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Abstract

We call an algebra strictly 1-affine complete iff every unary congruence preserving partial fu
with finite domain is a restriction of a polynomial. We characterize finite strictly 1-affine com
groups with operations, and, in particular, all finite strictly 1-affine complete groups and commu
rings with unit.
 2004 Elsevier Inc. All rights reserved.

1. Problem and result

Let A be an arbitrary algebra. By a (k-ary) polynomial ofA we mean an expression
the formt(x1, . . . , xk, a1, . . . , am), wheret is a term in the language ofA anda1, . . . , am
are arbitrary elements ofA. We identify polynomials with the functions they determine
is clear that every polynomial preserves all congruences ofA. However, in general there a
congruence preserving functions that cannot be represented by polynomials. The p
of describing algebras in which every congruence preserving function is a polynomi
posed in [10, Problem 6]. Following H. Werner [39], we call such algebras affine com
They have received considerable attention during the last years [22,31]. Recently, K.
and R. McKenzie [21] have shown that every variety in which all algebras are a
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complete must be congruence distributive. This paper also describes important s
the study of affine complete varieties.

The situation is much more complicated if we restrict ourselves to a single alg
For example, the groupZ2 × Z2 is affine complete, whereas the variety it generate
not. Results on affine complete groups and modules can be found in [18,19,28,3
Difficulties also arise if we try to interpolate (congruence preserving) partial function
polynomials. An algebra is calledstrictly affine complete if every congruence preserv
partial functionT →A with finite domainT contained in some power ofA is a restriction
of a polynomial ofA. (The precise meaning ofcongruence preserving, k-affine complete,
and strictly k-affine completeis given in Definitions 4.1, 4.2, and 4.3.) J. Hagema
and C. Herrmann [13] have characterized strictly affine complete algebras. From
characterization one can infer that an algebra from a congruence permutable va
strictly affine complete iff it is strictly 2-affine complete, i.e., all binary partial functi
(hereT ⊆ A2) that respect congruences can be interpolated by polynomials (cf. [2]
the other hand, polynomial interpolation for unary (partial) functions remains unse
even for finite algebras. Among strictly 1-affine complete algebras that are not s
2-affine complete we have the symmetric groupsSn with n � 5 [23], the groups(Z2)

n

with n � 1, and the ringZ4 [30]. Recent ideas concerning polynomial interpolation
groups are contained in [7,36]. From these results, one gets the impression that
affine completeness imposes a restricted structure even if the concept is applied to
algebra.

In the present paper, we develop techniques for polynomial interpolation that wo
all algebras that have a group reduct; we will call those algebrasexpanded groups. In
particular, our techniques work for all groups, all rings, all ring-modules, and allΩ-groups
in the sense of [24]. Using these techniques, we obtain a full characterization of
strictly 1-affine complete expanded groups; as a consequence of the extension princ
compatible functions [20], this characterization also describes all finite 1-affine com
expanded groups among those with distributive congruence lattice. (By K. Kaarli’s
[20, Theorem 3], a finite algebra in a congruence permutable variety with distrib
congruence lattice is strictly 1-affine complete if and only if it is 1-affine complete.)

The groups we consider will be written additively, although they need not be abelia
ideal of an expanded group〈V,+,−,0, f1, f2, . . .〉 is a normal subgroupI of 〈V,+,−,0〉
such that for all additional operationsfj we have

fj (v1 + i1, . . . , vk + ik)− fj (v1, . . . , vk) ∈ I

wheneveri1, i2, . . . , ik ∈ I andv1, v2, . . . , vk ∈ V . Similar to [14,24], we find that there is
bijective correspondence between ideals and congruences of an expanded group; h
we note that an ideal of the expanded groupV is not necessarily a subuniverse ofV.

The lattice of the ideals of the expanded groupV will be denoted byId V, and the sum
of the idealsI andJ by I ∨ J . We writeI ≺ J if J coversI , i.e., if I ⊂ J and there is no
other ideal betweenI andJ . If I is a strictly meet irreducible element ofId V andI ≺ J ,
we writeI+ for this uniqueJ . If I is strictly join irreducible andJ ≺ I , we writeI− for
thisJ . We abbreviate the set of allk-ary polynomials onV by Polk V, and the domain of a
partial functionf by domf .



E. Aichinger, P.M. Idziak / Journal of Algebra 271 (2004) 65–107 67

rather
d

e
dular

oups.

le

all:

n

f, we

th the
Commutator theory usually works with congruences, but in expanded groups we
work with ideals. For two idealsA,B ∈ Id V, the commutator[A,B] is the ideal generate
by the set{

p(a, b) | a ∈A, b ∈B, p ∈ Pol2 V, ∀x ∈ V : p(x,0)= p(0, x)= 0
}
.

This is the actual definition given by S.D. Scott [36] forΩ-groups. It differs from the on
previously used by P.J. Higgins [14] and A.G. Kurosh [24], but coincides with the mo
commutator widely used in general algebra [8,11,12,37].

Given two idealsI, J ∈ Id V, the centralizerof J moduloI , written as(I :J ), is the
largest idealC ∈ Id V such that[C,J ]� I .

We need two conditions for characterizing strictly 1-affine complete expanded gr
The first one has already been isolated in [16].

Definition 1.1. An expanded groupV satisfies the condition(SC1) if for every strictly
meet irreducible idealM of V we have(M :M+)�M+.

The condition(SC1) is equivalent to the following: In every subdirectly irreducib
quotient ofV, the centralizer of the monolith is not strictly larger than the monolith.

The following condition requires that abelian parts of the expanded group are sm

Definition 1.2. An expanded groupV satisfies the condition(AB2) if for all A,B ∈ Id V
with A≺ B and[B,B] �A the idealB contains exactly two cosets ofA.

The special role of idealsA ≺ B with [B,B] � A and |B/A| = 2 has also bee
highlighted in [36, p. 136]. We are now ready to state our main result.

Theorem 1.3. For a finite expanded groupV the following are equivalent:

(1) V satisfies(SC1) and(AB2).
(2) V is strictly 1-affine complete.
(3) Every homomorphic image ofV is strictly 1-affine complete.
(4) Every homomorphic image ofV is 1-affine complete.

The proof of Theorem 1.3 is concluded at the end of Section 10. Along the proo
also obtain a fairly good description of unary polynomials on expanded groups with(SC1).
Theorem 1.3 was initially obtained using Tame Congruence Theory [15] together wi
techniques from [16]; the proof given here, however, does not use TCT.

2. Notation

Let V be an expanded group. Then forv ∈ V , the smallest ideal ofV that containsv
will be denoted byIV(v). We define the setP0(V) by

P0(V) :=
{
p ∈ Pol1 V | p(0)= 0

}
.
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It is known that a subsetS of V is an ideal ofV if s1 + s2 ∈ S and p(s) ∈ S for all
s, s1, s2 ∈ S and p ∈ P0(V) [29, Theorem 7.123]. We note thatx − y lies in the ideal
IV(v −w) iff there is ap ∈ Pol1 V with p(v) = x andp(w) = y. This observation allow
to interpolate every congruence preserving function at every 2-element subset of its d
by a polynomial.

LetA1, A2 be inId V such thatA1 �A2. ThenI [A1,A2] := {B ∈ Id V |A1 � B �A2}.
We say thatI [A1,A2] projects up toI [B1,B2] iff A1 = A2 ∧ B1 andB2 = A2 ∨ B1 and
write I [A1,A2]↗ I [B1,B2] or I [B1,B2] ↘ I [A1,A2]. The smallest equivalence relatio
that contains↗ will be abbreviated by�. If I [A1,A2] � I [B1,B2], we say that the two
intervals areprojective.

The intervalI [A1,A2] is calledabelianiff [A2,A2] �A1. Obviously, this is equivalen
to (A1 :A2)�A2.

We list some important properties of the commutator operation in the follo
proposition:

Proposition 2.1. LetA,B,C be ideals of the expanded groupV. Then we have

(1) [A∨B,C] = [A,C] ∨ [B,C].
(2) [A,B] = [B,A].
(3) [A,B] �A∧B.
(4) LetA� B. Then an elementz ∈ V lies in (A :B) iff s(z, b) ∈ A for all b ∈ B and for

all s ∈ Pol2 V that satisfy∀v ∈ V : s(v,0)= s(0, v)= 0.

Although the first three properties are well known in commutator theory [8]
number (4) follows from [36, Proposition 9.5], the differences in notation justify tha
state a proof.

Proof. We call a binary polynomial functions a commutator polynomialiff s(v,0) =
s(0, v) = 0 for all v ∈ V . For (1), we only show�. For a ∈ A,b ∈ B,c ∈ C and a
commutator polynomials, we haves(a+b, c)= s(a+b, c)−s(b, c)+s(b, c). Considering
s1(x, y) := s(x + b, y) − s(b, y), we sees(a + b, c) − s(b, c) = s1(a, c) ∈ [A,C]. The
second terms(b, c) obviously lies in[B,C].

For (4), we are done if we show that the set

Z := {z ∈ V | s(z, b) ∈A for all b ∈B and all commutator polynomialss
}

is an ideal ofV. We show this using [29, Theorem 7.123]. To this end, letz be in Z,
and letp ∈ P0(V). We want to show thatp(z) is in Z. We fix b ∈ B and a commutato
polynomials, and computes(p(z), b). Sincez ∈ Z, we know thatt(z, b) lies inA, where
t(x, y) = s(p(x), y). Thuss(p(z), b) ∈ A. For showing thatZ is closed under addition
let z1, z2 ∈ Z. We write s(z1 + z2, b) as s(z1 + z2, b) − s(z2, b) + s(z2, b). Defining
t(x, y) := s(x + z2, y) − s(z2, y), we see thats(z1 + z2, b) − s(z2, b) lies in A; since
s(z2, b) also lies inA, we gets(z1 + z2, b) ∈ A. HenceZ is also closed under additio
and therefore an ideal.✷
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From these properties, it is easy to infer the following well-known propertie
projective intervals inId V, which we restate for easier reference. For two idealsA,B

of V with A� B, we define the setB/A by

B/A := {b+A | b ∈B}.

Proposition 2.2 (cf. [8, Remarks 4.6, p. 35]).Let V be an expanded group and l
A1,A2,B1,B2 ∈ Id V such thatI [A1,A2] � I [B1,B2]. Then we have:

(1) (A1 :A2)= (B1 :B2).
(2) I [A1,A2] is abelian iffI [B1,B2] is abelian.
(3) A2 contains as manyA1-cosets asB2 containsB1-cosets, i.e.,|A2/A1| = |B2/B1|.

Proof. The first two properties can be checked immediately. Property (3) is a conseq
of the isomorphism theorem(A1 +B2)/A1 ∼= B2/A1 ∩B2 for groups. ✷

The commutator puts the following linearity condition on polynomials:

Proposition 2.3 (cf. [8, Proposition 5.7]).LetA,B ∈ Id V andp ∈ P0(V). Then we have
p(a)+ p(b)≡ p(a + b) (mod[A,B]) for all a ∈A, b ∈B.

3. Properties of expanded groups with (SC1)

As in [8, p. 77], we say that an expanded groupV satisfies the condition(C1) iff for
all idealsA,B ∈ Id V the equalityA ∧ [B,B] = [A ∧ B,B] holds. In [16], a stronge
version of condition(C1), as well as many other techniques applied in this paper, has
developed to describe those algebras in which every function preserving certain pro
of the congruence lattice is a polynomial; this condition has been named(SC1) for “strong
(C1)” there. We need the following consequences of the condition(SC1).

Proposition 3.1. Let V be an expanded group satisfying the condition(SC1). Then the
following holds:

(1) For all A,B ∈ Id V withA� [B,B] we haveA= [A,B].
(2) For all A,B ∈ Id V we haveA∧ [B,B] = [A∧B,B].
(3) For all A,B ∈ Id V we have[A,B] = ([A,A] ∧B)∨ (A∧ [B,B]).

Proof. For (1), suppose that in an expanded group with(SC1), we have idealsA andB
such thatA � [B,B] andA > [A,B]. Since every proper ideal ofV is the intersection
of strictly meet irreducible ideals, we have a strictly meet irreducible idealE of V such
thatE � [A,B], E � A. First of all we observe thatE+ is abelian overE: Obviously,
we haveE ∨ A � E. SinceE � A, we haveE ∨ A � E+. From this, we conclud
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to
[E+,E+] � [E ∨ A,E ∨ A] � E ∨ [A,A] � E ∨ [A, [B,B]] � E ∨ [A,B] � E. Now,
condition(SC1) implies

(
E :E+)=E+.

We will now show

[
E+,E ∨B]�E. (3.1)

We already know thatE ∨A� E+. From this, we get[E+,E ∨B] � [E ∨A,E ∨B] �
E∨[A,B] �E, which proves claim (3.1). Hence, by(SC1), we haveE∨B � (E :E+)=
E+. Altogether, we obtainA � [B,B] � [E ∨ B,E ∨ B] � [E+,E+] � E, which gives
A�E. But this is a contradiction to the choice ofE. The items (2) and (3) were proved
be equivalent to (1) in [8, p. 79] and [8, Theorem 8.1].✷
Proposition 3.2. Let V be an expanded group with(SC1), and letA ∈ Id V. Then the
commutator[A,A] is the intersection of all subcoversB ofA that satisfyB � [A,A], and
equal toA if no such subcover exists.

Proof. We letA0 be the intersection of all subcoversB ≺ A with B � [A,A], and we set
A0 := A if no such subcover exists. Then clearly[A,A] � A0. Suppose that[A,A]<A0.
Then letE be a strictly meet irreducible ideal ofV with E � [A,A], E � A0. Since
E �A0, we haveE �A, and thusE ∨A�E+. Hence we have

[
E+,E ∨A]� [E ∨A,E ∨A]�E ∨ [A,A]�E.

Now condition (SC1) implies thatE ∨ A = E+. This equality yieldsI [E,E+] ↘
I [A ∧ E,A]. By the modularity of the latticeId V, A ∧ E ≺ A. Furthermore, sinceE+
is abelian overE, Proposition 2.2 gives thatA is abelian overA∧E. Therefore,A∧E is
one of the subcovers appearing in the in the intersection that formsA0, and therefore, we
haveA0 �A∧E �E. But this is a contradiction to the choice ofE. ✷
Proposition 3.3. For a finite expanded groupV the following are equivalent:

(1) V satisfies the condition(SC1).
(2) There is no pair(A,B) of join irreducible ideals inId V such thatA < B and

[A,B] �A−.

Proof. (1) ⇒ (2). Suppose that there are suchA andB. SinceA< B, we haveA� B−.
By Proposition 3.2, we haveB− � [B,B]. Hence we haveA � [B,B], and therefore
Proposition 3.1 impliesA= [A,B], which contradicts[A,B] �A−.

(2) ⇒ (1). We assume thatV does not satisfy the condition(SC1). LetM be a meet
irreducible ideal ofV such that(M :M+) > M+, and letN := (M :M+). Let B be an
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ideal ofV that is minimal with respect to the propertiesB �N , B �M+. Obviously,B is
join irreducible andB− �M+. Now we prove

B− �M. (3.2)

Suppose thatB− � M. By the choice ofB, we knowM+ ∧ B = B−. Hence we have
M = B− ∨ M = (M+ ∧ B) ∨ M. By modularity of the latticeId V, this is equal to
M+ ∧ (B ∨M). SinceM is meet irreducible, we getB ∨M =M. This impliesB �M,
which contradicts the choice ofB and thus proves condition (3.2).

LetA be minimal withA� B−,A�M. We see thatA is join irreducible. Furthermore
I [M,M+]↘ I [A−,A]. Therefore, Proposition 2.2 gives(A− :A)= (M :M+)�N . This
implies(A− :A)� B, hence[A,B]�A−. This contradicts condition (2).✷

4. (SC1) and (AB2) are necessary

4.1. Necessary conditions for strictly1-affine complete expanded groups

We first state the definitions of two types of affine completeness that we are go
investigate in this paper.

Definition 4.1. Let A be a universal algebra, letk ∈ N and letD be a subset ofAk . Then
a functionf :D→ A is acompatibleor congruence preservingfunction onA iff for all
a,b ∈D we have

f (a)≡ f (b) (modΘA(a,b)
)
,

whereΘA(a,b) is the congruence generated by(a1, b1), (a2, b2), . . . , (ak, bk).

Definition 4.2. We call an algebraA k-affine completeiff every congruence preservin
function fromAk toA is a polynomial function.

Definition 4.3. We call an algebraA strictly k-affine completeiff every k-ary partial
congruence preserving function with finite domain is a restriction of a polynomial func

Every finite strictly 1-affine complete expanded group satisfies(SC1):

Proposition 4.4. Let V be a finite strictly1-affine complete expanded group. ThenV
satisfies the condition(SC1).

Proof. Suppose thatV does not satisfy(SC1). Then by Proposition 3.3 there are jo
irreducible idealsA,B with A< B and[B,A] � A−. SinceA andB are join irreducible
ideals, they are principal. Leta, b ∈ V be such thatIV(a)= A andIV(b)= B. We define
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a functionf by f : {0, a, b, a+ b}→ V , f (0)= f (a)= f (b)= 0,f (a+ b)= a. First we
show thatf is a compatible function: for this we have to show

a ∈ IV(a + b)∧ IV(b)∧ IV(a). (4.1)

We clearly havea ∈ IV(b)∧ IV(a)= B ∧A=A. We also haveIV(a + b)= B: For this,
we observe thatIV(a + b)� B. Furthermore,b lies in IV(a + b)∨ IV(a). From this we
get

IV(a + b)∨ IV(a)= B.
SinceB is join irreducible, this yieldsIV(a + b)= B. Therefore (4.1) holds.

SinceV is strictly 1-affine complete, we may assume thatf is a polynomial. Now by
Proposition 2.3 we geta = f (a + b) ∈ [A,B]. Hencea ∈ A−, a contradiction to the fac
thata generatesA. ✷
Proposition 4.5. Let V be a finite strictly1-affine complete expanded group. ThenV
satisfies the condition(AB2).

Proof. Seeking a contradiction, we suppose that we haveA,B ∈ Id V such thatA ≺ B,
I [A,B] is abelian, andB/A has more than two elements. LetB∗ be minimal with the
propertyB∗ � B,B∗ �A. ThenB∗ is join irreducible. LetA∗ be its unique subcover. Sinc
the intervalsI [A,B] andI [A∗,B∗] are projective, Proposition 2.2 gives thatI [A∗,B∗] is
abelian, and|B∗/A∗| > 2. Now let b1 be inB∗ such thatb1 /∈ A∗, and letb2 be inB∗
such thatb2 /∈ A∗, b2 /∈ −b1 + A∗. We define a functionf : {0, b1, b2, b1 + b2} → V by
f (0)= f (b1)= f (b2)= 0, f (b1 + b2)= b1. We want to show that thisf is compatible.
For this, we have to prove

b1 ∈ IV(b1 + b2)∧ IV(b2)∧ IV(b1). (4.2)

Since every element inB∗ \ A∗ generatesB∗, (4.2) holds. Using thatV is strictly
1-affine complete, we may assume thatf is a polynomial. Hence Proposition 2.3 yiel
f (b1 + b2) ∈ [B∗,B∗]. Thusb1 ∈A∗, a contradiction. ✷
4.2. Necessary conditions for expanded groups in which each homomorphic image
1-affine complete

Proposition 4.6. Let V be an expanded group all of whose homomorphic images
1-affine complete. ThenV satisfies the condition(SC1).

Proof. Suppose that condition(SC1) is not satisfied, and letM be a strictly mee
irreducible element ofId V such that there is an idealC >M+ with [M+,C] �M.

Let πM be the canonical epimorphism fromV to V/M, and letV := V/M, M+ :=
πM(M

+),C := πM(C), 0 := πM(0). ThenV is subdirectly irreducible with monolithM+.
Now, letm ∈M+ such thatm �= 0, and letc ∈ C such thatc �= 0, c �= −m. Then we

define a mappingf : V → V by f (m+ c) = m andf (x) = 0 for all otherx ∈ V . Since
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f maps into the unique minimal idealM+, it is compatible. We know thatV is 1-affine
complete, thereforef is a polynomial. Now Proposition 2.3 yieldsf (m+ c) ∈ [M+,C].
But since [M+,C] � M, [8, Proposition 4.4(1)] (or [26, Exercise 4.156(11)]) yie
[M+,C] = 0. So, we obtainm= f (m+ c)= 0, a contradiction. ✷
Proposition 4.7. Let V be an expanded group such that every homomorphic image oV is
1-affine complete. ThenV satisfies the condition(AB2).

Proof. Suppose thatA,B are ideals ofV with the properties thatA≺ B, [B,B] �A, and
B contains more than two cosets ofA. We have a strictly meet irreducible idealM of V
with M �A,M � B. We will now see thatI [A,B] projects up toI [M,M+]. To this end,
we observe that we haveM ∧B < B andM ∧B � A. SinceA≺ B, we getM ∧B = A.
ThereforeI [A,B] projects up toI [M,M ∨ B]. By modularity, we haveM ≺ M ∨ B,
and thusM+ =M ∨ B. By Proposition 2.2 the idealM+ contains as many cosets ofM
asB contains cosets ofA. Therefore, there are elementsc,m ∈ M+ such thatc /∈ M,
andm /∈M,m /∈ −c+M. The same construction off : V/M → V/M as in the proof of
Proposition 4.6 yields a contradiction.✷

5. Outline of the proof that (SC1) and (AB2) are sufficient

In the next sections we prove that every congruence preserving function on a
expanded group with(SC1) and(AB2) is a polynomial. We proceed as follows: First
all, we try to find an idealU of V with U �= 0,U �= V that is the range of an idempote
polynomial. Not every ideal can be such a range: IfU = e(V )with e◦e = e, e ∈ Pol1 V, and
if A andB are join irreducible ideals ofV with A � U andI [A−,A] � I [B−,B], then
B � U . (For proving this, observe that(e − id)(A)= 0, and thus(e − id)(A)⊆ A−. One
of the properties of polynomials that we shall prove in the sequel, namely Propositio
implies(e − id)(B)⊆ B−. So for everyb ∈B we have

b
B−≡ e(b)

U≡ 0.

This yieldsB � B− ∨ U . HenceB = B ∧ (B− ∨ U), and, by modularity,B = B− ∨
(B ∧ U). SinceB is join irreducible, we obtainB ∧ U = B, and thereforeB � U .
A detailed account of this argument is given in [3].) We will single out certain idealsV
that satisfy this criterion, and call themhomogeneous ideals. For a homogeneous idealU
of V, we are able to describe the polynomial functions with range contained inU . Using
this description, we obtain that every partial compatible function with the range cont
in U is a polynomial. Once this is established, we can use induction on the height
congruence lattice ofV to show thatV is strictly 1-affine complete: Letc be any partial
compatible function onV. Taking the idealU chosen above, we first observe that,
induction,V/U is strictly 1-affine complete. Letp be the polynomial that interpolatesc
“moduloU ”. The differencec − p then mapsV into U , it is compatible, and hence als
a polynomial. This gives thatc − p is equal to some polynomialp′, and thereforep′ + p
interpolatesc.
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6. Properties of polynomials

6.1. The action of polynomials on the ideals ofV

We study how polynomials act on the ideals ofV. The methods developed in this secti
will then be used in Propositions 7.13 and 7.14 to produce certain polynomials. Fir
observe that the third property of Proposition 2.2 can be sharpened as follows.

Proposition 6.1. Let V be an expanded group, letA,B,C,D ∈ Id V with I [A,B] �
I [C,D], let k ∈ N, and letp ∈ Polk V with p(0, . . . ,0) = 0. On the setB/A we define a
k-ary operationf by

f(b1 +A, . . . , bk +A) := p(b1, . . . , bk)+A.

On the setD/C we define ak-ary operationg by

g(d1 +C, . . . , dk +C) := p(d1, . . . , dk)+C.

Then the two algebras〈B/A, f〉 and〈D/C,g〉 are isomorphic.

Proof. We assumeI [A,B] ↗ I [C,D]. Then every element ind ∈ D can be written as
d = b+ c with b ∈ B, c ∈ C. The mappingh :D/C→ B/A, (b + c)+C  → b+A is an
isomorphism. ✷

Actually, the same result holds under weaker assumptions onp: It is enough to claim
thatp is a congruence preserving function fromAk toA with p(0, . . . ,0)= 0.

6.2. Near-rings of polynomials

For an expanded groupV, we will study the near-ringP0(V) := 〈P0(V),+,◦〉 of
zero-preserving unary polynomials, where addition is the pointwise addition of func
and ◦ denotes functional composition. We will investigate how this near-ring act
its moduleV. All results that are given in this subsection are well-known in near-
theory [27,29]. However, our notation differs significantly from these books. There
in the following few paragraphs, we have summarized the concepts from near-ring
that we will need. Other applications of the near-ring theoretic methods developed
section can be found in [1,3].

One aim of near-ring theory is to make the concepts of ring-theory available to
linear functions.3 For a near-ringR, anR-moduleis an algebra〈M,+,−,0, 〈fr | r ∈ R〉〉

3 By a near-ring, we mean an algebra〈R,+,◦〉, where〈R,+〉 is a (not necessarily abelian) group,〈R,◦〉
is a semigroup and the two operations are connected by the distributive law(r1 + r2) ◦ r3 = r1 ◦ r3 + r2 ◦ r3.
Near-rings arise by studying functions on groups: LetG be a group. OnM0(G) := {f :G→G | f (0)= 0} we
define addition pointwise and◦ as functional composition. The algebra〈M0(G),+,◦〉 is a near-ring. It will be
important in the sequel that this near-ring is simple [27, Theorems 1.40, 1.42].
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such that〈M,+,−,0〉 is a group and for alla ∈M andr, s, t ∈ R the following equalities
hold:

fr
(
fs(a)

)= ft (a) wherer ◦ s = t in R,

fr (a)+ fs(a)= ft (a) wherer + s = t in R.
(6.1)

In theR-moduleM, we writer ∗m for fr(m). The laws of (6.1) then read asr1∗ (r2∗m)=
(r1 ◦ r2) ∗m and(r1+ r2) ∗m= r1 ∗m+ r2 ∗m. We are mainly interested in the followin
example: we start with an expanded groupV and takeR := P0(V), M := 〈V,+,−,0, 〈fp |
p ∈ P0(V)〉〉 with the operationsfp(v) := p(v) for all p ∈ P0(V), v ∈ V .

We note that theR-modulesM1,M2 are isomorphic if there is a group isomorphis
from 〈M1,+〉 to 〈M2,+〉 such thatϕ(r ∗m1)= r ∗ ϕ(m1) for r ∈ R,m1 ∈M1. A normal
subgroupI of theR-moduleM is called anidealof the moduleM iff r ∗(m+ i)−r ∗m ∈ I
for all r ∈ N,m ∈ M,i ∈ I . Ideals correspond to the congruences of the moduleM.
Every near-ringR has one obviousR-module, namely〈R,+,−,0, 〈fr | r ∈ R〉〉, where
the operationsfr are defined byfr(r ′) := r ◦ r ′. As in ring theory, the ideals of this modu
are also called left ideals of the near-ringR: A normal subgroupL of 〈R,+〉 is a left ideal
of the near-ring〈R,+,◦〉 iff r1 ◦ (r2+ l)− r1 ◦ r2 ∈L for all r1, r2 ∈R, l ∈ L. Since every
near-ringR is an expanded group, we defineidealsof R as those normal subgroupsI of
〈R,+〉 satisfyingr1 ◦ (r2 + i)− r1 ◦ r2 ∈ I and i ◦ r ∈ I for all r, r1, r2 ∈ R, i ∈ I . For
everyR-moduleM, the set AnnR M := {r ∈ R | ∀m ∈M: r ∗m= 0} is an ideal ofR.

We need only one result of near-ring theory; it generalizes the fact that for a
simple ring with unitR, all faithful simple unitaryR-modules are isomorphic (cf. [32
Proposition 2.1.15, p. 154], [5, Theorem 4.3], [29, Theorem 4.56(a)], [3, Lemma 1.3]
will use the following version:

Proposition 6.2. Let R be a near-ring withr ◦ 0= 0 for all r ∈ R, let I be an ideal ofR,
and letM be anR-module that satisfiesAnnR M = I andR∗m=M for all m ∈M,m �= 0.
We assume that we have a left idealL of R such thatL> I and there is no left idealL′ of
R with L>L′ > I .

Then theR-moduleM is isomorphic to theR-module with universeL/I = {l+I | l ∈ L}
and operations(l1 + I) + (l2 + I) := (l1 + l2) + I , r ∗ (l + I) := (r ◦ l) + I for
l1, l2, l ∈ L, r ∈R.

Proof. SinceL� AnnR M, we have elementsl0 ∈ L,m0 ∈M with l0 ∗m0 �= 0. We define
a mappingϕ by

ϕ :L→M, l  → l ∗m0.

It is easy to see thatϕ is a homomorphism from theR-moduleL into M. Sincel0∗m0 �= 0,
the assumptions onM yield R ∗ l0 ∗m0 =M. SinceR ∗ l0 ⊆ L, we getL ∗m0 =M, and
henceϕ is surjective. We takeL′ to be the kernel ofϕ, i.e.,

L′ = {l ∈ L | l ∗m0 = 0}.
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Using the definition of left ideals, one can check thatL′ is a left ideal ofR. Furthermore
every element ofI = AnnR M lies inL′. So we have

I � L′ � L.

Since by the assumptionsL coversI in the lattice of left ideals ofR, L′ has to be eithe
L or I . The elementl0 showsL′ <L, and soL′ = I . The homomorphism theorem yield
that the moduleL/L′ = L/I is isomorphic toM. ✷

We associate aP0(V)-module with every interval in the ideal lattice ofV.

Definition 6.3. Let V be an expanded group, and letA,B be ideals ofV with A� B. We
defineM[A,B] to be theP0(V)-module

〈
B/A,+,−,0, 〈fp | p ∈ P0(V)

〉〉

with fp(b+A)= p(b)+A.

The subalgebras ofM[A,B] correspond to the ideals ofV from the intervalI [A,B].

Proposition 6.4. Let V be an expanded group, and letA,B be ideals ofV with A � B.
Then we have

(1) Every submodule ofM[A,B] is an ideal of the moduleM[A,B].
(2) The mappingµ that maps an idealC of V withA�C � B toµ(C) := C/A= {c+A |

c ∈ C} is a bijection from the intervalI [A,B] of Id V to the set of all submodules
M[A,B].

We will now give some information on the moduleM[A,B] for a covering pairA≺ B
of ideals. We recall that AnnP0(V)(M[A,B]) is equal to{p ∈ P0(V) | p(B)⊆A}.

Proposition 6.5. Let V be an expanded group, letA,B be ideals ofV with A ≺ B and
[B,B] �A, and letI := AnnP0(V)(M[A,B]). Then we have

(1) For all p ∈ P0(V) the operationfp satisfiesfp((b1 +A)+ (b2 +A))= fp(b1 +A)+
fp(b2 +A) for all b1, b2 ∈B.

(2) The near-ringP0(V)/I is a ring; this ring is primitive onM[A,B].

Proof. SinceA≺ B, Proposition 6.4 yields thatM[A,B] has no non-trivial submodule
The item (1) is a consequence of Proposition 2.3. Item (2) is a different formulation
fact thatM[A,B] has no proper nonzero submodules.✷
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Proposition 6.6. Let V be an expanded group, and letA,B be ideals ofV with A ≺ B

and [B,B] � A. We assume thatB/A is finite. We defineG := 〈B/A,+〉. Let I :=
AnnP0(V)(M[A,B]), and letϕ be the mapping defined by

ϕ :P0(V)→M0(G),

ϕ(p)(b+A) := p(b)+A.

Then the mappingϕ is a near-ring epimorphism from〈P0(V),+,◦〉 onto 〈M0(G),+,◦〉
with kernelI .

Proof. We show that for every finite subsetX of B/A with 0 + A /∈ X and for every
functiong :X→ B/A, there is a polynomialp ∈ P0(V) such that the restrictionfp|X is
equal tog. We prove this by induction on|X|. For |X| = 1, the result follows from the
fact thatM[A,B] has no non-trivial submodules, and soP0(V) ∗ (b + A)= B/A for all
b ∈ B \ A. Now we assume|X| � 2. Let x1, x2 be two elements ofX. By the induction
hypothesis there is a polynomialq ∈ P0(V) with fq|X\{x1} = g. It is then sufficient to find
p with fp|X = g− fq|X . Such a function exists if the setS defined by

S := {fp(x1) | p ∈ P0(V),p|X\{x1} = 0
}

is equal toB/A. To show this equality, we letv1, v2 ∈ B be such thatv1 + A = x1 and
v2 +A= x2, and we define:

M1 :=
{
fp(x1) | p ∈ P0(V), fp|X\{x1,x2} = 0

}
,

M2 :=
{
fp(x1) | p ∈ Pol1(V), p(v2)= 0

}
.

The setsM1 andS are universes of submodules ofM[A,B]. By the induction hypothesis
M1 = B/A. We will now show thatS contains an element different from 0+ A, which
provesS = B/A. To this end, we observe[B,B] �A. Let b1, b2 be elements ofB, and let
s be a polynomial inPol2 V such thats(v,0)= s(0, v)= 0 for all v ∈ V , ands(b1, b2) /∈A.
Sinceb1 +A ∈M1, we have polynomialp1 ∈ P0(V) with

fp1(x1)= b1 +A, fp1|X\{x1,x2} = 0.

The setM2 is an ideal ofV. The functionp defined byp(z) = z − v2 showsM2 � A.
Sincev1, v2 ∈ B, we haveM2 � B, and thusM2 + A = B. Hence there is a polynomia
p2 ∈ Pol1 V such thatp2(v2)= 0 andp2(v1) ∈ b2 + A. Now we consider the polynomia
p3 := s(p1,p2). We omit the straightforward check thatp3 ∈ P0(V) andfp3|X\{x1} = 0. So
fp3(x1) lies inS. Then we have

fp3(x1)= p3(v1)+A= s
(
p1(v1),p2(v1)

)+A.
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We havep1(v1)+A= fp1(x1)= b1+A. This yieldss(p1(v1),p2(v1))+A= s(b1, b2)+A.
Sinces(b1, b2) does not lie inA, we havefp3(x1) �= 0+ A. ThusS contains an elemen
different from 0+A. ✷

A similar result is [35, Theorem 8.4]. The last two propositions have the follow
consequence:

Corollary 6.7. LetA,B be ideals of the expanded groupV with A ≺ B. We assume tha
B/A is finite. Then the annihilatorAnnP0(V)(M[A,B]) is a maximal ideal of the near-rin
P0(V).

Proof. We are done if we show that the quotientR := P0(V)/AnnP0(V)(M[A,B]) is a
simple near-ring. If[B,B] � A, then by Proposition 6.5 the near-ringR is a primitive
ring with unit, hence isomorphic to the ring of(n × n)-matrices over a fieldF and thus
simple. If [B,B] � A, then Proposition 6.5 shows thatR is isomorphic to the near-rin
of all zero-preserving mappings on the finite group〈B/A,+〉. This near-ring is simple b
[27, Theorem 1.40] (cf. [29, Theorem 7.30], [4]).✷
6.3. IsomorphicP0(V)-modules

Proposition 6.1 and its proof yield the following consequence:

Proposition 6.8. Let V be an expanded group, letA,B,C,D ∈ Id V with I [A,B] �
I [C,D]. Then the twoP0(V)-modulesM[A,B] andM[C,D] are isomorphic.

Some of the properties that hold ifI [A,B] is projective toI [C,D] still hold if we
assume the weaker fact thatM[A,B] andM[C,D] are isomorphic.

Proposition 6.9. Let V be an expanded group, and letA,B,C,D ∈ Id V with A � B,
C �D such thatM[A,B] andM[C,D] are isomorphic. Then(A :B)= (C :D).

We remark that this has been proved in [36, Theorem 12.1]. Since our notation is e
different, we state a proof.

Proof. We show(C :D)� (A :B). By Proposition 2.1(4), we know that(A :B) is given by{
z ∈ V | s(z, b)⊆A for all b ∈ B

ands ∈ Pol2 V with ∀v ∈ V : s(v,0)= s(0, v)= 0
}
. (6.2)

Let z be an element of(C :D). We fix a binary polynomials ∈ Pol2 V with s(v,0) =
s(0, v)= 0 for all v ∈ V , and we also fixb ∈ B. We computes(z, b). Since[(C :D),D] � C,
the polynomialp(x) := s(z, x) has the propertyp(D) ⊆ C, so the operationfp in the
moduleM[C,D] is the zero function. SinceM[C,D] is isomorphic toM[A,B], the op-
erationfp in the moduleM[A,B] is also the zero function. Sop(B) ⊆ A. This implies
p(b) ∈ A, which meanss(z, b) ∈ A. Thusz lies in the centralizer(A :B), and we have
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(C :D) � (A :B). Interchanging the roles ofA,B with those ofC,D, we obtain the re
quired equality. ✷
Proposition 6.10. Let V be an expanded group, and letA,B,C,D be ideals ofV with
A≺ B, C ≺D such that the modulesM[A,B] andM[C,D] are isomorphic. IfI [A,B] is
abelian, thenI [C,D] is abelian.

Proof. We assume[D,D] � C. Then there ared1, d2 ∈ D and a binary polynomials ∈
Pol2 V with s(v,0)= s(0, v)= 0 for all v ∈ V ands(d1, d2) /∈ C. SinceC ≺D, M[C,D]
has only two subuniverses, namely 0= C/C andD/C. Therefore,P0(V) ∗ (d1 + C) =
D/C. Hence we have a polynomialp ∈ P0(V) such thatp(d1) ∈ d2 + C. We consider the
polynomialt(x) := s(x,p(x)). We know thatt(d1)= s(d1,p(d1)) is congruent tos(d1, d2)

moduloC; thus we gett(d1) /∈ C. So we havet(D) �⊆ C. Since the modulesM[C,D] and
M[A,B] are isomorphic, we havet(B) �⊆A. Therefore there is an elementb ∈B such that
t(b)= s(b,p(b)) /∈ A. But s′(x, y) := s(x,p(y)) is 0 whenever one of its arguments is
sot(b) lies in [B,B]. This shows[B,B] �A, and thusI [A,B] is not abelian. ✷

The following proposition helps to find isomorphic sections inId V:

Proposition 6.11 (cf. [3, Lemma 1.5]).Let V be an expanded group and letA,B,C,D ∈
Id V such thatC �D,A≺ B, and both setsB/A andD/C are finite. We assume that ea
polynomialp ∈ P0(V) with p(D)⊆ C satisfiesp(B)⊆ A. Then there are idealsC′,D′ of
V with C � C′ ≺D′ �D such that there is a module isomorphism fromM[C′,D′] onto
M[A,B].

Proof. We takeI to be the ideal AnnP0(V)(M[A,B]). LetC1 be any ideal ofV in I [C,D].
Let J1, J2 be the ideals ofP0(V) defined by

J1 := AnnP0(V)
(
M[C,C1]

)
, J2 := AnnP0(V)

(
M[C1,D]).

We show

J1 ⊆ I or J2 ⊆ I. (6.3)

Seeking a contradiction, we suppose that both inclusions fail. For every polyn
p ∈ P0(V), we letϕ(p) be the function defined by

ϕ(p) :B/A→B/A,

b+A  → p(b)+A.

The mappingϕ is a near-ring homomorphism fromP0(V) into the near-ring of all zero
preserving mappings onB/A. The kernel of this homomorphism isI , and by Corollary 6.7
I is a maximal ideal ofP0(V).
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For an idealJ of P0(V), the imageϕ(J ) is an ideal ofϕ(P0(V)). Corollary 6.7 leaves
only two choices forϕ(J ) in our case:ϕ(J )= 0 orϕ(J )= ϕ(P0(V)). SinceJ1 andJ2 are
not contained inI , we haveϕ(J1)= ϕ(J2)= ϕ(P0(V)).

We choose an elementb ∈ B \A. The equalityϕ(J1)= ϕ(P0(V)) yields a polynomia
p1 ∈ J1 with

ϕ(p1)= ϕ(id),

whereid is the polynomial given byid(v)= v for all v ∈ V . This means thatp1(b)+A=
ϕ(p1)(b + A) = ϕ(id)(b + A) = b + A. In the same way, we obtainp2 ∈ J2 with
p2(b)+A= b+A. We consider the polynomial

p3 := p2 ◦ p1.

We knowp3(D) = p2(p1(D)) ⊆ p2(C1) ⊆ C. Thusp3 lies in AnnP0(V)(M[C,D]), and
the assumption AnnP0(V)(M[C,D]) ⊆ AnnP0(V)(M[A,B]) impliesp3(B)⊆ A. Sop3(b)

lies in A. On the other hand,p3(b) + A = p2(p1(b))+ A = p1(b)+ A = b + A. Since
b ∈ B \ A, this yields the contradictionp3(b) /∈ A. This finishes the proof of (6.3). Sinc
there are only finitely many ideals betweenC andD, repeating this process allows us
obtainC′,D′ ∈ Id V with C � C′ ≺D′ �D and

AnnP0(V)
(
M
[
C′,D′])� I.

By Corollary 6.7, AnnP0(V)(M[C′,D′]) is a maximal ideal ofP0(V), and so it is equal toI .
SinceP0(V)/I is finite, Proposition 6.2 yields that the modulesM[C′,D′] andM[A,B]
are isomorphic. ✷

7. Homogeneous ideals

7.1. Lattice theoretic properties of homogeneous ideals

In the sequel, we will work with ideals that have certain lattice-theoretic properti
the latticeId V. For a latticeL, we denote the set of its strictly join irreducible elements
J (L). We define an equivalence relation∼ on J (L) by α ∼ β :⇔ I [α−, α] � I [β−, β].
In this case, we say thatα andβ areprojective inL. The equivalence class of an eleme
α ∈ J (L) will be denoted byα/∼.

Definition 7.1. Let L be a finite lattice. An elementµ ∈ L is calledhomogeneousiff

(1) µ> 0.
(2) All join irreducible elementsα with α �µ are projective inL.
(3) There are no join irreducible elementsα,β ∈ L with α � µ,β � µ such thatα andβ

are projective inL.
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We illustrate this definition by an example. LetL1 be the lattice of normal subgroups
A5×Z4×Z2. Then the normal subgroups 0×Z4×Z2 andA5×0×0 are the homogeneou
elements ofL1.

Proposition 7.2. Let L be a finite lattice, letµ be a homogeneous element ofL, and letα
be a join irreducible element ofL withα � µ. Then the elementµ is the join of all elements
in α/∼.

Proof. We have to show

µ=
∨

β∈α/∼
β. (7.1)

For �, supposeµ �
∨
β∈α/∼ β . Then there isβ ′ ∈ α/∼ such thatβ ′ � µ, which

contradicts (3) of Definition 7.1. For showing equality in (7.1), supposeµ >
∨
β∈α/∼ β .

Since every element of a finite lattice is the join of the join irreducibles below it, t
is a join irreducible elementγ ∈ L with γ � µ and γ /∈ α/∼. This contradicts (2) o
Definition 7.1. ✷
Proposition 7.3. Let L be a finite lattice, letµ be a homogeneous element ofL, let α be a
join irreducible element ofL with α � µ, and letγ andδ be elements inL with γ ≺ δ � µ.
Then the intervalI [γ, δ] is projective toI [α−, α].

Proof. We takeβ minimal with β � δ, β � γ . Then the intervalI [γ, δ] is projective to
I [β−, β], and so by (2) of Definition 7.1 projective toI [α−, α]. ✷
Proposition 7.4. LetL be a finite modular lattice, and letα,β, γ ∈ L. If at least one of the
elementsα,β, γ is a homogeneous element ofL, then the following two equalities hold:

α ∨ (β ∧ γ )= (α ∨ β)∧ (α ∨ γ ),
α ∧ (β ∨ γ )= (α ∧ β)∨ (α ∧ γ ).

Proof (cf. [26, p. 96, Claim 2]). Letµ be a homogeneous element ofL, and letα,β be
any elements ofL. We first show

(α ∨µ)∧ (α ∨ β)= α ∨ (µ∧ β). (7.2)

We suppose(α ∨µ)∧ (α ∨ β) > α ∨ (µ∧ β). We letα′ ∈ L be such that

α ∨ (µ∧ β)� α′ ≺ (α ∨µ)∧ (α ∨ β).

Then we have

(α ∨µ)∧ (α ∨ β)= (α′ ∨µ)∧ (α′ ∨ β). (7.3)
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From α � α′ we obtain� of (7.3). For proving�, we observe that the assumpti
α′ � α ∨ (µ∧ β) implies

(
α′ ∨µ)∧ (α′ ∨ β)�

(
α ∨ (β ∧µ)∨µ)∧ (α ∨ (β ∧µ)∨ β)= (α ∨µ)∧ (α ∨ β).

This proves (7.3). We will now show that the intervalI [α′, (α′ ∨ µ) ∧ (α′ ∨ β)] projects
down to a section lying underµ. In every modular latticeL, the intervalI [a, (a ∨ b) ∧
(a ∨ c)] projects down to the intervalI [a ∧ c, (a ∨ b)∧ c] for all a, b, c ∈ L. In our case,
this implies

I
[
α′,
(
α′ ∨µ)∧ (α′ ∨ β)]↘ I

[
α′ ∧µ, (α′ ∨ β)∧µ] (7.4)

and

I
[
α′,
(
α′ ∨µ)∧ (α′ ∨ β)]↘ I

[
α′ ∧ β, (α′ ∨µ)∧ β]. (7.5)

Let η be minimal inL with respect toη� (α′ ∨µ)∧β , η� α′ ∧β . We obtainI [η−, η] ↗
I [α′ ∧ β, (α′ ∨ µ) ∧ β], and thus by (7.4) and (7.5), the intervalI [η−, η] is projective to
I [α′ ∧µ, (α′ ∨ β)∧µ].

We now show

η� µ. (7.6)

Supposeη � µ. Thenη � µ ∧ ((α′ ∨ µ) ∧ β) = µ ∧ β . By the choice ofα′, we have
µ ∧ β � α′, and thusη � α′. But thenη � α′ ∧ ((α′ ∨ µ) ∧ β) = α′ ∧ β , which is in
contradiction to the choice ofη. This proves (7.6).

SinceI [η−, η] is projective toI [α′ ∧µ, (α′ ∨β)∧µ], Proposition 7.3 tells thatI [η−, η]
is projective toI [0, ρ] for every atomρ belowµ. Thusρ andη contradict the 3rd conditio
in Definition 7.1. This completes the proof of (7.2).

Property (7.2) yields that a homogeneous element of the latticeL is adually standard
(in the sense of [9, Definition III.2.1]) element ofL. By [9, Corollary III.2.8 and
Theorem III.2.5], all equalities stated in Proposition 7.4 hold.✷

The fact that a homogeneous elementµ of the modular latticeL satisfiesµ∧ (α∨β)=
(µ∧ α)∨ (µ∧ β) allows us to find a pseudocomplementµ∗ of µ, i.e., the largestµ∗ with
µ∧µ∗ = 0.

Definition 7.5. Let L be a finite lattice, and letµ be a homogeneous element ofL. We
defineµ∗ as the join of all elementsγ ∈L with γ ∧µ= 0.

If L is a finite modular lattice andµ is a homogeneous element ofL, then the remark
preceding this definition yieldsµ∧µ∗ = 0.

Definition 7.6. Let L be a finite lattice, and letα be any element ofL. We defineΦ(α) as
the intersection of all subcovers ofα; furthermoreΦ(0) := 0.
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7.2. Homogeneous ideals and commutators

We switch from abstract lattices to the ideal lattice of a finite expanded groupV. We
definehomogeneous idealsof V as those that are homogeneous elements of the latticeId V.
For each homogeneous idealU , the idealU∗ is the largest ideal such thatU ∧U∗ = 0, and
for each idealA of V with A> 0, the idealΦ(A) is the intersection of all subcovers ofA.

Before giving more information onU andU∗, we state the following fact on projectiv
join irreducible elements ofId V.

Proposition 7.7. LetV be an expanded group, and letA,B ∈ J (Id V) with [A,A] = A and
B ∼ A. ThenB =A.

Proof. Suppose thatA �= B. Then eitherB �A orA� B.

Case B �A. We haveB ∧A< B. SinceB is join irreducible, this impliesB ∧A� B−,
and hence we have[B,A] � B−. Therefore we haveA � (B− :B). By Proposition 2.2
this impliesA� (A− :A), from which we get[A,A]�A−, which is a contradiction.

Case A� B. We first observe that Proposition 2.2 gives[B,B] = B. In the same way as i
the previous case we obtainB � (A− :A)= (B− :B), a contradiction to[B,B] = B. ✷

This shows that every non-abelian minimal ideal of a finite expanded grou
homogeneous.

Proposition 7.8. LetV be a finite expanded group, and letU be a homogeneous ideal ofV.
LetA,B be ideals ofV withA≺ B �U . Then(A :B)= (Φ(U) :U).

Proof. Let S be a subcover ofU . By Proposition 7.3, the intervalI [A,B] is projective to
I [S,U ] in Id V; hence Proposition 2.2 yields(A :B)= (S :U). We will now prove

(S :U)= (Φ(U) :U). (7.7)

SinceS � Φ(U), we have the inclusion� of (7.7). For proving�, let S′ be a subcove
of U . Propositions 2.2 and 7.3 give(S :U)= (S′ :U), and hence[(S :U),U ] � S′ for all
subcoversS′ of U . So we have[(S :U),U ] �Φ(U), and therefore(S :U)� (Φ(U) :U),
which proves (7.7). ✷
Proposition 7.9. LetV be a finite expanded group, and letU be a homogeneous ideal ofV.
Then one of the following two alternatives holds:

(1) [U,U ]<U and(Φ(U) :U)�U ∨U∗.
(2) [U,U ] =U , U is an atom ofId V, and(Φ(U) :U)=U∗.
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Proof. If [U,U ] < U , there is a subcoverS of U in Id V with [U,U ] � S ≺ U .
Proposition 7.8 yields(S :U)= (Φ(U) :U). SinceU � (S :U), we get

U �
(
Φ(U) :U

)
.

SinceU andU∗ have zero intersection, we also have(Φ(U) :U) � U∗. Altogether, we
have(Φ(U) :U)�U ∨U∗.

We now treat the case[U,U ] = U . Let S be a subcover ofU in Id V. We have
(S :U)� S. We assume thatS′ is another subcover ofU . We know (S′ :U) � S′.
Propositions 7.3 and 2.2 yield(S′ :U)= (S :U). So we get(S :U) � S ∨ S′ = U , which
leads to the contradiction[U,U ] � S. So U has only one subcover and is thus jo
irreducible. LetA be an atom ofId V with A � U . By Proposition 7.3,A andU are
projective join irreducible elements ofId V. Proposition 7.7 givesA = U . What remains
to show is(Φ(U) :U)= U∗. To prove this, it is sufficient to show that for everyA ∈ Id V,
[U,A] = 0 iff U ∧A= 0. The “if”-part follows from[U,A] � U ∧A= 0. For the “only
if”-part, we assume that[U,A] = 0 butU ∧A �= 0. SinceU is an atom ofId V, we have
A�U , and so[U,A] = 0 implies[U,U ] = 0, which is not the case.✷
Proposition 7.10. Let V be a finite expanded group, letU be a homogeneous ideal ofV,
and letA,B ∈ Id V withA�U andB � (Φ(U) :U). Then we have[A,B] =A.

Proof. Suppose[A,B]<A. Then there is an idealA′ ≺A with [A,B] �A′. This implies
B � (A′ :A). Proposition 7.8 now yieldsB � (Φ(U) :U). ✷
Proposition 7.11. Let V be a finite expanded group, and letU be a homogeneous ide
of V. Then for each idealB of V we haveB � (Φ(U) :U) or B �U .

Proof. We assume thatB �U . This impliesB∧U <U and thus[U,B]<U . So there is a
subcoverS of U in Id V with [U,B]� S ≺U . This yieldsB � (S :U). By Proposition 7.8
we getB � (Φ(U) :U). ✷
7.3. Homogeneous ideals and polynomials

Since all prime intervals in the ideal lattice that are below a homogeneous ide
projective, Proposition 6.1 puts the following restrictions on polynomials.

Proposition 7.12. Let V be a finite expanded group, and letU be a homogeneous ide
of V. Let A and B be ideals ofV with A ≺ B � U , and let q ∈ P0(V) be such that
q(B)⊆A. Then for everyD ∈ Id V withD �U we haveq(D)⊆Φ(D).

Proof. Let C be a subcover ofD in the latticeId V. By Proposition 7.3, the interva
I [C,D] andI [A,B] are projective inId V. We apply Proposition 6.1 to the polynomialq
and the setsD/C andB/A and obtain thatq induces the zero function onD/C, and hence
we haveq(D) ⊆ C. Thereforeq(D) is contained in every subcover ofD, which implies
q(D)⊆Φ(D). ✷
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The following proposition is fundamental for constructing polynomials onV.

Proposition 7.13. Let V be a finite expanded group, and letU be a homogeneous ide
of V. Then there are polynomialse1, e2 in P0(V) with the properties

e1
(
u+ u∗)= u for all u ∈ U, u∗ ∈ U∗,

e2
(
u+ u∗)= u∗ for all u ∈ U, u∗ ∈ U∗.

Proof. Let T be a subcover ofU , and letI andA be the ideals ofP0(V) defined by

I := AnnP0(V)
(
M[T ,U ]),

A := AnnP0(V)
(
M
[
0,U∗]).

By Corollary 6.7,I is a maximal ideal ofP0(V). We show

A� I. (7.8)

We supposeA⊆ I . Then Proposition 6.11 gives idealsB,S ∈ Id V with 0 � S ≺ B � U∗
such thatM[S,B] andM[T ,U ] are isomorphic. Letα be theP0(V)-isomorphism. We take
α′ to be a mapping fromB toU such thatα′(b)+ T = α(b+ S) for all b ∈ B. We have

p
(
α′(b)

)≡ α′
(
p(b)

)
(modT ) for all p ∈ P0(V), b ∈B

and also

α′(b1 + b2)≡ α′(b1)+ α′(b2) (modT ) for all b1, b2 ∈B.

We define a subsetK of V by

K := {b+ α′(b)+ s + t | b ∈B, s ∈ S, t ∈ T }.
We check that fork1, k2 ∈K andp ∈ P0(V) we havek1+k2 ∈K andp(k1) ∈K. Therefore
K is an ideal ofV. We computeK ∧U . Let k = b + α′(b)+ s + t (b ∈ B, s ∈ S, t ∈ T )
be an element ofK ∧ U . Sinceα′(b) and t lie in U , we haveb + s ∈ U . Sinceb ands
are elements ofU∗, we haveb + s ∈ U∗ ∧ U , and thusb + s = 0. Thereforeb ∈ S. This
impliesα′(b) ∈ T . So all four summandsb,α′(b), s, andt lie in S ∨ T . We conclude

K ∧U � S ∨ T .

Now we computeK ∧ U∗: Supposeb + α′(b) + s + t ∈ U∗. Thenα′(b) + t ∈ U∗. So
α′(b)+ t = 0. This impliesα′(b) ∈ T , henceb ∈ S. Again, all summands are inS ∨ T , so
we have

K ∧U∗ � S ∨ T .
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We knowK =K ∧ (U ∨U∗)= (K ∧U)∨ (K ∧U∗). So we have

K � S ∨ T .
We will infer the contradictionB ⊆ S from this fact. We fixb ∈B. The elementb+ α′(b)
lies inK and hence inS ∨ T . Sinceα′(b) lies inU , we haveb ∈ S ∨ T ∨U = S ∨U . But
b also lies inB, thus we have

b ∈ (S ∨U)∧B = (S ∧B)∨ (U ∧B)= S ∨ 0= S,
soB ⊆ S, a contradiction. This yields (7.8).

SinceA� I , and sinceI is a maximal ideal ofP0(V), we haveA+ I = P0(V). So there
are polynomialsa ∈A, i ∈ I such that

a+ i = id.

From this equation, we see thati satisfiesi(u∗) = u∗ for all u∗ ∈ U∗ and i(U) ⊆ T . By
Proposition 7.12, we havei(U) ⊆ Φ(U). Again by Proposition 7.12 we havei(Φ(U)) ⊆
Φ(Φ(U)), and thusi2(U)⊆Φ(Φ(U))=:Φ(2)(U). In the same way, we obtain

in(U)⊆Φ(n)(U).
Since for every idealD > 0 the idealΦ(D) is strictly belowD, there is a natural numberk
with ik(U)= 0. Nowe2 := ik ande1 := id − e2 are the required polynomials.✷
Proposition 7.14. Let V be a finite expanded group, and letU be a homogeneous ide
of V. Then there is a polynomiale3 ∈ P0(V) with the properties

e3(u)= u for all u ∈U,
e3(V )⊆

(
Φ(U) :U

)∨U.
Proof. It is a consequence of Proposition 7.9 that[U,U ]<U implies(Φ(U) :U)∨U =
(Φ(U) :U), whereas[U,U ] =U implies(Φ(U) :U)∨U =U∗ ∨U .

Let T be a subcover ofU in Id V. LetA andI be the ideals ofP0(V) defined by

I := AnnP0(V)
(
M[T ,U ]),

A := AnnP0(V)
(
M
[(
Φ(U) :U

)∨U,V ]).
We show

A� I. (7.9)

We supposeA ⊆ I . Then Proposition 6.11 yields that there are idealsC,D ∈ Id V
with (Φ(U) :U) ∨ U � C ≺ D � V such that the modulesM[C,D] andM[T ,U ] are
isomorphic. Then Propositions 6.9 and 7.8 yield(C :D)= (T :U)= (Φ(U) :U).
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If [U,U ] � T , Proposition 6.10 yields thatI [C,D] is abelian, and so[D,D] � C.
Hence we haveD � (C :D), and thereforeD � (Φ(U) :U), a contradiction. This
proves (7.9) for the case[U,U ]� T .

If [U,U ] � T , we have(T :U)�U , and so by Proposition 7.8, we have(Φ(U) :U)�U .
This implies (

Φ(U) :U
)∨U > (Φ(U) :U)= (C :D)� C,

which is again a contradiction. This completes the proof of (7.9).
The idealI := AnnP0(V)(M[T ,U ]) is a maximal ideal ofP0(V). By Proposition 7.12

we haveI = AnnP0(V)(M[Φ(U),U ]). SinceA� I , we haveI +A= P0(V). Hence there
are polynomialsi ∈ I,a ∈ A with i + a = id. This yields thati satisfiesi(U)⊆ Φ(U) and
i(v) ∈ v + ((Φ(U) :U) ∨ U) for all v ∈ V . Using Proposition 7.12, we obtain that f
some powerik we haveik(U)= 0 andik(v) ∈ v + ((Φ(U) :U) ∨ U) for all v ∈ V . Then
e3 := id − ik satisfies the required properties.✷

Propositions 7.13 and 7.14 have the following consequence.

Proposition 7.15. Let V be a finite expanded group with the homogeneous idealU . If
(Φ(U) :U)� U ∨ U∗, then there exists a polynomiale with e(V ) ⊆ U and e(u)= u for
all u ∈ U .

Proof. We use Proposition 7.14 to constructe3 and Proposition 7.13 to constructe1. Then
e := e1 ◦ e3 satisfies the required properties.✷

The following proposition is an extension of [7, Theorem 3.2].

Proposition 7.16. Let V be a finite expanded group, and letU be a homogeneous ideal
V with (Φ(U) :U)� U ∨ U∗. Let f be a partial function onV with domainT ⊆ V . We
assumef (T )⊆U . Then the following are equivalent.

(1) There is a polynomialp ∈ Pol1 V with p(V )⊆U andp(t)= f (t) for all t ∈ T .
(2) For each cosetC := v + (Φ(U) :U) with v ∈ V there is a polynomialpC ∈ Pol1 V

such thatpC(t)= f (t) for all t ∈ T ∩C.

Proof. (1) ⇒ (2) is obvious; therefore we just prove (2)⇒ (1). Let T = {t1, t2, . . . , tn}.
We proceed by induction onn.

Case n= 1. The constant polynomialp(x) := f (t1) fulfills the required properties.

Case n= 2. If t1 ≡ t2 (mod(Φ(U) :U)), then there exists a polynomialp with p|T = f .
Let eU be the idempotent polynomial constructed in Proposition 7.15. The fun
q(t) := eU(p(t)) satisfies the required properties.

If t1 �≡ t2 (mod (Φ(U) :U)), Proposition 7.11 givesIV(t1 − t2) � U . Sincef (t1) −
f (t2) ∈ U , there is a polynomialp ∈ Pol1 V with p(t1) = f (t1), p(t2) = f (t2). The
functionq(t) := eU(p(t)) satisfies the required properties.
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Case n� 3. If all elements ofT are contained in one cosetv + (Φ(U) :U), we know by
assumption that there is a polynomialp ∈ Pol1 V with p(z)= f (z) for all z such thatz ∈ T .
Now q(x) := eU(p(x)) interpolatesf onT and has range contained inU .

We shall now assume thatt1 − t2 /∈ (Φ(U) :U). By induction hypothesis, we find
polynomialq1 ∈ Pol1 V with q1(V )⊆U that agrees withf on {t2, t3, . . . , tn}. Subtracting
q1 from f , we are left with a functionf1 which satisfiesf1(t2)= f1(t3)= · · · = f1(tn)=
0, f1(T ) ⊆ U , and stillf1 can be interpolated at each intersection of its domain wi
coset of(Φ(U) :U) by a polynomial. For interpolatingf1 at T , we define two subsetsS
andB of V as follows:

S := {p(t1) | p ∈ Pol1 V, p(V )⊆U, p(t2)= p(t3)= p(t4)= · · · = p(tn)= 0
}
,

B := {p(t1) | p ∈ Pol1 V, p(V )⊆U, p(t3)= p(t4)= · · · = p(tn)= 0
}
.

It is obvious that bothS andB are ideals ofV and thatS ⊆ B. By induction hypothesis
we knowf1(t1) ∈ B, and in order to find the polynomial that interpolatesf atT , we prove
f1(t1) ∈ S. For this, we show

S = B. (7.10)

LetD := IV(t1 − t2). We know thatD � (Φ(U) :U) andB � U , hence Proposition 7.1
yields[B,D] = B. We will now show

[B,D] � S. (7.11)

For that purpose, we show that all generators of[B,D] of the forms(b, d) with s ∈ Pol2 V,
s(0, x) = s(x,0) = 0, b ∈ B,d ∈ D are inS. This can be seen as follows. Sinceb ∈ B,
there is a functionq1 ∈ Pol1 V such that

q1(t1)= b, q1(t3)= q1(t4)= · · · = q1(tn)= 0,

andq1(V )⊆U . Sinced ∈D = IV(t1 − t2), there is a functionq2 ∈ Pol1 V such that

q2(t1)= d, q2(t2)= 0.

Then q(x) := s(q1(x),q2(x)) is zero ont2, t3, . . . , tn and the range ofq is contained
in U . This impliesq(t1) ∈ S, which meanss(b, d) ∈ S. Thus we have proved (7.11
and therefore Eq. (7.10). Hence there is a polynomial whose range is contained inU that
interpolatesf1 atT . This completes the proof of Proposition 7.16.✷

This result yields a complete description of partial compatible functions whose do
is contained in a non-abelian minimal ideal. Corresponding results for groups were p
in [7, Theorem 2.1], [27, Theorem 10.24].

Proposition 7.17. LetV be a finite expanded group, letT ⊆ V , and letA be a minimal ideal
of V. We assume[A,A] =A. Then for a functionc :T →A, the following are equivalent:
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(1) The functionc is a partial compatible function onV.
(2) For all x, y ∈ T with x − y ∈ (0 :A) we havec(x)= c(y).
(3) There is a polynomialp ∈ Pol1 V with p|T = c andp(V )⊆A.
(4) There is a polynomialp ∈ Pol1 V with p|T = c.

Proof. For (1)⇒ (2), we takex, y ∈ T such thatx−y ∈ (0 :A). By Proposition 7.7, ever
non-abelian minimal ideal ofV is homogeneous. So Proposition 7.9 yields(0 :A)= A∗.
Sincec is compatible, we havec(x)− c(y) ∈ A∗. Sincec(x)− c(y) also lies inA, we
havec(x)= c(y). For (2)⇒ (3), we observe thatc is constant on eachA∗-coset, and so
Proposition 7.16 implies thatc is the restriction of a polynomialp with p(V ) ⊆ A. The
implication (3)⇒ (4) is obvious. For (4)⇒ (1), we observe that every polynomial
congruence preserving.✷

If we include the case that the homogeneous idealU satisfies[U,U ] < U , we can
describe polynomials with range in homogeneous idealU as follows:

Proposition 7.18. Let V be a finite expanded group, and letU be a homogeneou
ideal of V with (Φ(U) :U) � U ∨ U∗. Let R := {p|U | p ∈ Pol1 V, p(U) ⊆ U}, and let
{v0, v1, v2, . . . , vs−1} be a transversal through the cosets ofU ∨U∗. We define a mappin

Γ :Rs → {
p ∈ Pol1 V | p(V )⊆U},

where the functionq = Γ (r0, r1, . . . , rs−1) is defined by

q
(
vi + u+ u∗

)= ri (u) for all i ∈ {0,1, . . . , s − 1}, u ∈U, u∗ ∈U∗.

ThenΓ is a bijection.

Proof. First, we show thatq is really a polynomial. By Proposition 7.16 this is the cas
the restriction ofq to every(Φ(U) :U)-coset is the restriction of a polynomial. In the ca
[U,U ] =U , we have(Φ(U) :U)=U∗. The restriction ofq to aU∗-coset is constant, an
therefore a polynomial. In the case[U,U ]<U , we know(Φ(U) :U)=U ∨U∗, and so we
have to show that the restriction ofq to everyU ∨U∗-coset is a polynomial. We takee to be
the idempotent polynomial with rangeU constructed in Proposition 7.15. Definingti (x) :=
e(ri (−vi + x)), we obtainq(vi + u+ u∗)= ri (u)= e(ri (u))= ti (vi + u). By the fact that
ti has range contained inU , and byU ∧U∗ = 0, we haveti (vi + u)= ti (vi + u+ u∗). So
ti interpolatesq at vi + (U ∨U∗).

For showing thatΓ is surjective, we fix a polynomialq with range contained inU , and
defineri (x) := q(vi + x). Sinceq has range contained inU , we getq(vi + u + u∗) =
q(vi + u), and so the required equalityri (u)= q(vi + u+ u∗) for u ∈ U,u∗ ∈U∗ holds.

The mappingΓ is injective becauseri (u) �= ri (u′) impliesq(vi + u) �= q(vi + u′). ✷
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8. Restrictions of polynomials to homogeneous ideals

Proposition 7.18 allows to reduce the problem of describing polynomials on ce
finite expanded groupsV to describing the restrictions of polynomials to a homogene
ideal. We define the set

R := {p|U | p ∈ P0(V)
}
.

In the case that the homogeneous idealU satisfies[U,U ] =U , we know thatU is an atom
of Id V. So Proposition 6.6 (or Proposition 7.16) implies that every mappingm :U → U is
a polynomial.

In describing polynomials for the case[U,U ] < U , we restrict ourselves to the ca
Φ(U)= 0. By Proposition 7.9, we then have[U,U ] = 0. For a fieldD, let Mn(D) be the
ring of (n× n)-matrices overD, and letD(n×m) denote theMn(D)-module of all(n×m)-
matrices with entries fromD.

Proposition 8.1. LetU be a homogeneous ideal of the finite expanded groupV. We assume
that we haveΦ(U)= 0 and[U,U ] = 0. We takeR to be the ring with the universe

R := {p|U | p ∈ P0(V)
}

and the operations given by pointwise addition of functions and their composition. W
U to be theR-module

〈
U,+,−,0, 〈fr | r ∈R〉〉,

where the operationfr is defined byfr(u) := r(u).
Then there are: a fieldD, natural numbersm,n, a ring isomorphismεR : R → Mn(D),

and a group isomorphismεU : 〈U,+〉→ 〈D(n×m),+〉 such that forr ∈ R andu ∈ U we
have

εU
(
r(u)

)= εR(r) · εU(u).
This proposition makes it possible to identify the elements ofU with (n×m)-matrices,

and the restrictions of polynomials with(n× n)-matrices.

Proof. Since[U,U ] = 0, Proposition 2.3 gives thatR is a ring andU is anR-module. We
observe that the universes ofR-submodules ofU are the ideals ofV belowU .

SinceΦ(U) = 0, [26, Lemma 4.83] yields thatI [0,U ] is a complemented lattice an
thus, again by [26, Lemma 4.83],U is the join of atoms ofId V. By Proposition 7.3, al
these atoms are projective inId V. Proposition 6.1 yields that these atoms are isomor
asR-modules. LetA be one of these atoms. We see that the ringR is faithful onA. To this
end, we fixr ∈ R with r(A)= 0. We showr(U)= 0. We fixu ∈ U . SinceU is the join of
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atoms that are projective toA, we have elementsb1, b2, . . . , bn with u= b1+b2+· · ·+bn
such that eachbi lies in some atom projective toA. So we have

r

(
n∑
i=1

bi

)
=

n∑
i=1

r(bi).

But sincer(A) = 0, Proposition 6.1 yieldsr(B) = 0 for every atomB that is projective
toA. So each summandr(bi) is 0, which impliesr(u)= 0.

HenceR is primitive onA; thus by Jacobson’s Density Theorem [17, p. 28]R is
isomorphic to the matrix ringMn(D), whereD is the field of allR-endomorphisms o
A, andn is the dimension ofA overD.

We observe that theR-moduleU is the sum of finitely many simpleR-modules that are
R-isomorphic toA, and thereforeU is isomorphic toAm for somem ∈ N. Since the module
A is isomorphic toD(n×1), we obtain thatU is isomorphic to(D(n×1))m = D(n×m). ✷

We will now examine compatible functions on the moduleD(n×m).

Proposition 8.2. Every vector space overGF(2) is strictly 1-affine complete.

Proof. Let V be a vector space overGF(2), and letc :T ⊆ V → V be a compatible
function. We fix two elementst1, t2 ∈ T with t1 �= t2. Sincec is a compatible function
it can be interpolated at{t1, t2} by a polynomialp. Let c1 := c − p. We showc1(T )= 0,
and to this end, we fixt3 ∈ T . Since the intersection of the subspace generatedt3 − t1 with
the subspace generated byt3− t2 is zero, we getc1(t3)= 0. Hencep is the polynomial tha
interpolatesc. ✷

Proposition 4.5 shows that a finite module over a finite simple ring with unit can
be strictly 1-affine complete if every minimal submodule has precisely two elements
hence the ring has to be the two element field. But as the 2-dimensional vector
over GF(3) shows, there are modules that are 1-affine complete, but not strictly 1-
complete. More examples of affine complete modules are given in the following
due to [33], which we will not need for characterizing strictly 1-affine complete expa
groups, but which will help us to characterize all 1-affine complete expanded group
(SC1).

Proposition 8.3. Let R be a finite simple ring with unit, and letN be a faithful simple
unitaryR-module. If|N | = 2 or m� 2, then the moduleNm is 1-affine complete.

Proof. If N has two elements, thenN is obviously 1-affine complete. Ifm � 2, then it
follows from [33] thatN is evenk-affine complete for all natural numbersk. ✷
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9. Polynomials on expanded groups with (SC1)

We will now show that a finite expanded group with(SC1) has a homogeneous idealU ,
and that the centralizer(Φ(U) :U) is less or equal toU ∨U∗. We recall thatJ (Id V) is the
set of all strictly join irreducible elements ofId V and forA,B ∈ J (Id V) we haveA∼ B

if I [A−,A] � I [B−,B].
If A is abelian overA−, we have the following possibility to compute the centrali

(A− :A).

Proposition 9.1. Let V be an expanded group with(SC1), and letA ∈ J (Id V) satisfy
[A,A]�A−. Then for every strictly meet irreducible idealE with the propertiesE �A−,
E �A we have(A− :A)= E ∨A.

Proof. We haveI [A−,A] ↗ I [E,E ∨ A] (and thereforeE ∨ A = E+). Hence, Propo
sition 2.2 gives(E :E ∨ A) � E ∨ A. SinceE is meet irreducible, the condition(SC1)
implies that(E :E ∨A)=E ∨A. Proposition 2.2 now yields(A− :A)=E ∨A. ✷

Each equivalence classA/∼ is an antichain:

Proposition 9.2. LetV be an expanded group with(SC1), and letA,B ∈ J (Id V) such that
A∼ B andA� B. ThenA= B.

Proof. If [A,A] = A, the result follows from Proposition 7.7. Hence, we assu
[A,A] � A−. Suppose thatA < B. Then letE be a strictly meet irreducible eleme
of Id V with E � A−, E � A. By Proposition 9.1, we have(A− :A) = E ∨ A. Since
B � A, the modular law yields(B ∧ E) ∨ A = B ∧ (E ∨ A). By Proposition 2.2, we
haveE ∨ A = (A− :A) = (B− :B) � B. Hence we get(B ∧ E) ∨ A � B. On the other
hand, bothB ∧E andA are� B. Altogether, we get(B ∧ E) ∨ A= B. SinceB is join
irreducible andA < B, we haveB ∧ E = B, which impliesB � E. Therefore, we also
haveA�E, which contradicts the choice ofE. ✷
Proposition 9.3. Let V be an expanded group with(SC1), and letA,B,C ∈ J (Id V). If
A∼ B andB <C, thenA<C.

Proof. We first showA � C: Suppose thatA � C. The commutator[A,C] fulfills
[A,C] �A. SinceA is join irreducible, this means that either[A,C] =A or [A,C]�A−.
If [A,C] = A, we haveA ∧ C � [A,C] = A, and henceA � C. If [A,C] � A−, we
have(A− :A)� C. Proposition 2.2 yields(B− :B)� C, from which we get[B,C] �B−.
Since bothB andC are join irreducible, Proposition 3.3 yields thatV does not satisfy
(SC1). Hence we must haveA � C. Now suppose thatA= C. Then we haveA∼ B and
B < A, which contradicts Proposition 9.2.✷

These properties allow us to define an order relation� onJ (Id V)/∼:
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Definition 9.4. Let V be an expanded group with(SC1), and letA,B ∈ J (Id V). We define

A/∼� B/∼ iff ∃A′ ∈A/∼ ∃B ′ ∈B/∼: A′ � B ′.

Proposition 9.5. Let V be an expanded group with(SC1). Then we have:

(1) � is a partial order onJ (Id V)/∼.
(2) A/∼� B/∼ iff ∀A′ ∈A/∼ ∃B ′ ∈B/∼: A′ � B ′.

Proof. For (1), we observe that the relation� is obviously reflexive. Let us now prov
that it is transitive. LetA,B,C ∈ J (Id V) such thatA/∼ � B/∼ andB/∼ � C/∼. By
definition, there are idealsA′ ∈ A/∼, B ′,B ′′ ∈ B/∼, andC′ ∈ C/∼ such thatA′ � B ′
andB ′′ � C′. If B ′′ = C′, we haveB/∼ = C/∼ and thusA/∼ � C/∼. If B ′′ < C′, then
Proposition 9.3 yieldsB ′ � C′. Hence we haveA′ � C′ and thereforeA/∼ � C/∼. Now
we show that� is antisymmetric: letA,B ∈ J (Id V) such thatA/∼ � B/∼ andB/∼ �
A/∼. Hence there areA′,A′′ ∈ A/∼ andB ′,B ′′ ∈ B/∼ with A′ � B ′ andB ′′ � A′′. If
B ′′ = A′′, we haveA/∼= B/∼. If B ′′ < A′′, Proposition 9.3 yieldsB ′ � A′′. Hence we
getA′ � A′′. Now Proposition 9.2 yieldsA′ = A′′. In the same way, we obtainB ′ = B ′′.
From this, we getA′ � B ′ �A′, which impliesA′ = B ′ and hence alsoA/∼= B/∼.

The “if”-direction of (2) is obvious. For “only if”, letA,B ∈ J (Id V) such thatA/∼�
B/∼. Now letA′ be an arbitrary element ofA/∼. We know that there areA′′,B ′′ with
A′′ ∈A/∼, B ′′ ∈ B/∼ such thatA′′ � B ′′. If A′′ = B ′′, thenA′ ∈ B/∼, henceB ′ := A′ is
an element inB/∼ with A′ � B ′. If A′′ <B ′′, Proposition 9.3 givesA′ � B ′′, henceB ′′ is
an element inB/∼ with A′ � B ′. ✷
Proposition 9.6. Let V be a finite expanded group with(SC1), and letA/∼ be a minimal
element of(J (Id V)/∼, �). Then every idealA′ ∈A/∼ is a minimal ideal ofV.

Proof. Let B be a minimal ideal ofV with B � A′. As a minimal ideal,B is join
irreducible. By the definition of�, we getB/∼ � A′/∼. SinceA′/∼ is minimal with
respect to�, we getB ∈ A′/∼. But now we haveB ∼ A′ andB � A′; so Proposition 9.2
yieldsB =A′, and thusA′ is minimal. ✷

We are now ready to construct a homogeneous idealU :

Proposition 9.7. Let V be a finite expanded group with(SC1), and letA ∈ Id V be such
thatA/∼ is a minimal element ofJ (Id V)/∼. Then the idealU defined by

U :=
∨

B∈A/∼
B (9.1)

is a homogeneous ideal ofV.

Proof. We first show that every join irreducible idealC with C � U satisfiesC ∼ A. By
Proposition 9.6, every element inA/∼ is an atom ofId V. Therefore,U is the join of
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all atoms inI [0,U ]. [26, Lemma 4.83] implies thatI [0,U ] is relatively complemented
So C has a complement inI [C−,U ], which givesS ∈ Id V such thatS ∨ C = U and
S ∧ C = C−. ThusI [C−,C] projects up toI [S,U ]. SinceU is the join of elements in
A/∼, we find an idealB ∈ Id V with B ∼ A such thatB � S. So we haveS ∨ B > S,
and since by modularity we haveU $ S, we getS ∨B =U . We also obtainS ∧B � B−,
and, using again modularity,S∧B = B− and thusI [B−,B] ↗ I [S,U ]. But sinceI [S,U ]
projects down toI [C−,C], we obtainC ∼ B, and thusC ∼A.

For property (3) in Definition 7.1, suppose that there are join irreducible idealsB,D

in Id V such thatB � U , D � U , andB andD are projective. By the fact that all joi
irreducibles belowU are projective,B is projective toA. ThereforeD appears in the join
by whichU is defined, and so we haveD �U , a contradiction. ✷

More information on the intervalI [0,U ] can be obtained from Proposition 8.1.
So every expanded group with(SC1) has at least one homogeneous ideal. And

expanded groups with(SC1), all homogeneous ideals have special properties. The
important one is(Φ(U) :U)�U ∨U∗, which allows to use Proposition 7.15.

Proposition 9.8. LetV be a finite expanded group with(SC1), and letU be a homogeneou
ideal ofV. Then we have:

(1) Φ(U)= 0.
(2) If [U,U ]<U , then[U,U ] = 0 and(0 :U)=U ∨U∗.
(3) If [U,U ] =U , thenU is an atom ofId V and(0 :U)=U∗.

Proof. If [U,U ] = U , then Proposition 7.7 yields thatU is an atom ofId V, and so (1) is
immediate.

Let us now consider the case[U,U ]<U . We first show thatU is the join of all atomsA
of Id V with A�U . Suppose it were not. SinceU is the join of all join irreducible element
of Id V that are� U , there must be a join irreducible idealB ∈ Id V such thatB is not an
atom. LetA be an atom ofId V with A� B. By the definition of homogeneous ideals, w
know I [0,A]� I [B−,B], which contradicts Proposition 9.2.

Now we show that every atomA � U satisfies[A,A] = 0; for this purpose, we loo
at (0 :A). From Proposition 7.8, we obtain(0 :A)= (Φ(U) :U). By Proposition 7.9 and
[U,U ]<U , we have(Φ(U) :U)�U . Hence(0 :A)�U , and thus[A,A]� [U,A] = 0.

From the fact thatU is the join of atomsA that satisfy[A,A] = 0, we obtain, using
Proposition 2.1,[U,U ] = 0. By Proposition 3.2, 0 is therefore the intersection of
subcovers ofU , which impliesΦ(U)= 0. This finishes the proof of (1).

For the proof of (2), we observe that[U,U ] = 0 andU ∧ U∗ = 0 imply (0 :U) �
U ∨U∗. We now show(0 :U)�U ∨U∗. By Proposition 3.1 we have

0= [
(0 :U),U

]
= ([

(0 :U), (0 :U)
]∧U)∨ ((0 :U)∧ [U,U ])

= [
(0 :U), (0 :U)

]∧U.
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The definition ofU∗ thus yields[(0 :U), (0 :U)] � U∗. SinceV/U∗, as a quotient o
an expanded group with(SC1), satisfies the condition(SC1), Proposition 3.2 gives tha
the coatoms of the latticeI [U∗/U∗, (0 :U)/U∗] (as a sublattice ofId V/U∗) intersect to
0= U∗/U∗. (Here we writeA/U∗ for the image ofA under the canonical epimorphis
fromV ontoV/U∗.) By [26, Lemma 4.83], we know that the latticeI [U∗/U∗, (0 :U)/U∗]
is complemented. Hence also the isomorphic latticeI [U∗, (0 :U)] is complemented. Le
K be a complement ofU∗ ∨ U in I [U∗, (0 :U)]. Then we haveU∗ = K ∧ (U∗ ∨ U).
By congruence modularity, this is equal to(K ∧ U) ∨ U∗. This impliesK ∧ U � U∗.
Therefore, we also haveK ∧U �U∗ ∧U , thus

K ∧U = 0.

This impliesK � U∗. Hence we get(0 :U)= (U∗ ∨ U) ∨K � U∗ ∨ U , which finishes
the proof of (2).

For item (3), we observe that if[U,U ] =U then[A,U ] = 0 iff A∧U = 0. This shows
(0 :U)=U∗. ✷

10. Interpolation of compatible functions

Proposition 10.1. Let V be a finite expanded group, and letU be a homogeneous ide
of U with [U,U ] = 0, (0 :U)= U ∨ U∗ andΦ(U)= 0. We assume that every atomA of
Id V with A� U has precisely two elements. Letc be a unary partial compatible functio
on V such that the domainT of c is contained in(0 :U) and c(T ) ⊆ U . Thenc can be
interpolated by a polynomial onT .

Proof. For getting started, we will not interpolatec, but a functionc1, which is a partial
function fromU toU defined as follows.

c1 :U →U,

u  →
{
c(u+ u∗), if there is au∗ ∈ U∗ with u+ u∗ ∈ T ,
undefined, else.

The functionc1 is well defined. To show this, letu be inU , and leta∗ andb∗ be inU∗ such
thatu+a∗ andu+b∗ lie in the domain ofc. We then havec(u+a∗)≡ c(u+b∗) (modU∗)
becausec is a compatible function. Since the range ofc is contained inU , we have
c(u + a∗) ≡ c(u + b∗) (modU ∧ U∗), which impliesc(u + a∗) = c(u + b∗). This last
equality makesc1(u) well defined.

Now we show thatc1 is a compatible partial function onV. For that purpose, le
u1, u2 ∈ domc1. We have to show

c1(u1)≡ c1(u2) (modI), (10.1)

whereI is given byI := IV(u1 − u2). First of all we notice thatc1(u1) = c(u1 + u∗1)
for someu∗ ∈ U∗. In the same way we findu∗ such thatc1(u2) = c(u2 + u∗) for some
1 2 2
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u∗2 ∈ U∗. We immediately see thatu1 + u∗1 ≡ u2 + u∗2 (mod I ∨ U∗). The functionc is
compatible. Therefore we havec(u1 + u1

∗) ≡ c(u2 + u2
∗) (modI ∨ U∗), and, since the

range ofc is contained inU , we getc(u1 + u∗1) ≡ c(u2 + u∗2) (mod (I ∨ U∗) ∧ U). But
by congruence modularity andI �U , we get(I ∨U∗)∧U = I ∨ (U∗ ∧U)= I ∨ 0= I .
This implies (10.1).

Proposition 8.1 tells how to seeU as a vector space overGF(2), and so there is a natur
numberm such that we can viewc as a partial compatible function on the vector sp
GF(2)m. By Proposition 8.2, we have a polynomialp ∈ Pol1 V that interpolatesc1. Since
U is the range of an idempotent polynomial function (Proposition 7.15), we may as
that the range ofp is contained inU . Now we show thatp agrees withc onT . To this end,
let t ∈ T . SinceU ∨ U∗ = (0 :U), we know thatt = u + u∗ for someu ∈ U, u∗ ∈ U∗.
Now we havec(t)= c(u+u∗). By the definition ofc1, c(u+u∗) is equal toc1(u)= p(u).
Sincep(u+ u∗) is congruent top(u) moduloU∗, and since the range ofp is contained in
U , the fact thatU ∧U∗ = 0 yieldsp(u)= p(u+ u∗). Altogether, we getp(t)= c(t). ✷
Proposition 10.2. Let V be a finite expanded group, and letU be a homogeneous ideal
U with [U,U ] = 0, (0 :U)=U ∨U∗ andΦ(U)= 0. We assume that every atomA of Id V
withA�U has precisely two elements. Letc be a unary partial compatible function onV
with domainT such thatc(T )⊆U . Thenc can be interpolated by a polynomial onT .

Proof. By Proposition 7.16, it is sufficient to interpolatec on each coset of(0 :U)
separately. But the interpolating polynomial on every single coset exists by Pro
tion 10.1. ✷

Now we glue all our pieces together to give a proof of Theorem 1.3.

Proposition 10.3. Let V be a finite expanded group. IfV satisfies(SC1) and(AB2), then
V is strictly 1-affine complete.

Proof. We induct on the size ofV. The statement is obvious for one-element algeb
For the induction step, we use Proposition 9.7 to construct a homogeneous idealU . By
Proposition 9.8, we haveΦ(U) = 0 and (Φ(U) :U) � U ∨ U∗. Since both propertie
(SC1) and (AB2) carry over to homomorphic images ofV, we know by the induction
hypothesis thatV/U is strictly 1-affine complete. Letc be a partial compatible function o
V with finite domainT . By the strict affine completeness ofV/U , we first interpolate
c modulo U after which we are left with a compatible functionc1 whose range is
contained inU . If [U,U ] = U , then by Proposition 7.9,U is a minimal ideal ofV, and so
Proposition 7.17 tells thatc1 is a polynomial.

If [U,U ] < U , then by Proposition 9.8, we have[U,U ] = 0. The condition(AB2)
implies that every atomA of Id V with A � U has precisely two elements. Fro
Proposition 10.2 we obtain thatc1 is a polynomial. ✷

We have now concluded the proof of our main result stated in Theorem 1.3: Pro
tion 10.3 proves (1)⇒ (2), Propositions 4.4 and 4.5 prove (2)⇒ (1). Propositions 4.6
and 4.7 prove (3)⇒ (1). For (1)⇒ (4), we observe that both conditions(SC1) and(AB2)
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carry over to homomorphic images. Therefore, by Proposition 10.3, every homom
image of a finite expanded group with(SC1) and(AB2) is strictly 1-affine complete. Th
implication (4)⇒ (3) obviously holds for finite algebras.

11. Strictly 1-affine complete groups and rings

In this section we characterize those finite groups and commutative rings with un
satisfy (SC1) and (AB2). A groupG is calledperfect iff it coincides with its derived
subgroup.

Proposition 11.1. For a finite groupG, the following are equivalent.

(1) G satisfies(SC1) and(AB2).
(2) G has a normal subgroupH such that every normal subgroupI of G with I � H is

perfect andG/H is isomorphic to(Z2)
n for somen ∈ N0.

Proof. (1) ⇒ (2). LetH be the intersection of all normal subgroups of index 2 inG.
Then G/H is a group of exponent 2. Seeking a contradiction, we suppose thatB is a
normal subgroup ofG with B � H that is not perfect. By [26, Exercise 4.156(11)], t
derived subgroupB ′ is equal to the commutator[B,B], taken inG. Thus there is a norma
subgroupA of G such thatA≺B in Id G, and the intervalI [A,B] is abelian. We chooseC
to be maximal among the normal subgroups ofG with C � A, C � B. We observe thatC
is meet irreducible and thatI [A,B] projects up toI [C,C+], and thus Proposition 2.2 an
(AB2) imply thatC+ contains precisely two cosets ofC. Passing toG/C and using the fac
that every normal subgroup with two elements lies in the center, we obtain(C :C+)=G.
Hence, condition(SC1) impliesG= C+. SoC is a normal subgroup ofG with index 2,
and thusC �H �B, a contradiction to the choice ofC.

(2)⇒ (1). Suppose that(AB2) fails. Then there are normal subgroupsA≺ B of G with
[B,B] � A and|B/A|> 2, and henceG has a principal series in which one of the fact
is abelian and of size greater than 2. But by the assumptions,G has another principal serie
in which the only abelian factors are of size 2, contradicting the fact that all principal s
have isomorphic factors.

For proving(SC1), suppose that there is a meet irreducible normal subgroupM of G
such that(M :M+) > M+. If M � H , then since all meet irreducible normal subgrou
of Zn2 are maximal,M+ = G, which contradicts the fact that(M :M+) is strictly greater
thanM+. If M � H , the intervalI [M,M+] projects down toI [M ∧H,M+ ∧H ]. This
interval forms an abelian section belowH , thusM+ ∧H is not perfect. ✷

Altogether, we have established the following characterization of affine com
groups:

Corollary 11.2. For a finite groupG, the following are equivalent:
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(1) G has a normal subgroupH such that every normal subgroupI of G with I � H is
perfect, andG=H or G/H is of exponent2.

(2) G is strictly 1-affine complete.
(3) Every homomorphic image ofG is 1-affine complete.

However, we note that (1)⇒ (2) and (1)⇒ (3) of Corollary 11.2 can also be prove
from [25, Chapter 1, Proposition 12.5] or from Proposition 7.17.

Now we switch to finite commutative rings with unit. First we characterize subdire
irreducible such rings that satisfy(AB2) and(SC1).

Proposition 11.3. For a finite commutative ringR with unit, the following are equivalent:

(1) R is subdirectly irreducible and satisfies(AB2) and(SC1).
(2) R is eitherZ4, the matrix ring

{( x 0
y x

) | x, y ∈ GF(2)
}
, or a finite field.

Proof. The implication (2)⇒ (1) is obvious. For (1)⇒ (2), let R be a ring satisfying
the conditions in (1). If the Jacobson radicalJ (R) is zero, the ringR is semisimple and
therefore a direct product of fields. But sinceR is subdirectly irreducible, it follows tha
R is a field. So we assume thatJ (R) is not zero. Let us recall that for commutative rin
the commutator operation is just ideal multiplication. We know thatJ (R) is a nilpotent
ideal of R, in other words, the sequenceJ (n+1)(R) := [J (n)(R), J (R)], J (1)(R) := J (R)
eventually reaches 0. Since Proposition 3.1(1) implies[A,A] = [[A,A],A] for all ideals
A of a ring with(SC1), we get[J (R), J (R)] = 0.

Now let M be the unique minimal ideal ofR. ThenM � J (R). Since[M,J (R)] �
[J (R), J (R)] = 0, condition(SC1) givesM = J (R). Furthermore[M,M] = 0, and so
condition(AB2) gives that|M| = 2. Letm be the nonzero element ofM. The ringR/M
is semisimple and therefore isomorphic to a direct productF1 × F2 × · · · × Fk of fields.
We will now showk = 1, i.e., R/M is a field: Suppose thatk > 1. ThenR/M has an
idempotent element different from 0+ M and 1+ M. HenceR contains an elemen
a /∈ {0,1,m,1+m} that satisfiesa2 = a or a2 = a +m.

Case a2 = a. SinceM is the unique minimal ideal ofR, there is anr ∈ R such thatm= ra.
We know thatm2 = 0, hence we have

0=m2 = r2a2 = r2a = rm.

From this, we get[IR(r),M] = 0, and hence condition(SC1) impliesr ∈M. Thus we have
r =m and thereforem=ma, which impliesm(a−1)= 0. This implies[IR(a−1),M] =
0, and hence by(SC1) we havea − 1∈M.

Case a2 = a + m. Then fora′ := a +m we havea′2 = (a + m)2 = a2 + 2am+ m2 =
a +m+ 0+ 0= a′. As in the casea2 = a, we obtaina′ − 1∈M. Hence in both cases w
get thata lies in {0,1,m,1+m}, a contradiction.
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ConsequentlyR/M is isomorphic to a fieldF. Suppose that this field hasf elements.
Since the ringR is local, every element not inM is invertible, henceR contains 2f − 2
invertible and 2 noninvertible elements. We consider the mappingϕ :R→ R, r  → r + 1.
If r is invertible, we getrm = m. From this it follows that(r + 1)m = 0. Hence(r + 1)
is a zero divisor and therefore not invertible. Since the mappingϕ is injective, we get
2f − 2 � 2. But this impliesf = 2, and thusF is a field with 2 elements.

By inspection of all rings with four elements, we findZ4 and the matrix ring
{( x 0
y x

) |
x, y ∈ GF(2)

}
as the only subdirectly irreducible commutative rings with unit and

element radical. ✷
Altogether, we have established the following characterization of affine com

commutative rings with unit:

Corollary 11.4. For a finite commutative ringR with unit, the following are equivalent:

(1) Every subdirectly irreducible homomorphic image ofR is either a field, the ringZ4,
or the matrix ring

{( x 0
y x

) | x, y ∈ GF(2)
}
.

(2) R is strictly 1-affine complete.
(3) Every homomorphic image ofR is 1-affine complete.

Proof. We observe that any finite expanded groupV satisfies(SC1) and(AB2) if every
subdirectly irreducible quotient ofV satisfies(SC1) and(AB2). For (SC1), this follows
from the definition. Suppose that(AB2) fails in V and thatA andB produce this failure
which meansA ≺ B, [B,B] � A, and thatB contains more than two cosets ofA. As in
the proof of Proposition 4.7, we projectI [A,B] up to an intervalI [M,M+] with meet
irreducibleM. (AB2) then fails in the subdirectly irreducible quotientV/M. So we see
that by Proposition 11.3, (1) is equivalent to the fact thatR satisfies(SC1) and (AB2).
Now the result follows from Theorem 1.3.✷

12. 1-affine complete expanded groups with (SC1)

In the previous sections, we have given a complete description of those finite exp
groups in which every unary partial compatible function is a polynomial. We are
going to examine those expanded groups in which every unarytotal compatible function
is a polynomial. Such algebras are called 1-affine complete. For finite groups, 1
complete groups have been characterized for the class of abelian groups [2
Hamiltonian groups [34]. Furthermore, all finite strictly 1-affine complete groups
obviously also 1-affine complete, and, as the groupZ3×Z3 shows, the converse is not tru
This example already shows that in contrast to the situation for strictly 1-affine com
groups, 1-affine completeness is not preserved under the formation of homom
images.

In this section we characterize the 1-affine complete expanded groups amo
expanded groups with(SC1) by a condition on the ideals ofV. To this end, we look a
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the meet irreducible ideals ofV, and we collect those in the setM(Id V). We define an
equivalence relation≈ onM(Id V) byM ≈ N :⇔ I [M,M+] � I [N,N+]. In this case,
we say thatM andN areprojectivemeet irreducible ideals ofV. We need the following
condition(AM ):

Definition 12.1. A finite expanded groupV satisfies the condition(AM ) if for all meet
irreducible idealsM in Id V at least one of the following conditions holds:

(1) The intervalI [M,M+] is not abelian.
(2) M+ contains precisely two cosets ofM.
(3) There is a meet irreducible idealN ∈M(Id V) with N �=M andN ≈M.

We observe that if every meet irreducible ideal fulfills one of the first two condit
thenV satisfies the condition(AB2). The condition(AM ) is weaker than(AB2) because
it also allows that for an abelian intervalI [M,M+] (M meet irreducible) the idealM+
contains more than two cosets moduloM as long as there is another meet irreducible id
projective toM.

Theorem 12.2. A finite expanded group with(SC1) is 1-affine complete if and only if i
satisfies(AM ).

In the remainder of this section, we prove Theorem 12.2. To this end, we relate th
condition of Definition 12.1 to the join irreducible ideals ofV. We recall thatJ (Id V) is the
set of all strictly join irreducible elements ofId V and forA,B ∈ J (Id V) we haveA∼ B

if I [A−,A] � I [B−,B].

Proposition 12.3. Let V be a finite expanded group with(SC1), letA be a join irreducible
ideal ofV, and letM be a meet irreducible ideal ofV such that the intervalsI [A−,A] and
I [M,M+] are projective. Then the following are equivalent:

(1) There is a meet irreducible idealN ∈M(Id V) withN �=M andN ≈M.
(2) There is a join irreducible idealB ∈ J (Id V) with B �=A andB ∼A.

Proof. (2) ⇒ (1). LetA andB be given as in condition (2). By Proposition 9.2,A andB
are incomparable. In particular,A�B, so that we can pick a maximal idealE with E �A

andE �B. We will now show

E � B−. (12.1)

SupposeE � B−. Then we haveE ∨ B− > E. SinceE was chosen to be maximal wit
E �A, E � B, we must have

E ∨B− � B. (12.2)
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SinceE � B, we haveE ∧B <B. ButB is join irreducible, and therefore we have

E ∧B � B−. (12.3)

From (12.2), we obtainB = B ∧ (E ∨ B−). By modularity of Id V, this is equal to
(B ∧ E) ∨ B−. But by (12.3), this is equal toB−, and hence we haveB = B−, which is
a contradiction. This completes the proof of (12.1). By its choice,E is a meet irreducible
ideal ofV. We have

E ≈M. (12.4)

To prove this, we observe that the intervalI [B−,B] projects up toI [E,E ∨ B]. So by
modularity,E ∨ B is a cover ofE, and thereforeE ∨ B is equal toE+. This yields
I [E,E+]↘ I [B−,B] � I [A−,A]� I [M,M+], which proves (12.4).

Now we chooseF in Id V such thatF is maximal with the propertyF � A−, F � A.
We obtain thatF is meet irreducible andI [F,F+]↘ I [A−,A]. Hence we haveF ≈M.

SinceE � A andF � A, we haveE �= F . Hence the classM/≈ contains at least two
elements:E andF .

(1) ⇒ (2). Let M and N be given as in condition (1). If(M :M+) = M, then
Proposition 2.2 yieldsM = (M :M+)= (N :N+) = N . Therefore, we have(M :M+) =
M+, and, again by Proposition 2.2,M+ = N+. HenceM andN are incomparable. Now
switching joins and meets we may repeat the proof of (2)⇒ (1) to obtain that the clas
A/∼ contains at least two elements.✷

We will now see that the condition(AM ) is preserved under forming certa
homomorphic images. To this end, we first need the following lattice theoretic result

Proposition 12.4. Let L be a finite modular lattice, letµ be a homogeneous element ofL,
and letα,β be two meet irreducible elements ofL with I [α,α+] � I [β,β+]. We assume
α � µ. Then we have:

(1) β � µ.
(2) The intervalsI [α,α+] and I [β,β+] are projective in the sublatticeLµ of L with

universeLµ := I [µ,1].

Proof. For proving (1), we supposeβ � µ. We chooseγ minimal in L with γ � µ,
γ � β , and obtainI [γ−, γ ] ↗ I [β,β+]. We chooseδ minimal in L such thatδ � α+,
δ � α, and obtainI [δ−, δ] ↗ I [α,α+]. Sinceδ � α, we haveδ � µ. Altogether, we
haveI [γ−, γ ] � I [δ−, δ], γ � µ andδ � µ, which contradicts the assumption thatµ
is homogeneous.

Now we prove (2). SinceI [α,α+] � I [β,β+], there is a natural numbern, and there
areγ1, γ2, . . . , γ2n−1, δ1, δ2, . . . , δ2n−1 ∈ L such that

I
[
α,α+

]↘ I [γ1, δ1] ↗ I [γ2, δ2] ↘
· · · ↗ I [γ2n−2, δ2n−2] ↘ I [γ2n−1, δ2n−1] ↗ I

[
β,β+

]
. (12.5)
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We notice that forρ1, ρ2, . . . , ρ6 in a modular lattice withρ1 ≺ ρ2, the conditions
I [ρ1, ρ2] ↗ I [ρ3, ρ4] and I [ρ3, ρ4] ↗ I [ρ5, ρ6] imply I [ρ1, ρ2] ↗ I [ρ5, ρ6]. Now for
eachγ2k, δ2k in (12.5) we pick an elementη2k ∈ L which is maximal withη2k � γ2k,
η2k � δ2k. Thenη2k is a meet irreducible element ofL and we have

I
[
α,α+

]↘ I [γ1, δ1] ↗ I
[
η2, η

+
2

]↘
· · ·↗ I

[
η2n−2, η

+
2n−2

]↘ I [γ2n−1, δ2n−1] ↗ I
[
β,β+

]
.

By property (1) shown above we know that for eachη2k we haveη2k � µ. Now we show
that we even have

I
[
α,α+

]↘ I [γ1 ∨µ,δ1 ∨µ] ↗ I
[
η2, η

+
2

]↘
· · · ↗ I

[
η2n−2, η

+
2n−2

]↘ I [γ2n−1 ∨µ,δ2n−1 ∨µ] ↗ I
[
β,β+

]
. (12.6)

To this end, letγ, δ be any elements ofL, and letη be a meet irreducible element ofL with
η� µ. We assumeI [γ, δ]↗ I [η,η+]. Then we also have

I [γ ∨µ,δ ∨µ] ↗ I
[
η,η+

]
. (12.7)

To prove (12.7), we compute(δ ∨ µ)∨ η = µ∨ (δ ∨ η)= µ∨ η+ = η+ and(δ ∨µ)∧ η,
which by modularity ofL is equal toµ∨ (δ ∧ η)= µ∨ γ . So we have shown all relation
stated in (12.6), and thusI [α,α+] and I [β,β+] are projective even inside the interv
I [µ,1]. ✷
Proposition 12.5. Let V be a finite expanded group that satisfies(AM ), and letU be a
homogeneous ideal ofV. ThenV/U satisfies(AM ) as well.

Proof. To prove thatV/U satisfies(AM ), we fix a meet irreducible idealE of V with
E �U and the properties that the intervalI [E,E+] is abelian andE+ contains more than
two cosets ofE. We show that then there is a meet irreducible idealF in IdV such that
F �= E andI [F,F+] is projective toI [E,E+] inside the intervalI [U,V ] of Id V. Since
V satisfies(AM ), we have a meet irreducible idealG of V such thatG �=E andI [G,G+]
is projective toI [E,E+] in Id V. By Proposition 12.4, we obtain thatG�U , and also tha
I [G,G+] is projective toI [E,E+] even inI [U,V ]. ✷
12.1. (AM ) is necessary for1-affine completeness

We are now going to show that every 1-affine complete expanded group with(SC1)
satisfies(AM ).

First of all, we need the concept of lifting a function from a quotient to the wh
algebra.

Definition 12.6. Let β be a congruence of the algebraA, and letf be a function fromA/β
toA/β . A functiong :A→A is called alifting of f iff we haveg(x)/β = f (x/β) for all
x ∈A.
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Proposition 12.7. Let A be an algebra, letf be a compatible function onA/β , and letg
be a lifting off . Then for everyx, y ∈A, the functiong satisfies

g(x)≡ g(y) (
modΘA(x, y)∨ β

)
.

Proof. Since f is compatible, we know(f (x/β), f (y/β)) ∈ ΘA/β(x/β, y/β). Since
g(x)/β = f (x/β), this is equivalent to

(
g(x)/β,g(y)/β

)∈ΘA/β(x/β, y/β).

By [26, Theorem 4.15], we have

ΘA/β(x/β, y/β)=
{
(z/β,u/β) | (z, u) ∈ β ∨ΘA(x, y)

}
.

Hence there arez′ and u′ in A such that(g(x), z′) ∈ β , (z′, u′) ∈ β ∨ ΘA(x, y) and
(u′, g(y)) ∈ β . ✷

The next propositions aim at finding a lifting of a compatible function that is a
compatible. The following lemma gives a test whether a lifting is compatible.

Proposition 12.8. Let V be a finite expanded group, letU be a homogeneous ideal ofV,
andf be a unary compatible function onV/U . Then a liftingg of f is compatible iff

g(x)≡ g(y) (
modIV(x − y)

)
for all x, y ∈ V with x − y ∈ (Φ(U) :U).

Proof. The “only if”-part is immediate. For the “if”-part we assume thatg is a lifting of
f which is compatible on each coset of(Φ(U) :U). We have to show the compatibilit
condition

g(x)≡ g(y) (
modIV(x − y)

)
for all x, y ∈ V. (12.8)

If x − y ∈ (Φ(U) :U), then (12.8) holds by the assumption ong. If x − y /∈ (Φ(U) :U),
then we haveIV(x − y) � (Φ(U) :U). Now Proposition 7.11 givesIV(x − y) � U . By
Proposition 12.7, we know thatg(x) is congruent tog(y)moduloIV(x− y)∨U . But this
ideal is justIV(x − y), which proves (12.8). ✷
Proposition 12.9. Let V be a finite expanded group, and letU be a homogeneous ideal
V with (Φ(U) :U)� U ∨U∗. Then for every unary compatible functionf on V/U there
is a lifting g which is a compatible function onV.

Proof. We defineT to be a transversal through the cosets of(Φ(U) :U)∨ U , i.e., we let
T be such that|T ∩ (v + (Φ(U) :U) ∨ U)| = 1 for eachv ∈ V . By the assumptions, w
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have(Φ(U) :U)∨U �U∗ ∨U , and thus we can find functionssT , sU andsU∗ onV such
that for allv in V we have

v = sT (v)+ sU (v)+ sU∗(v),

and furthermoresT (v) ∈ T , sU (v) ∈ U , andsU∗(v) ∈ U∗. LetLf be any lifting off . The
functionLf might not be compatible, but the functiong we produce out of it will be. We
defineg :V → V by

g(v) := sT
(
Lf (v)

)+ sU∗
(
Lf (v)

)
.

Sinceg(v) differs fromLf (v) only by sU (Lf (v)), the functiong is also a lifting off .
We prove that it is compatible. To this end, letx, y be inV . By Proposition 12.8, we ma
assume thatx andy are congruent modulo(Φ(U) :U). Proposition 12.7 tells thatLf (x) is
congruent toLf (y)moduloIV(x− y)∨U . Since both ideals stay below(Φ(U) :U)∨U ,
we haveLf (x)≡ Lf (y) (mod(Φ(U) :U)∨U), which implies

sT
(
Lf (x)

)= sT (Lf (y)).
Sinceg is a lifting of f , by Proposition 12.7,g(x)− g(y) lies inIV(x − y)∨U . We will
now see thatg(x)− g(y) lies inU∗ as well. We have

g(x) = sT
(
Lf (x)

)+ sU∗
(
Lf (x)

)= sT (Lf (y))+ sU∗
(
Lf (x)

)
U∗≡ sT

(
Lf (y)

)+ sU∗
(
Lf (y)

)= g(y).
Altogether, we get

g(x)≡ g(y)
(
mod

(
IV(x − y)∨U

)∧U∗).
By Proposition 7.4, we have(IV(x − y) ∨ U) ∧ U∗ = (IV(x − y) ∧ U∗) ∨ (U ∧ U∗) =
IV(x−y)∧U∗ � IV(x−y). This proves (12.8). Henceg is the required compatible lifting
of f . ✷
Corollary 12.10. Let V be a finite1-affine complete expanded group, and letU be
homogeneous ideal ofV with (Φ(U) :U)�U ∨U∗. ThenV/U is also1-affine complete

Proof. Let c be a unary compatible function onV/U . Then we use Proposition 12.9
produce a compatible lifting ofc. SinceV is 1-affine complete, this lifting, sayp, is in
Pol1 V. Now the function

q :V/U → V/U,

x +U  → p(x)+U
is a polynomial ofV/U and equal toc. ✷
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We are now ready to prove that every finite 1-affine complete expanded group
(SC1) satisfies(AM ).

Proof (“only if”-part of Theorem12.2). LetV be a minimal failure, that is, letV be a
minimal (with respect to cardinality) 1-affine complete expanded group with(SC1) in
which (AM ) fails. Proposition 9.7 supplies us a nonzero homogeneous idealU of V. By
Proposition 9.8 and Corollary 12.10,V/U is 1-affine complete. By the minimality ofV,
V/U therefore satisfies(AM ). Since(AM ) fails in V, there must be a meet irreducib
ideal ofV such thatI [M,M+] is abelian,M+ contains at least three cosets moduloM and
M is alone in its≈-class. We haveM � U , because ifM � U , thenM causes a failure
of (AM ) in V/U . Now let B be minimal inId V with B � U , B � M. ObviouslyB is
join irreducible andI [B−,B] projects up toI [M,M+]. By the implication (2)⇒ (1) of
Proposition 12.3,B is alone in its∼-class. Hence Proposition 7.2 impliesB = U , and so
U is a minimal ideal ofV, and we have[U,U ] = 0, and|U |� 3.

We choose an elementa ∈ U with a �= 0 and define a functionf :U → U by
f (x)= 0 for x ∈U \ {a} andf (a)= a. Proposition 9.8 yields(0 :U)=U ∨U∗, and thus
Proposition 7.15 supplies an idempotent polynomial functione ∈ Pol1 V with rangeU . We
form the functiong as

g :V → V,

v  → f
(
e(v)

)
.

The functiong is compatible: To show this, letx, y be in V . If IV(x − y) � U , then
g(x)− g(y) lies inIV(x− y) because the range ofg is contained inU . If IV(x − y)�U ,
then by the fact thatU is a minimal ideal we haveU ∧IV(x−y)= 0. Sincee(x)−e(y) lies
in bothU andIV(x − y), we havee(x)= e(y). This impliesg(x)= g(y). Now we show
thatg cannot be a polynomial. Suppose it were. Then takeb ∈ U such thatb �= 0, b �= a;
by the fact thatU contains at least three elements, such ab exists. Ifg is a polynomial,
then Proposition 2.3 gives

g(a − b)+ g(b)≡ g(a) (
mod[U,U ]).

But g(a−b)= g(b)= 0, andg(a)= f (a)= a. This impliesa ∈ [U,U ], and hencea = 0,
a contradiction to the choice ofa. Altogether,g is a compatible function which cann
be a polynomial; thereforeV is not 1-affine complete, contradicting the assumptions. T
finishes the proof of the “only if”-part of Theorem 12.2.✷
12.2. (AM ) is sufficient for1-affine completeness

We are now going to show that every finite expanded group with(SC1) and(AM ) is
1-affine complete.

Proof (“if ”-part of Theorem12.2). We induct on the cardinality ofV. The result is obvious
if |V | = 1. For |V | � 1, Proposition 9.7 supplies us a homogeneous idealU of V. Since
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ersity,
V/U is 1-affine complete by induction hypothesis, it is sufficient to show that e
compatible functionc :V →U is a polynomial.

If [U,U ] = U , then by Proposition 9.8,U is a minimal ideal ofV, and therefore
Proposition 7.17 yields the interpolating polynomial.

If [U,U ]< U , then by Proposition 9.8 we have[U,U ] = 0. By Proposition 7.16, we
only need to show thatc|K is a polynomial for every single cosetK modulo(0 :U). We
choose a cosetK = v+ (0 :U) and define a compatible functionc1(x) := c(v+ x)− c(v).
In order to interpolatec atK, we interpolatec1 on(0 :U). By the fact that(0 :U)=U ∨U∗
andU ∧ U∗ = 0, a polynomialp ∈ Pol1 V with p((0 :U)) ⊆ U and p|U = c1|U agrees
with c1 on (0 :U). As in Proposition 8.1, we form the ringR of all zero-preserving
polynomials onU , that is, we letR be the ring with universeR := {p|U | p ∈ P0(V)}. By
Proposition 8.1, we know thatR is the full matrix ring over a field, and that theR-module
U is isomorphic to the direct product ofm copies of the primitiveR-moduleA, whereA
is a minimal ideal ofV with A�U . Since every sub-R-module ofU is an ideal ofV, the
functionc1|U is also a compatible function on theR-moduleU . If m= 1, thenA=U , and
soA is alone in its∼-class. LetE be an ideal ofV that is maximal withE �A−, E � A.
Then the implication (1)⇒ (2) of Proposition 12.3 yields thatE is not projective to any
other meet irreducible ideal. By condition(AM ), we know thatE+ contains precisely
two cosets ofE, and thus by Proposition 2.2(3),U has precisely two elements. Th
for both casesm = 1 andm > 1, Proposition 8.3 yields that theR-moduleU is 1-affine
complete. Hence the functionc1|U lies inR. Therefore we have a polynomial functionq
with q|U = c1|U . The functionp := eU ◦ q, whereeU is the idempotent polynomial wit
rangeU constructed in Proposition 7.15, satisfiesp|U = c1|U andp(V ) ⊆ U . Hencec|K
is a polynomial, which finishes the proof of the “if”-part of Theorem 12.2.✷

Using Theorem 12.2, we find the following examples of 1-affine complete algebra

(1) Let p be an odd prime, letn� 2, and letB be the elementary abelian group withpn

elements. Then the generalized dihedral group determined byB (see [38, p. 10]) is
1-affine complete (cf. [6]).

(2) Let F be a finite field, letn � 2, and letR be the (commutative) polynomial rin
F[x1, x2, . . . , xn]. We takeI to be the ideal generated by all quadratic monomials,
by {xixj | i, j ∈ {1,2, . . . , n}, i �= j } ∪ {x2

i | i ∈ {1,2, . . . , n}}. Then the ringR/I is
1-affine complete.
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