups with
(SCD.

Proposition 8.3. Let R be a finite simple ring with unit, and l& be a faithful simple
unitary R-module. IfifN| = 2 or m > 2, then the modul®&l™ is 1-affine complete.

Proof. If N has two elements, theN is obviously 1-affine complete. i > 2, then it
follows from [33] thatN is evenk-affine complete for all natural numbers O
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9. Polynomialson expanded groupswith (SC1)

We will now show that a finite expanded group wW{ttiC1 has a homogeneous id€a)
and that the centralizé> (U) : U) is less or equal t&/ v U*. We recall that/ (Id V) is the
set of all strictly join irreducible elements afV and forA, B € J(I1dV) we haveA ~ B
if I[A=, A]~~ I[B™, B].

If A is abelian overA™, we have the following possibility to compute the centralizer
(A7 A).

Proposition 9.1. Let V be an expanded group witt6C1), and letA € J(1dV) satisfy
[A, A] < A™. Then for every strictly meet irreducible idelwith the propertieE > A~
E# AwehaveA":A)=EV A.

Proof. We havel[A~, A] /' I[E, E v A] (and thereforeE v A = E*). Hence, Propo-
sition 2.2 gives(E: E v A) > E v A. SinceE is meet irreducible, the conditiof8C1)
impliesthat(E : E v A) = E v A. Proposition 2.2 now yieldelA~: A)=EV A. O

Each equivalence clags/~ is an antichain:

Proposition 9.2. LetV be an expanded group witlsC1), and letA, B € J(IdV) such that
A~ BandA < B. ThenA = B.

Proof. If [A, A] = A, the result follows from Proposition 7.7. Hence, we assume
[A, A] < A™. Suppose that < B. Then letE be a strictly meet irreducible element
of IdV with E > A~, E ;4 A. By Proposition 9.1, we havéA~:A) = E v A. Since

B > A, the modular law yield§B A E) v A = B A (E v A). By Proposition 2.2, we
haveE v A= (A":A)= (B :B) > B. Hence we getB A E) vV A > B. On the other
hand, bothB A E and A are< B. Altogether, we getB A E) vV A = B. SinceB is join
irreducible andA < B, we haveB A E = B, which impliesB < E. Therefore, we also
haveA < E, which contradicts the choice &. O

Proposition 9.3. Let V be an expanded group wittsC1), and letA, B,C € J(IdV). If
A~ BandB < C,thenA <C.

Proof. We first showA < C: Suppose thatA £ C. The commutatorfA, C] fulfills
[A, C] < A. SinceA is join irreducible, this means that eithet, C1=A or[A,C] < A™.
If [A,C]=A, we haveA AC >[A,C]= A, and henceA < C. If [A,C] <A™, we
have(A™: A) > C. Proposition 2.2 yieldéB~ : B) > C, from which we ge{B, C] < B™.
Since bothB and C are join irreducible, Proposition 3.3 yields thdtdoes not satisfy
(SCJ). Hence we must havé < C. Now suppose that = C. Then we haved ~ B and
B < A, which contradicts Proposition 9.2.0

These properties allow us to define an order relatioon J (IdV)/~:
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Definition 9.4. LetV be an expanded group wif8C1), and letA, B € J(1dV). We define
A/~< B/~ iff 3A’eA/~3B' e B/~: A'<B.
Proposition 9.5. LetV be an expanded group witlsC1). Then we have

(1) <is apartial order onJ(1dV)/~.
(2) A/~< B/~iffVA'e A/~3B' € B/~ A'<B'.

Proof. For (1), we observe that the relatiahis obviously reflexive. Let us now prove
that it is transitive. LetA, B, C € J(IdV) such thatd/~ < B/~ and B/~ < C/~. By
definition, there are ideald’ € A/~, B’, B” € B/~, andC’ € C/~ such thatA’ < B’
andB” < C'. If B” =C’, we haveB/~ = C/~ and thusA/~ < C/~. If B” < C’, then
Proposition 9.3 yield®’ < C’. Hence we havel’ < C’ and therefored /~ < C/~. Now
we show thatg is antisymmetric: letd, B € J(IdV) such thatA/~ < B/~ and B/~ <
A/~. Hence there ard’, A” € A/~ andB’, B” € B/~ with A’ < B’ andB”" < A". If
B” = A", we haveA/~ = B/~. If B” < A”, Proposition 9.3 yield®’ < A”. Hence we
getA’ < A”. Now Proposition 9.2 yieldd’ = A”. In the same way, we obtaiB’ = B”.
From this, we geft’ < B’ < A’, which impliesA’ = B’ and hence alsd /~ = B/~.

The “if"-direction of (2) is obvious. For “only if”, letA, B € J(IdV) such thatA /~ <
B/~. Now let A’ be an arbitrary element of /~. We know that there ard”, B” with
A" € A/~,B”" € B/~ suchthatA” < B”.If A” = B”,thenA’ € B/~, henceB’ := A’ is
an elementimB/~ with A’ < B". If A” < B”, Proposition 9.3 gived’ < B”, henceB” is
an elementinmB/~ with A’ < B’. O

Proposition 9.6. LetV be a finite expanded group witl$C1), and letA/~ be a minimal
element of J(1dV)/~, <). Then every ideal’ € A/~ is a minimal ideal ol

Proof. Let B be a minimal ideal of¥ with B < A’. As a minimal ideal,B is join
irreducible. By the definition ok, we getB/~ < A’/~. Since A’/~ is minimal with
respect tog, we getB € A’/~. But now we haveB ~ A’ and B < A’; so Proposition 9.2
yields B = A’, and thusA’ is minimal. O

We are now ready to construct a homogeneous itfeal

Proposition 9.7. Let V be a finite expanded group wittsC1), and letA € 1dV be such
that A/~ is a minimal element of (IdV)/~. Then the ideal/ defined by

U= \/ B (9.1)

BeA/~

is a homogeneous ideal ¥f,

Proof. We first show that every join irreducible ide@lwith C < U satisfiesC ~ A. By
Proposition 9.6, every element i/~ is an atom ofldV. Therefore,U is the join of
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all atoms in/[0, U]. [26, Lemma 4.83] implies that[0, U] is relatively complemented.
So C has a complement idi[C—, U], which givesS € I1dV such thatS v C = U and
SAC=C".ThusI[C~,C] projects up tol[S, U]. SinceU is the join of elements in
A/~, we find an idealB € IdV with B ~ A such thatB £ S. So we haveS v B > §,
and since by modularity we havé > S, we getS v B = U. We also obtair§ A B < B,
and, using again modularity,A B = B~ andthus/[B—, B] / I[S, U]. Butsincel[S, U]
projects down td [C~, C], we obtainC ~ B, and thusC ~ A.

For property (3) in Definition 7.1, suppose that there are join irreducible idgal®
in 1dV such thatB < U, D &£ U, and B and D are projective. By the fact that all join
irreducibles belowJ are projectiveB is projective toA. ThereforeD appears in the join
by whichU is defined, and so we have < U, a contradiction. O

More information on the interval[0, U] can be obtained from Proposition 8.1.

So every expanded group wittsC1 has at least one homogeneous ideal. And in
expanded groups witliSC1), all homogeneous ideals have special properties. The most
importantone is® (U): U) < U v U*, which allows to use Proposition 7.15.

Proposition 9.8. LetV be a finite expanded group witBC1), and letU be a homogeneous
ideal of V. Then we have

(1) @U)=0.
(2 f[U,U]l<U,then[U,U]=0and(0:U)=U v U*.
(3) If [U,U]=U, thenU is an atomofdV and (0:U) = U*.

Proof. If [U, U] = U, then Proposition 7.7 yields that is an atom oidV, and so (1) is
immediate.

Let us now consider the cagg, U] < U. We first show that/ is the join of all atomsA
of IdV with A < U. Suppose it were not. Sinégis the join of all join irreducible elements
of IdV that are< U, there must be a join irreducible ideBle I1dV such thatB is not an
atom. LetA be an atom ofdV with A < B. By the definition of homogeneous ideals, we
know I[0, A] «~ I[B~, B], which contradicts Proposition 9.2.

Now we show that every atom < U satisfies|A, A] = 0; for this purpose, we look
at (0:A). From Proposition 7.8, we obtaii®: A) = (@ (U) :U). By Proposition 7.9 and
[U,Ul<U,wehave(@U):U) > U.Hence:A) > U, and thudA, A1 < [U, A]=0.

From the fact thaU is the join of atomsA that satisfy[A, A] = 0, we obtain, using
Proposition 2.1[U, U] = 0. By Proposition 3.2, 0 is therefore the intersection of all
subcovers ol/, which implies® (U) = 0. This finishes the proof of (1).

For the proof of (2), we observe that/, U] =0 andU A U* =0 imply (0:U) >
U v U*. We now show0:U) < U v U*. By Proposition 3.1 we have

0=[(0:0),U]
([O:), ©:)]AU) v ((0:U) AU, U])

[(0:U),(0:U)]AU.
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The definition of U* thus yields[(0:U), (0:U)] < U*. SinceV/U*, as a quotient of
an expanded group witfSCJ), satisfies the conditiodSC1), Proposition 3.2 gives that
the coatoms of the lattice[U*/U*, (0:U)/U*] (as a sublattice ol V/U*) intersect to
0=U*/U*. (Here we writeA/U* for the image ofA under the canonical epimorphism
fromV ontoV/U*.) By [26, Lemma 4.83], we know that the lattiégU* /U*, (0:U)/U*]

is complemented. Hence also the isomorphic latfigeé*, (0:U)] is complemented. Let
K be a complement o/* v U in I[U*, (0:U)]. Then we havd/* = K A (U* v U).
By congruence modularity, this is equal ¢& A U) v U*. This impliesKk A U < U*.
Therefore, we also hav€ AU < U* AU, thus

KAU=0.

This impliesK < U*. Hence we get0:U) = (U* Vv U) v K < U* v U, which finishes
the proof of (2).

For item (3), we observe thatfit/, U] = U then[A, U] =0iff A A U =0. This shows
O:U)=U*. O

10. Interpolation of compatiblefunctions

Proposition 10.1. Let V be a finite expanded group, and [Et be a homogeneous ideal
of U with [U,U]=0, (0:U)=U v U* and®(U) = 0. We assume that every atotnof
IdV with A < U has precisely two elements. Lebe a unary partial compatible function
on 'V such that the domaiff' of ¢ is contained in(0:U) andc¢(T) C U. Thenc can be
interpolated by a polynomial ofi.

Proof. For getting started, we will not interpolate but a functionc1, which is a partial
function fromU to U defined as follows.

c1:U—> U,

c(u+u*), ifthereisau* e U*withu+u*eT,
undefined else.

The functioncy is well defined. To show this, letbe inU, and leta™ andb* be inU* such
thatu 4+a* andu + b* lie in the domain ot.. We then have (1 +a*) = c(u +b*) (modU*)
becauser is a compatible function. Since the range ofs contained inU, we have
c(u+a*)=c+ b*) (modU A U*), which impliesc(u + a*) = c(u + b*). This last
equality makes (1) well defined.

Now we show thatc; is a compatible partial function ol. For that purpose, let
u1, uz € domce1. We have to show

c1(u) =c1(u2) (modl), (10.1)

where! is given by :=Zy(u1 — uz). First of all we notice thaty(u1) = c(u1 + uj)
for someu] € U*. In the same way we find such thatci(u2) = c(uz + u3) for some
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uy € U*. We immediately see that; + u] = uz + u3 (mod/ v U*). The functionc is
compatible. Therefore we hav€ui + u1*) = c(uz + u2*) (mod I v U*), and, since the
range ofc is contained inU, we getc(u1 + u3) = c(uz + u3) (mod (I v U*) A U). But
by congruence modularity and< U, we getI VU Y AU =1 v (U*AU)=1v0=1.
This implies (10.1).

Proposition 8.1 tells how to séé as a vector space ovei-(2), and so there is a natural
numberm such that we can view as a partial compatible function on the vector space
GF(2)™. By Proposition 8.2, we have a polynomfak Pol; V that interpolates;. Since
U is the range of an idempotent polynomial function (Proposition 7.15), we may assume
that the range gb is contained ir/. Now we show thap agrees withc on 7. To this end,
letr € T. SinceU v U* = (0:U), we know thatt = u + u* for someu € U, u* € U*.
Now we haver (1) = c(u + u*). By the definition ofc1, c(u + u*) is equal tacy (1) = p(u).
Sincep(u 4+ u*) is congruent tg(x) moduloU*, and since the range gfis contained in
U, the fact thaty A U* = 0 yieldsp(u) = p(u + u*). Altogether, we gep(¢) = c(¢). O

Proposition 10.2. LetV be a finite expanded group, and [étbe a homogeneous ideal of
Uwith[U,U]=0,(0:U)=UvU*and®U) = 0. We assume that every atohofIdV
with A < U has precisely two elements. Lebbe a unary partial compatible function ah
with domain? such thate(7) € U. Thenc can be interpolated by a polynomial dh

Proof. By Proposition 7.16, it is sufficient to interpolate on each coset of0:U)
separately. But the interpolating polynomial on every single coset exists by Proposi-
tion 10.1. O

Now we glue all our pieces together to give a proof of Theorem 1.3.

Proposition 10.3. LetV be a finite expanded group.Vf satisfies(SC1) and (AB2), then
V is strictly 1-affine complete.

Proof. We induct on the size of. The statement is obvious for one-element algebras.
For the induction step, we use Proposition 9.7 to construct a homogeneou#/idBgl
Proposition 9.8, we have(U) =0 and(®(U):U) < U v U*. Since both properties
(SC1 and (AB2) carry over to homomorphic images ®f we know by the induction
hypothesis that/ / U is strictly 1-affine complete. Letbe a partial compatible function on
V with finite domainT'. By the strict affine completeness ¥f/ U, we first interpolate
¢ modulo U after which we are left with a compatible functian whose range is
contained inU. If [U, U] = U, then by Proposition 7.9/ is a minimal ideal o, and so
Proposition 7.17 tells that is a polynomial.

If [U,U] < U, then by Proposition 9.8, we hay&/, U] = 0. The condition(AB2)
implies that every atomA of I1dV with A < U has precisely two elements. From
Proposition 10.2 we obtain that is a polynomial. O

We have now concluded the proof of our main result stated in Theorem 1.3: Proposi-
tion 10.3 proves (13 (2), Propositions 4.4 and 4.5 prove (& (1). Propositions 4.6
and 4.7 prove (3x (1). For (1)= (4), we observe that both conditio(8C1) and(AB2)
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carry over to homomorphic images. Therefore, by Proposition 10.3, every homomorphic
image of a finite expanded group witBC1) and(AB?2) is strictly 1-affine complete. The
implication (4)= (3) obviously holds for finite algebras.

11. Strictly 1-affine complete groupsand rings

In this section we characterize those finite groups and commutative rings with unit that
satisfy (SC1 and (AB2). A group G is calledperfectiff it coincides with its derived
subgroup.

Proposition 11.1. For a finite groupG, the following are equivalent.

(1) G satisfiegSC1 and(AB2).
(2) G has a normal subgroup! such that every normal subgroupof G with I < H is
perfect andG/H is isomorphic to(Z2)" for somen € No.

Proof. (1) = (2). Let H be the intersection of all normal subgroups of index Z5in
ThenG/H is a group of exponent 2. Seeking a contradiction, we supposeBtlisita
normal subgroup oG with B < H that is not perfect. By [26, Exercise 4.156(11)], the
derived subgroup’ is equal to the commutatdB, B], taken inG. Thus there is a normal
subgroupA of G suchthatd < B in1d G, and the interval[A, B] is abelian. We choosé

to be maximal among the normal subgroup€ofvith C > A, C # B. We observe thaf

is meet irreducible and thdfA, B] projects up td[C, C*], and thus Proposition 2.2 and
(AB2) imply thatC* contains precisely two cosets@f Passing t&/ C and using the fact
that every normal subgroup with two elements lies in the center, we ofgfai@*) = G.
Hence, conditionSCJ impliesG = C*. SoC is a normal subgroup d& with index 2,
and thusC > H > B, a contradiction to the choice @f.

(2) = (1). Suppose thatrAB2) fails. Then there are normal subgroups< B of G with
[B,B] < Aand|B/A| > 2, and henc& has a principal series in which one of the factors
is abelian and of size greater than 2. But by the assumpii®hsas another principal series
in which the only abelian factors are of size 2, contradicting the fact that all principal series
have isomorphic factors.

For proving(SCJ), suppose that there is a meet irreducible normal subgtéugd G
such thatM : M%) > M*. If M > H, then since all meet irreducible normal subgroups
of Z4 are maximal M ™ = G, which contradicts the fact thats : M) is strictly greater
thanM*. If M # H, the intervall[M, M™] projects down td[M A H, Mt A H]. This
interval forms an abelian section beldw, thusM* A H is not perfect. O

Altogether, we have established the following characterization of affine complete
groups:

Corollary 11.2. For a finite groupG, the following are equivalent
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(1) G has a normal subgroup! such that every normal subgroupof G with I < H is
perfect, ands = H or G/H is of exponenk.

(2) G is strictly 1-affine complete.

(3) Every homomorphic image € is 1-affine complete.

However, we note that (13> (2) and (1)= (3) of Corollary 11.2 can also be proved
from [25, Chapter 1, Proposition 12.5] or from Proposition 7.17.

Now we switch to finite commutative rings with unit. First we characterize subdirectly
irreducible such rings that satistpAB2) and(SCJ).

Proposition 11.3. For a finite commutative ringR with unit, the following are equivalent

(1) Ris subdirectly irreducible and satisfi¢8B2) and (SCJ.
(2) Ris eitherZg, the matrix ring{(;‘ S) | x,y € GR(2)}, or a finite field.

Proof. The implication (2)= (1) is obvious. For (1)= (2), letR be a ring satisfying
the conditions in (1). If the Jacobson radidaR) is zero, the ringR is semisimple and
therefore a direct product of fields. But sinReis subdirectly irreducible, it follows that
R is a field. So we assume thatR) is not zero. Let us recall that for commutative rings
the commutator operation is just ideal multiplication. We know théR) is a nilpotent
ideal of R, in other words, the sequend&*tD(R) := [J™(R), J(R)], JP(R) := J(R)
eventually reaches 0. Since Proposition 3.1(1) impliesA] = [[A, A], A] for all ideals
A of aring with (SCJ), we get[J(R), J(R)]=0.

Now let M be the unique minimal ideal dR. ThenM < J(R). Since[M, J(R)] <
[J(R), J(R)] = 0, condition(SC)) givesM = J(R). Furthermored M, M] = 0, and so
condition(AB2) gives that|/M| = 2. Letm be the nonzero element 1. The ringR/M
is semisimple and therefore isomorphic to a direct proéiyck F2 x --- x F; of fields.
We will now showk =1, i.e.,R/M is a field: Suppose thdt > 1. ThenR/M has an
idempotent element different from -9 M and 1+ M. HenceR contains an element
a ¢ {0,1, m, 1+ m} that satisfiea? = a ora? =a + m.

Case a® = a.SinceM is the unique minimal ideal d&®, there is am € R such thain = ra.
We know thatn? = 0, hence we have

0=m?=r2a’>=r’a=rm.

From this, we getZr (r), M] = 0, and hence conditiof8C2) impliesr € M. Thus we have
r =m and thereforen = ma, which impliesm(a — 1) = 0. This implie§Zr(a — 1), M] =
0, and hence bySC1) we haveu — 1€ M.

Case a2 =a + m. Then fora’ := a + m we havea’? = (a + m)? = a? + 2am + m? =
a+m+0+0=d'. Asinthe case? = a, we obtaina’ — 1 € M. Hence in both cases we
get thatz lies in{0, 1, m, 1+ m}, a contradiction.
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ConsequentlyR/M is isomorphic to a field=. Suppose that this field hg&elements.
Since the ringR is local, every element not it/ is invertible, hencdk contains & — 2
invertible and 2 noninvertible elements. We consider the mappi®y— R, r+— r + 1.
If » is invertible, we getm = m. From this it follows that(r + 1)m = 0. Hence(r + 1)
is a zero divisor and therefore not invertible. Since the mapping injective, we get
2f —2< 2. But thisimpliesf = 2, and thug- is a field with 2 elements.

By inspection of all rings with four elements, we fitfd and the matrix ring{(’y‘ 2) |

X,y € GF(2)} as the only subdirectly irreducible commutative rings with unit and two
element radical. O

Altogether, we have established the following characterization of affine complete
commutative rings with unit:

Corollary 11.4. For a finite commutative rin@R with unit, the following are equivalent

(1) Every subdirectly irreducible homomorphic imageRofs either a field, the rindZ4,
or the matrix ring{(’y‘ S) | x,y € GF(2)}.

(2) Ris strictly 1-affine complete.

(3) Every homomorphic image & is 1-affine complete.

Proof. We observe that any finite expanded grodgatisfies(SC1) and (AB2) if every
subdirectly irreducible quotient of satisfies(SC1) and (AB2). For (SCY), this follows
from the definition. Suppose théAB2) fails in V and thatA and B produce this failure,
which meansA < B, [B, B] < A, and thatB contains more than two cosets Af As in
the proof of Proposition 4.7, we proje£fA, B] up to an intervall[M, MT] with meet
irreducible M. (AB2) then fails in the subdirectly irreducible quotievif M. So we see
that by Proposition 11.3, (1) is equivalent to the fact tRasatisfies(SC1 and (AB2).
Now the result follows from Theorem 1.3.0

12. 1-affine complete expanded groupswith (SC1)

In the previous sections, we have given a complete description of those finite expanded
groups in which every unary partial compatible function is a polynomial. We are now
going to examine those expanded groups in which every uioga/compatible function
is a polynomial. Such algebras are called 1-affine complete. For finite groups, 1-affine
complete groups have been characterized for the class of abelian groups [28] and
Hamiltonian groups [34]. Furthermore, all finite strictly 1-affine complete groups are
obviously also 1-affine complete, and, as the grdg Z3 shows, the converse is not true.
This example already shows that in contrast to the situation for strictly 1-affine complete
groups, l-affine completeness is not preserved under the formation of homomorphic
images.

In this section we characterize the 1-affine complete expanded groups among the
expanded groups witlSC1 by a condition on the ideals of. To this end, we look at
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the meet irreducible ideals &f, and we collect those in the sgf(I1dV). We define an
equivalence relatiors on M(IdV) by M ~ N: & I[M, M*] «~ I[N, N*]. In this case,
we say that and N areprojectivemeet irreducible ideals df. We need the following
condition(AM):

Definition 12.1. A finite expanded grouly satisfies the conditiotAM) if for all meet
irreducible idealsV in I1dV at least one of the following conditions holds:

(1) The intervall[M, M™] is not abelian.
(2) M contains precisely two cosets bf.
(3) There is a meetirreducible idelle M (IdV) with N A M andN ~ M.

We observe that if every meet irreducible ideal fulfills one of the first two conditions
thenV satisfies the conditiofAB2). The condition(AM) is weaker thafAB2) because
it also allows that for an abelian intervalM, M*+] (M meet irreducible) the ideal/ ™
contains more than two cosets modMoas long as there is another meet irreducible ideal
projective toM.

Theorem 12.2. A finite expanded group wit{SCJ) is 1-affine complete if and only if it
satisfieg AM).

In the remainder of this section, we prove Theorem 12.2. To this end, we relate the third
condition of Definition 12.1 to the join irreducible ideals\df We recall that/ (I1d V) is the
set of all strictly join irreducible elements afV and forA, B € J(IdV) we haveA ~ B
if I[A~, A] ~~ I[B~, B].

Proposition 12.3. LetV be a finite expanded group wit®C2), let A be a join irreducible
ideal ofV, and letM be a meet irreducible ideal &f such that the intervalé[A—, A] and
I[M, M*] are projective. Then the following are equivalent

(1) There is a meetirreducible idedl e M(IdV) with N £ M andN ~ M.
(2) There is a join irreducible ideaB € J(IdV) with B # A and B ~ A.

Proof. (2) = (1). Let A and B be given as in condition (2). By Proposition 92and B
are incomparable. In particulat, # B, so that we can pick a maximal ide&ilwith £ > A
andE # B. We will now show

E>B". (12.1)

SupposeE # B~. Then we haveE v B~ > E. SinceE was chosen to be maximal with
E > A, E # B, we must have

EVB™ >B. (12.2)
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SinceE ¥ B, we haveE A B < B. But B is join irreducible, and therefore we have
EAB<B. (12.3)

From (12.2), we obtainrB = B A (E v B™). By modularity of IdV, this is equal to
(B A E) Vv B™. But by (12.3), this is equal t8~, and hence we have = B—, which is
a contradiction. This completes the proof of (12.1). By its choltés a meet irreducible
ideal of V. We have

E~M. (12.4)

To prove this, we observe that the intervgB—, B] projects up to/[E, E Vv B]. So by
modularity, E v B is a cover ofE, and thereforeE v B is equal toE™. This yields
IIE,EY]\ I[B~, B] «~ I[A™, A] &~ I[M, M], which proves (12.4).

Now we choose&” in IdV such thatF' is maximal with the property” > A~, F % A.
We obtain thatF is meet irreducible and[F, FT]1\  I[A~, A]. Hence we havé& ~ M.

SinceE > A andF # A, we haveE # F. Hence the clas8//~ contains at least two
elementsE andF.

(1) = (2). Let M and N be given as in condition (1). IfM:M*) = M, then
Proposition 2.2 yieldd = (M:M*) = (N:N*) = N. Therefore, we haveM : M ™) =
M, and, again by Proposition 2.24* = N*. HenceM andN are incomparable. Now
switching joins and meets we may repeat the proof of=2)1) to obtain that the class
A/~ contains at least two elementsQ

We will now see that the conditiofAM) is preserved under forming certain
homomorphic images. To this end, we first need the following lattice theoretic result.

Proposition 12.4. LetL be a finite modular lattice, let be a homogeneous element.of
and leta, 8 be two meet irreducible elementslofvith I[a, at] «~ I[8, 7]. We assume
a > . Then we have

(1) B=np.
(2) The intervals/[a,a™] and I[B, B*] are projective in the sublattice , of L with
universeL,, = I[u, 1].

Proof. For proving (1), we supposg # . We choosey minimal in L with y < g,
y £ B, and obtain/[y~, y] / I[B, BT]. We chooseS minimal in L such thats < o™,
8 & o, and obtain/[§~,8] / I[e,a™]. Sinces £ o, we haves £ n. Altogether, we
havel[y~,y] e I[87,8], y < n and$ £ u, which contradicts the assumption that
is homogeneous.

Now we prove (2). Sincé[a, a™] «~ I[8, 7], there is a natural number and there
areyi, ¥2, ..., ¥u—1, 01,82, ..., 82,—1 € L such that

1o, @]\ ITys 811 7 1ly2, 821\
oo S y2n-2, 820—2) N [y2n—1. 82011 S 1[B, BY]. (12.5)
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We notice that forps1, p2,..., pg in @ modular lattice withps < p2, the conditions
I[p1, p2] /" 1lp3, pal and I[p3, pal / 1lps, ps] imply I[p1, p2] 7 Ips, pel. Now for

eachyy, 82 in (12.5) we pick an elemeniy, € L which is maximal withnz, > yo,

n2k # 82r. Thenny is a meet irreducible element bfand we have

o, PNy, 811 7 102,35 |\
oo S 202, 13,_5] N ATv2n-1,820-11 S I[B. BT].

By property (1) shown above we know that for eagh we haveny, > 1. Now we show
that we even have

oot PNy v i, 81 v il /7 102,03 ]\
o S 2213, o NAy2n-1V w8201V ] S[B,BT]. (12.6)

To this end, let, § be any elements df, and lety be a meet irreducible elementlofwith
n > u. We assumé[y, §] / I[n, n*]. Then we also have

Iy v, 8vul / 1[n.n"]. (12.7)

To prove (12.7), we compui@ vV ) Vo =uv @Svn)=p vyt =ntand@ v u) A g,
which by modularity olL is equal tow v (§ A7) = Vv y. So we have shown all relations
stated in (12.6), and thuHa, a™] and I[8, 1] are projective even inside the interval
Iln,1]. O

Proposition 12.5. Let V be a finite expanded group that satisfi@év ), and letU be a
homogeneous ideal . ThenV /U satisfiedAM) as well.

Proof. To prove thatV/U satisfies(AM), we fix a meet irreducible ided’ of V with
E > U and the properties that the intervdlE, E7] is abelian andZ* contains more than
two cosets ofE. We show that then there is a meet irreducible idéah I|d V such that
F # E andI[F, F'] is projective tol[E, E™] inside the interval [U, V] of IdV. Since
V satisfies AM), we have a meet irreducible ide@lof V such thaiG # E andI[G, GT]
is projective tol [E, E™] in Id V. By Proposition 12.4, we obtain that> U, and also that
I[G,G™]is projective tol [E, E*] eveninI[U,V]. O

12.1. (AM) is necessary fot-affine completeness

We are now going to show that every 1-affine complete expanded group 3@
satisfieg AM).

First of all, we need the concept of lifting a function from a quotient to the whole
algebra.

Definition 12.6. Let 8 be a congruence of the algel#aand letf be a function fromA /8
to A/B. Afunctiong: A — A is called difting of f iff we haveg(x)/8 = f(x/8) for all
x€A.
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Proposition 12.7. Let A be an algebra, leff be a compatible function oA/, and letg
be a lifting of f. Then for every, y € A, the functiong satisfies

gx)=g(y) (ModOa(x,y)V B).

Proof. Since f is compatible, we know(f(x/B), f(y/B)) € Oa,p(x/B,y/B). Since
g(x)/B = f(x/B), this is equivalent to

(g(x)/B.g(»)/B) € Onsp(x/B.y/B).

By [26, Theorem 4.15], we have

On/p(x/B.y/B)=1{(z/B.u/B)| (z,u) € BV Oalx, y)}.

Hence there are’ andu«’ in A such that(g(x),z") € 8, (z,u') € BV Oa(x,y) and
W,g(y)ep. O

The next propositions aim at finding a lifting of a compatible function that is again
compatible. The following lemma gives a test whether a lifting is compatible.

Proposition 12.8. Let V be a finite expanded group, |1t be a homogeneous ideal \f
and f be a unary compatible function ofy U. Then a liftingg of f is compatible iff

g)=g(y) (modZy(x —y))
forall x,ye Vwithx —ye(®U):U).

Proof. The “only if”-part is immediate. For the “if”-part we assume thais a lifting of
f which is compatible on each coset@ (U):U). We have to show the compatibility
condition

gx)=g(©) (mOdIV(x - y)) forallx,yeV. (12.8)

If x —ye (@U):U), then (12.8) holds by the assumptiongnif x —y ¢ (& (U):U),
then we havely (x — y) £ (@ (U):U). Now Proposition 7.11 give$y (x — y) > U. By
Proposition 12.7, we know thg{(x) is congruent t@ (y) moduloZy (x — y) v U. But this
ideal is justZy (x — y), which proves (12.8). O

Proposition 12.9. LetV be a finite expanded group, and létbe a homogeneous ideal of
V with (@(U):U) < U v U*. Then for every unary compatible functignonV /U there
is a lifting ¢ which is a compatible function ov.

Proof. We defineT to be a transversal through the cosets®dfU):U) v U, i.e., we let
T be such thatT N (v + (@(U):U) v U)| = 1 for eachv € V. By the assumptions, we
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have(®(U):U) v U < U* v U, and thus we can find functiong, sy andsy+= onV such
that for allv in V we have

v=s7() + sy ) + sy*(v),

and furthermorer (v) € T, sy (v) € U, andsy«(v) € U*. Let L y be any lifting of /. The
function L ; might not be compatible, but the functignwe produce out of it will be. We
defineg:V — V by

g() :=s7(Lf(v)) +su*(Lsv)).

Sinceg(v) differs from L ¢ (v) only by sy (L ¢ (v)), the functiong is also a lifting of f.
We prove that it is compatible. To this end, ety be in V. By Proposition 12.8, we may
assume that andy are congruent modul@ (U) : U). Proposition 12.7 tells thdt ¢ (x) is
congruenttd. ¢ (y) moduloZy (x — y) v U. Since both ideals stay belaw (U):U) v U,
we haveL y(x) = L¢(y) (mod(®(U):U) v U), which implies

st(Ly)=sr(Lr()).

Sinceg is a lifting of f, by Proposition 12.7g(x) — g(y) liesinZy(x — y) v U. We will
now see thag(x) — g(y) lies inU* as well. We have

g@) = s7(Ly () +sue(Lr(0) = s7(Lr () +su+ (L))

*

st(Ly() +su+(Ly(y) =g).
Altogether, we get

gx)=g(y) (mod(Zy(x —y)vU)AU").
By Proposition 7.4, we hav€y (x — y) VU) AU* = Zy(x —y) AU*) V(U AU*) =
Iv(x —y)AU* < Zy(x —y). This proves (12.8). Hengeis the required compatible lifting
of f. O

Corollary 12.10. Let V be a finite 1-affine complete expanded group, and &tbe
homogeneous ideal & with (@ (U):U) < U v U*. ThenV/U is alsol-affine complete.

Proof. Let ¢ be a unary compatible function on/U. Then we use Proposition 12.9 to

produce a compatible lifting of. SinceV is 1-affine complete, this lifting, sap, is in
Pol1 V. Now the function

q:V/U—-V/U,
x+U—px)+U

is a polynomial oV /U and equalte. O
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We are now ready to prove that every finite 1-affine complete expanded group with
(SC)) satisfiestAM).

Proof (“only if”-part of Theorem12.2). LetV be a minimal failure, that is, 8¢ be a
minimal (with respect to cardinality) 1-affine complete expanded group ¢8thl) in
which (AM) fails. Proposition 9.7 supplies us a nonzero homogeneousidedlV. By
Proposition 9.8 and Corollary 12.19/U is 1-affine complete. By the minimality &f,
V /U therefore satisfie$AM). Since(AM) fails in V, there must be a meet irreducible
ideal ofV such that’[M, M*]is abelian Mt contains at least three cosets modul@nd
M is alone in its~-class. We have/ }# U, because itV > U, thenM causes a failure
of (AM) in V/U. Now let B be minimal inidV with B < U, B £ M. Obviously B is
join irreducible and/[B~, B] projects up tol[M, M*]. By the implication (2)= (1) of
Proposition 12.3B is alone in its~-class. Hence Proposition 7.2 impliBs= U, and so
U is a minimal ideal oV, and we hav¢U, U] =0, and|U| > 3.

We choose an element € U with a # 0 and define a functionf:U — U by
fx)=0forx e U\ {a} and f (a) = a. Proposition 9.8 yields0:U) = U v U*, and thus
Proposition 7.15 supplies an idempotent polynomial funogierPol; V with rangeU . We
form the functiong as

g:V—->V,
v f(e()).

The functiong is compatible: To show this, let, y be in V. If Zy(x — y) > U, then
g(x) — g(y) liesinZy (x — y) because the range gfis contained ir/. If Zy (x —y) 2 U,

then by the fact thal/ is a minimal ideal we hav8 AZy (x — y) = 0. Sincee(x) —e(y) lies

in bothU andZy (x — y), we havee(x) = e(y). This impliesg(x) = g(y). Now we show
thatg cannot be a polynomial. Suppose it were. Then takeU such that #0, b # a;

by the fact thatU contains at least three elements, suchexists. If g is a polynomial,
then Proposition 2.3 gives

gla—b)+g(b)=g(a) (mod[U,U]).
But g(a —b) = g(b) =0, andg(a) = f(a) = a. Thisimpliesa € [U, U], and hence = 0,
a contradiction to the choice af. Altogether,g is a compatible function which cannot
be a polynomial; therefor€ is not 1-affine complete, contradicting the assumptions. This
finishes the proof of the “only if”-part of Theorem 12.20

12.2. (AM) is sufficient forl-affine completeness

We are now going to show that every finite expanded group (81 and (AM) is
1-affine complete.

Proof (“if"-part of Theorem 12.2). We induct on the cardinality ®f. The result is obvious
if |V|=1.For|V|> 1, Proposition 9.7 supplies us a homogeneous itleaf V. Since
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V/U is l-affine complete by induction hypothesis, it is sufficient to show that every
compatible function: V — U is a polynomial.

If [U,U]=U, then by Proposition 9.8/ is a minimal ideal ofV, and therefore
Proposition 7.17 yields the interpolating polynomial.

If [U,U] < U, then by Proposition 9.8 we hay#&, U] = 0. By Proposition 7.16, we
only need to show that|x is a polynomial for every single cos& modulo(0:U). We
choose acoset = v + (0:U) and define a compatible functien(x) := c(v + x) — c(v).
In order to interpolate at K, we interpolate; on (0:U). By the factthatO:U) =U v U*
andU A U* =0, a polynomialp € Pol1V with p((0:U)) € U andp|y = c1|y agrees
with ¢1 on (0:U). As in Proposition 8.1, we form the rinR of all zero-preserving
polynomials onU, that is, we leRR be the ring with univers& := {p|y | p € Po(V)}. By
Proposition 8.1, we know th& is the full matrix ring over a field, and that tfemodule
U is isomorphic to the direct product ef copies of the primitiveR-moduleA, whereA
is a minimal ideal oV with A < U. Since every sulR-module ofU is an ideal ofV, the
functionc1|y is also a compatible function on tkemoduleU . If m =1, thenA = U, and
S0 A is alone in its~-class. LetE be an ideal oW that is maximal withE > A=, E % A.
Then the implication (1} (2) of Proposition 12.3 yields thdt is not projective to any
other meet irreducible ideal. By conditichM), we know thatE™ contains precisely
two cosets ofE, and thus by Proposition 2.2(3); has precisely two elements. Thus
for both cases: = 1 andm > 1, Proposition 8.3 yields that tHe-moduleU is 1-affine
complete. Hence the functian |y lies in R. Therefore we have a polynomial functign
with q|y = c1]y. The functionp := ey o q, whereey is the idempotent polynomial with
rangelU constructed in Proposition 7.15, satisflgs = c1|y andp(V) € U. Hencec|g
is a polynomial, which finishes the proof of the “if”-part of Theorem 12.21

Using Theorem 12.2, we find the following examples of 1-affine complete algebras:

(1) Let p be an odd prime, let > 2, and letB be the elementary abelian group wijth
elements. Then the generalized dihedral group determindsl {(®ee [38, p. 10]) is
1-affine complete (cf. [6]).

(2) Let F be a finite field, let: > 2, and letR be the (commutative) polynomial ring
Flx1, x2, ..., x,]. We takel to be the ideal generated by all quadratic monomials, i.e.,
by {xix; |i,j€{1,2,...,n},i # j}U {xi2 |i €{l,2,...,n}}. Then the ringR/I is
1-affine complete.
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