Energy decay estimates for the Bernoulli–Euler-type equation with a local degenerate dissipation

Jong Yeoul Park, Jum Ran Kang

Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

ABSTRACT

In this paper, we study the decay property of the solutions to the Bernoulli–Euler-type equation with a local degenerate dissipation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the decay property of the solutions to the Bernoulli–Euler-type equation with a local degenerate dissipation

\[u_{tt} + \Delta^2 u - \alpha \left(\int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u + a(x)u_t = 0 \quad \text{in} \quad \Omega \times (0, \infty), \]

\[u = \frac{\partial u}{\partial \eta} = 0 \quad \text{on} \quad \Gamma' \times (0, \infty), \]

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x) \quad \text{in} \quad \Omega, \]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) with smooth boundary \(\Gamma' \), \(\alpha \) is a positive constant and \(a(x) \) is a nonnegative smooth function on \(\Omega \) which may vanish somewhere in \(\Omega \). It is interesting to observe that when \(N = 1 \) the model considered here is a general mathematical formulation of a problem arising in the dynamic buckling of a hinged extensible beam under an axial force.

An energy decay property for the problem (1.1)–(1.3) means that there exists a function \(g(t) \) such that

\[E(t) \leq g(t)E(0), \quad t \geq 0 \quad \text{with} \quad \lim_{t \to \infty} g(t) = 0, \]

where \(E(t) \) is the energy of the solution at time \(t \) to the problem (1.1)–(1.3), defined by

\[E(t) = \frac{1}{2} \int_{\Omega} \left(u_t^2 + |\Delta u|^2 \right) \, dx + \frac{\alpha}{4} \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^2. \]

* Corresponding author. Tel.: +82 51 200 6092; fax: +82 51 200 7217.
E-mail addresses: jyepark@pusan.ac.kr (J.Y. Park), jrkang@donga.ac.kr, pointegg@hanmail.net (J.R. Kang).

0893-9659/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.06.012
It is well known that the decay rates of the energy $E(t)$ depend on the geometrical shape, the dimension of the domain and the coefficient function $a(x)$ in the dissipative term. This problem for the following wave equation

\begin{equation}
\begin{aligned}
 u_{tt} - \Delta u + a(x)u_t &= 0 \quad \text{in } \Omega \times (0, \infty), \\
 u &= 0 \quad \text{on } \Gamma \times (0, \infty), \\
 u(x, 0) &= u_0(x), \quad u_t(x, 0) = u_1(x) \quad \text{in } \Omega
\end{aligned}
\end{equation}

has been studied by many authors. We refer the reader to [1–13].

When $a(x) \geq \epsilon_0 > 0$ on Ω, it is easy to show that the energy of solutions to the problem (1.5) decays exponentially to 0 as $t \to \infty$; that is, there exists a constant $\lambda > 0$ such that

\begin{equation}
 E(t) = \mathcal{O}(e^{-\lambda t})
\end{equation}

for any initial condition $(u_0, u_1) \in H^1(\Omega) \times L^2(\Omega)$ (see Rauch and Taylor [10]). Dafermos [4] and Haraux [5] showed that the energy of all solutions to the problem (1.5) goes to 0 as $t \to \infty$; that is,

\[
 \lim_{t \to \infty} E(t) = 0
\]

if $a(x_0) > 0$ for some $x_0 \in \Omega$. Zuazua [13] proved that estimate (1.6) holds for all solutions to the problem (1.5) if $a(x) \geq \epsilon_0 > 0$ only on a neighborhood ω in Ω of $\Gamma(x_0)$ (see Lions [14]), which is a part of the boundary given by

\[
 \Gamma(x_0) = \{ x \in \partial \Omega | (x - x_0) \cdot v(x) \geq 0 \},
\]

where $x_0 \in \mathbb{R}^N$ is arbitrarily fixed and $v(x)$ denotes the outward unit normal vector at $x \in \partial \Omega$. Nakao [8] considered containing the case of a degenerate dissipation as follows. Let $x_0 \in \mathbb{R}^N$ and ω be a neighborhood in Ω of $\Gamma(x_0)$. Assume that

\begin{equation}
 a(x) > 0 \quad \text{a.e. } x \in \omega \quad \text{and} \quad \int_{\omega} a(x)^{-p} \, dx < \infty
\end{equation}

for some $p \in (0, 1)$. Then the energy decays polynomially; that is,

\begin{equation}
 E(t) = \mathcal{O}\left(t^{-\frac{2m}{m-p}} \right),
\end{equation}

where $a(\cdot) \in C^{m-1}(\bar{\Omega})$ and $(u_0, u_1) \in H^{m+1}(\Omega) \times H^m(\Omega)$ satisfies the compatibility condition of the m-th order relative to the problem (1.5). Later, under the same hypotheses on the data, Tchegoué Tébou [11] proved that, for any given $N \geq 1$, if $N < 2m$ and $0 < p < \infty$, then the energy $E(t)$ satisfies (1.8), and furthermore, when $N \geq 2m$ and $p > 0$, satisfying $N - 2m \leq mp$, the energy $E(t)$ satisfies

\begin{equation}
 E(t) = \mathcal{O}\left(t^{-\frac{mp}{m-p}} \right).
\end{equation}

Kang et al. [6] proved sharp energy decay estimates for the wave equation with a local degenerate dissipation. Cavalcanti et al. [3] studied the asymptotic stability of the wave equation on compact manifolds and locally distributed damping.

The same problems have also been addressed for the Bernoulli–Euler equation. We refer the reader to [15–19]. Cavalcanti et al. [16] considered the asymptotic stability for the nonlinear and generalized damped extensible plate equation. Recently, Charão et al. [17] proved the polynomial decay for the energy of solutions of a nonlinear plate equation of Bernoulli–Euler type with a nonlinear localized damping term.

Motivated by work in [6,9,17], we obtain in this paper precise energy decay estimates for the Bernoulli–Euler-type equation with a local degenerate dissipation.

2. Statement of the main result

Throughout this paper we shall use familiar Sobolev spaces $H^m(\Omega)$ with respect to the norm

\[
 \| f \|_{H^m(\Omega)} = \sum_{|\alpha| \leq m} \| D^\alpha f \|_{L^2(\Omega)},
\]

where $D^\alpha = \partial^{\alpha_1}_{1} \cdots \partial^{\alpha_N}_{N}$, $\alpha = (\alpha_1, \ldots, \alpha_N)$, $\alpha_i \geq 0$, $i = 1, \ldots, N$, $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_N$ and $\| \cdot \|_{L^p(\Omega)}$ denotes the L^p norm on an open set $\Omega \in \mathbb{R}^N$, $1 \leq p \leq \infty$. We begin with the following well-known lemmas, which will be used in the main result.

Lemma 2.1 (Gagliardo–Nirenberg Inequality). Let $1 \leq r < p \leq \infty$, $1 \leq q \leq p$ and $0 \leq k \leq m$. Then we have the inequality

\[
 \| v \|_{W^{k,p}(\Omega)} \leq C \| v \|_{W^{m,q}(\Omega)}^{\theta} \| v \|_{L^p(\Omega)}^{1-\theta}
\]

for $v \in W^{m,q}(\Omega) \cap L^p(\Omega)$

with some $C > 0$ and

\[
 \theta = \left(\frac{k}{N} + \frac{1}{r} - \frac{1}{p} \right) \left(\frac{m}{N} + \frac{1}{r} - \frac{1}{q} \right)^{-1}
\]

provided that $0 < \theta \leq 1(0 < \theta < 1$ if $p = \infty$, mq integer).
We also need the following lemma of Nakao [8].

Lemma 2.2. Let \(\phi(t) \) be a nonnegative function on \([0, \infty)\) satisfying

\[
\sup_{t \leq s \leq t+T} \phi(s)^{1+\gamma} \leq C_\phi \{\phi(t) - \phi(t+T)\},
\]

where \(T, \gamma \) and \(C_\phi \) are some positive constants. Then \(\phi(t) \) has the decay property

\[
\phi(t) \leq \left\{ \phi(0)^{-\gamma} + \frac{\gamma}{C_\phi} (t-T)^+ \right\}^{-\frac{1}{\gamma}}
\]

for all \(t \geq 0 \), where the notation \(\alpha^+ \) signifies \(\max(\alpha, 0) \).

The existence and the regularity of the solution \(u \) of the problem (1.1)-(1.3) are given by the following well-known result.

Theorem 2.1. Let \(a(\cdot) \in L^\infty(\Omega) \). Then, for each \(T > 0 \), we have the following.

1. If \(u_0 \in H^4(\Omega) \cap H_0^2(\Omega) \) and \(u_1 \in H_0^2(\Omega) \), then system (1.1)-(1.3) admits a unique solution having the regularity

\[
\begin{align*}
\phi(t) & \leq C(0)^{-\gamma} + \frac{\gamma}{C(0)} (t-T)^+ \left\{ \phi(0)^{-\gamma} + \frac{\gamma}{C(0)} (t-T)^+ \right\}^{-\frac{1}{\gamma}} \\
& \leq C(0)^{-\gamma} + \frac{\gamma}{C(0)} (t-T)^+, \quad \phi(T) \leq C(1)^{-\gamma} + \frac{\gamma}{C(1)} (T-T)^+, \quad \phi(0) = C(0),
\end{align*}
\]

for all \(t \geq 0 \), where the notation \(\alpha^+ \) signifies \(\max(\alpha, 0) \).

The existence of both strong and weak solutions may be proven either by the theory of a semigroup or by the Galerkin method. The main result of this paper reads as follows.

Theorem 2.2. Let \((u_0, u_1) \in H^4(\Omega) \cap H_0^2(\Omega) \times H_0^2(\Omega)\). Suppose that \(a(x) \geq 0 \) on \(\Omega \), \(a(\cdot) \) belongs to \(C^1(\Omega) \) and there exist \(x_0 \in \mathbb{R}^N \) and \(\omega \), the intersection of \(\Omega \) and a neighborhood of \(\Gamma(x_0) \) such that

\[
a(x) > 0 \quad \text{a.e.} \ x \in \omega, \quad \int_\omega a(x)^{-\gamma} dx < \infty,
\]

where the parameter \(p > 0 \) satisfies

\[
\begin{align*}
0 < p < \infty & \quad \text{if} \ 1 \leq N < 4, \\
N - 4 & \leq 2p \quad \text{if} \ 4 \leq N.
\end{align*}
\]

Then, for any given \(N \), we have the following decay estimates. If \(N < 4 \), then the energy \(E(t) \) satisfies

\[
E(t) \leq \left(E(0)^{-\frac{N}{4p}} + \frac{N}{4p} C(u_0, u_1, T)^{-\left(1 + \frac{N}{4p}\right)} (t-T)^+ \right)^{-\frac{4p}{N}}
\]

for all \(t \geq 0 \), where \(C(u_0, u_1, T) \) is a positive constant depending on the initial data \(u_0, u_1 \) and \(T \).

On the other hand, if \(N \geq 4 \), then the energy \(E(t) \) satisfies

\[
E(t) \leq \left(E(0)^{-\frac{N}{4p}} + \frac{N}{4p} \tilde{C}(u_0, u_1, T)^{-\left(1 + \frac{N}{4p}\right)} (t-T)^+ \right)^{-\frac{4p}{N}}
\]

for all \(t \geq 0 \), where \(\tilde{C}(u_0, u_1, T) \) is a positive constant depending on the initial data \(u_0, u_1 \) and \(T \).

Since \(a(x) \) may vanish for \(x \in \omega^c \) and may degenerate on \(N - 1 \) submanifolds in \(\omega \), our dissipation \(a(x)u_t \) is localized at a neighborhood of a part of \(\Gamma(x_0) \) as well as degenerate on such a neighborhood.

Remark 2.1. Theorem 2.2 says that if, for any given dimension \(N(\geq 1) \), there exists a constant \(p > 0 \) satisfying (2.1), then we have the decay property

\[
E(t) = O\left(t^{-\frac{N}{4p}}\right)
\]

for the solution \(u(t) \in C([0, T]; H^4(\Omega) \cap H_0^2(\Omega)) \cap C^1([0, T]; H_0^2(\Omega)) \).
3. Proof of Theorem 2.2

Lemma 3.1. Let \(\eta(x) \in W^{1,\infty}(\Omega) \) and \(h(x) = (h_1(x), h_2(x), \ldots, h_N(x)) \in (W^{1,\infty}(\Omega))^N \). Then, for the solution \(u(t) \in C([0, T]; H^4(\Omega) \cap H^2_0(\Omega)) \cap C^1([0, T]; H^2_0(\Omega)) \) and \(T > 0 \), we have the following identities:

\[
E(t + T) + \int_t^{t+T} \int_{\Omega} a(x)|u_t|^2 \, dx \, ds = E(t);
\]

\[
\int_t^{t+T} \int_{\Omega} \eta(x)|\Delta u_t|^2 - |u_t|^2 + \alpha \|\nabla u_t\|^2 |\nabla u|^2 \, dx \, ds + \int_t^{t+T} \int_{\Omega} \eta(x) a(x) u_t u \, dx \, ds
\]

\[
= - (\eta(x) u, u_t) |t+T - t| + \int_t^{t+T} \int_{\Omega} [u \Delta u \Delta \eta(x) + 2 \Delta u (\nabla u \cdot \nabla \eta(x))] \, dx \, ds - \alpha \int_t^{t+T} \int_{\Omega} \|\nabla u_t\|^2 \, dx \, ds;
\]

\[
\frac{1}{2} \int_t^{t+T} \int_{\Omega} h(x) \cdot \nabla(x) \|\Delta u\|^2 \, dx \, ds - (u_t, h(x) \cdot \nabla u) |t+T - t|
\]

These identities are derived by multiplying Eq. (1.1) by \(u_t \), \(\eta(x) u \) and \(h(x) \cdot \nabla u \), respectively, and integrating over \([t, t+T] \times \Omega\), \(T > 0 \), using integration by parts. Now let us set

\[
D(t)^2 \equiv E(t) - E(t + T) = \int_t^{t+T} \int_{\Omega} a(x)|u_t|^2 \, dx \, ds. \tag{3.1}
\]

Using the identities in Lemma 3.1 and proceeding similarly as in the proof of the main theorem of Nakao [8] and Charão et al. [17], we can derive the following inequality, which is a useful inequality for deriving the decay rate of the energy.

Proposition 3.1. Let \(T > 0 \) be a sufficiently large number. For the solution \(u(t) \in C([0, T]; H^4(\Omega) \cap H^2_0(\Omega)) \cap C^1([0, T]; H^2_0(\Omega)) \), there exists a constant \(C > 0 \) independent of the initial data, such that the estimate

\[
E(t + T) \leq C \left\{ D(t)^2 + \int_t^{t+T} \int_{\omega} |u_t|^2 \, dx \, ds \right\}. \tag{3.2}
\]

where we set \(\tilde{\omega} = \omega \cap \tilde{\Omega} \).

We are now in a position to prove the main result. In order to complete the proof of Theorem 2.2, we must to find a proper estimate of the term of the integral in the right-hand side of (3.2). We distinguish two cases, corresponding to the hypothesis on \(N \).

Case (i): \(N < 4 \). By the assumption on \(a(x) \) and Lemma 2.1, we obtain

\[
\int_t^{t+T} \int_{\omega} |u_t|^2 \, dx \, ds = \int_t^{t+T} \int_{\omega} a(x) \frac{p}{p+1} |u_t|^{p+1} a(x)^{-\frac{p}{p-1}} |u_t|^{-\frac{p}{p-1}} \, dx \, ds
\]

\[
\leq \left\{ \int_t^{t+T} \int_{\omega} a(x)|u_t|^2 \, dx \, ds \right\}^{\frac{p}{p+1}} \left\{ \int_t^{t+T} \int_{\omega} a(x)^{-p} |u_t|^2 \, dx \, ds \right\}^{\frac{1}{p+1}}
\]

\[
\leq D(t)^{\frac{2p}{p+1}} A \frac{1}{p+1} T^{\frac{1}{p+1}} \sup_{t \leq s \leq t+T} \|u_t(s)\|_{L^{p+1}(\Omega)}^2
\]

\[
\leq C_1 D(t)^{\frac{2p}{p+1}} A \frac{1}{p+1} T^{\frac{1}{p+1}} \sup_{t \leq s \leq t+T} \|u_t(s)\|_{H^2(\Omega)}^N \|u_t(s)\|_{L^2(\Omega)}^{\frac{4-N}{4+p+1}}
\]

\[
\leq \hat{C}_1 D(t)^{\frac{2p}{p+1}} A \frac{1}{p+1} T^{\frac{1}{p+1}} \int_0^T E(t) \frac{4-N}{4+p+1} \equiv A(t)^2,
\tag{3.3}
\]
where \(A_p = \int \alpha(x)^{-p} dx < \infty \) and \(C_1, \tilde{C}_1 > 0 \) are constants independent of the initial data, and we set \(I = C(\|u_0\|_{H^1(\Omega)}^2 + \|u_1\|_{H^2(\Omega)}^2)^{1/2} \). Thus we have from identity (3.1), Proposition 3.1, (3.3) and Young’s inequality on \(CA(t)^2 \nabla \)

\[
E(t) = D(t)^2 + E(t + T) \\
\leq (C + 1)D(t)^2 + CA(t)^2 \\
\leq (C + 1)D(t)^2 + \frac{4p + N}{4(p + 1)} (C\tilde{C}_1)^{\frac{4(p+1)}{4(p + 1)}} (A_p T)^{\frac{4}{4(p + 1)}} \int_{\partial \Omega} D(t) \nabla + \frac{4 - N}{4p + N} E(t). \tag{3.4}
\]

Using the definition of \(D(t)^2 \) and (3.4), we get the inequality

\[
E(t)^{1+\frac{N}{4p}} \leq C(u_0, u_1, T)^{1+\frac{N}{4p}} D(t)^2, \tag{3.5}
\]

where \(C(u_0, u_1, T) \) denotes the positive quantity given by

\[
C(u_0, u_1, T) = \frac{4(p + 1)}{4p + N} (C + 1) + (C\tilde{C}_1)^{\frac{4(p+1)}{4(p + 1)}} (A_p T)^{\frac{4}{4(p + 1)}} \nabla .
\]

Now applying Lemma 2.2 to the above inequality (3.5), we obtain the estimate

\[
E(t) \leq \left(E(0)^{-\frac{N}{4p}} + \frac{N}{4p} C(u_0, u_1, T)^{-(1+\frac{N}{4p})} (t - T)^+ \right)^{-\frac{4p}{N}}
\]

for \(4 > N \).

Case (ii): \(N \geq 4 \). By the assumption on \(\alpha(x) \) and the generalized Hölder inequality, we have

\[
\int_0^{t+T} \int_\Omega |u_t|^2 dx ds = \int_t^{t+T} \int_\Omega |u(x)|^2 |\nabla u(x)|^{-r} \left| u_t \right|^2 |\nabla u_t|^2 dx ds \\
\leq \left(\int_t^{t+T} \int_\Omega |u(x)|^2 dx ds \right)^{\frac{r}{4p}} \left(\int_t^{t+T} \int_\Omega |u(x)|^{-r} dx ds \right)^{\frac{1}{4p}} \left(\int_t^{t+T} \int_\Omega |u_t|^2 dx ds \right)^{\frac{1}{4p}} \\
= \left(\int_t^{t+T} \int_\Omega |u(x)|^2 dx ds \right)^{\frac{r}{4p}} \left(\int_t^{t+T} \int_\Omega |u(x)|^{-r} dx ds \right)^{\frac{1}{4p}} \left(\int_t^{t+T} \int_\Omega |u_t|^2 dx ds \right)^{\frac{1}{4p}}.
\]

where we use \(r_1 = 1, r_2 = p, (2 - 2r)p_3 = \frac{2p + 4}{3p + 2} \) and \(r = \frac{2p + 4}{3p + 2} \). Using the Gagliardo–Nirenberg inequality (see Lemma 2.1) and \(p > 0 \) satisfying \(N - 4 \leq 2p \) in the last term of the right-hand-side of (3.6) yields

\[
\|u_t\|_{L^{2p+4}((\partial \Omega), t)} \leq C_2 \|u_t\|_{H^1(\partial \Omega)}^{\frac{2p+4-N}{2(2p+4)}} \|u_t\|_{H^1(\partial \Omega)}^{\frac{2p+4}{2(2p+4)}} \leq \tilde{C}_2 I^{\frac{N}{2(2p+4)}} E(t)^{\frac{2p+4-N}{2p+4}}. \tag{3.7}
\]

Combining (3.6) and (3.7), we obtain

\[
\int_t^{t+T} \int_\Omega |u_t|^2 dx ds \leq A_p^{\frac{2}{2p+4}} T^{\frac{2}{2p+4}} D(t)^{\frac{4p}{2p+4}} \sup_{0 \leq \tau \leq t+T} \|u_t\|_{L^{2p+4}((\partial \Omega), t)}^{\frac{2p+4-N}{2(2p+4)}} \leq \tilde{C}_2^{\frac{2}{2p+4}} A_p^{\frac{2}{2p+4}} T^{\frac{2}{2p+4}} D(t)^{\frac{2p+4-N}{2p+4}} E(t)^{\frac{2p+4-N}{2p+4}}. \tag{3.8}
\]

Thus we have from identity (3.1), Proposition 3.1, (3.8) and Young’s inequality,

\[
E(t) \leq (C + 1)D(t)^2 + C_3 D(t)^{\frac{4p+2-N}{2p+4}} E(t)^{\frac{2p+4-N}{2p+4}} \\
\leq (C + 1)D(t)^2 + \frac{4p + N}{2(3p + 2)} \left(C_3 D(t)^{\frac{4p}{3p + 2}} \right)^{\frac{2(3p + 2)}{3p + 2}} + \frac{2(p + 2) - N}{2(3p + 2)} E(t), \tag{3.9}
\]

where \(C_3 = C \tilde{C}_2^{\frac{2}{3p+2}} A_p^{\frac{2}{3p+2}} T^{\frac{2}{3p+2}} D(t)^{\frac{2p+4-N}{3p+2}} \). This is modified by

\[
E(t)^{1+\frac{N}{4p}} \leq \tilde{C}(u_0, u_1, T)^{\frac{4p+N}{4p}} D(t)^2, \tag{3.10}
\]

where the positive constant \(\tilde{C}(u_0, u_1, T) \) is given by

\[
\tilde{C}(u_0, u_1, T) = \frac{2(3p + 2)}{4p + N} (C + 1) + C_3^{\frac{2p+4-N}{4p}}.
\]

Applying Lemma 2.2 to (3.10), we obtain the decay estimate

\[
E(t) \leq \left(E(0)^{-\frac{N}{4p}} + \frac{N}{4p} \tilde{C}(u_0, u_1, T)^{-\left(1+\frac{N}{4p}\right)} (t - T)^+ \right)^{-\frac{4p}{N}} \]

for \(4 \leq N \).
References