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A multiphysics model is presented in this paper for simulation of kinetics of the smart hydrogels subject
to an externally applied electric field, especially for analysis of the transient deformation of the hydrogel.
The model termed the multi-effect-coupling electric stimulus (MECe) takes account of the coupled
chemo-electro-mechanical multiphysics domains and the multi-phase effect of polymeric network and
interstitial liquid as well as ionic species. The MECe model is validated well by transient simulation
and comparison with available experimental data. Kinetics of ionic concentration of diffusive species is
simulated. Parameter studies on the hydrogel displacement are conducted in detail for influences of
externally applied electric voltage, initially fixed-charge density and surrounding bath solution
concentration.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In general, hydrogel is a hydrophilic multi-phase mixture,
which is composed of three-dimensional cross-linked polymeric
network matrix solid phase and interstitial liquid phase. This
makes the hydrogel behave both solid-like and liquid-like proper-
ties. If an ionic monomer is incorporated into the polymeric net-
work, usually the hydrogel can respond to environmental stimuli
and then it is called the smart hydrogel, in which the charged
group is formed and termed fixed-charge since its mobility is much
less than that of freely mobile ionic species within the interstitial
liquid, as shown in Fig. 1.

It is well known that the smart hydrogels have wide range of
applications in bioengineering areas, where they are used as active
element in BioMEMS for controlled drug release, micro-scale actu-
ating/sensing, micro-fluidic flow control and filtration/separation
(Galaev and Mattiasson, 1999; Beebe et al., 2000; Jeong and Gut-
owska, 2002), due to their sensitivity to a large variety of environ-
mental stimuli such as electric field, solution pH, temperature and
chemicals (Tanaka, 1978; Tanaka et al., 1980; Tanaka et al., 1982;
Siegel and Firestone, 1988; Kwon et al., 1991; Kokufuta et al.,
1991; Osada et al., 1992; Chen and Hoffman, 1995; Yoshida
et al., 1995; Kataoka et al., 1998).

So far the mechanism of the smart hydrogels responding to
electric voltage has still remained poorly understood although
many experimental and theoretical investigations of the hydrogels
ll rights reserved.
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were conducted. Few studies of theoretical modeling are found in
open literature. They include the early bi-phase model developed
by Mow et al. (1980), the swelling thermo-analog theory by Myers
et al. (1984), the bi-component theory by Lanir (1987) and the
electromechanical theory by Eisenberg and Grodzinsky (1987). In
general, it is difficult for these models to work well because they
exclude several important physical parameters such as the fixed-
charge density and diffusive ionic concentrations. In order to over-
come the drawbacks, a tri-phase mechano-electrochemical model
was proposed by Lai et al. (1991) for analysis of the response of
hydrogel-like tissues by incorporating the chemical potential
whose gradient is considered as driving force for fluid flow and
ion transport. Wallmersperger et al. (2004) and Zhou et al.
(2002) put forward the models for deformation of the electric-sen-
sitive hydrogels subject to external electric field. However, the
models still have limited applications. For example, Wallmersper-
ger et al. (2004) directly used Newton’s second law as mechanical
governing equation, resulting in difficulty to describe the mechan-
ical behavior of multi-phase hydrogels. In the model by Zhou et al.
(2002), the electro-neutrality condition is required, and simulated
domain is limited within interior hydrogel only, excluding the
surrounding bath solution. For further improvement of theoretical
modeling of the electric-sensitive hydrogels, the present author
has developed a multiphysics model consisting of coupled nonlin-
ear partial differential governing equations (Li et al., 2004c), which
is based on the multi-phase theory and termed the multi-effect-
coupling electric-stimulus (MECe) model, for simulation of respon-
sive behaviors of the smart hydrogels when immersed into bath
solution subject to externally applied electric field. Computational
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Fig. 1. Microscopic structure of the charged hydrogel.
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accuracy of the MECe model has been validated in steady-state
simulation to predict the equilibrium of the hydrogels (Li et al.,
2004a).

In this paper, the MECe model will be further examined in
transient simulation for kinetics of the hydrogels. The model is dis-
cretized first and then numerical simulation is compared with pub-
lished experimental data. The transient simulations are conducted
for analysis of the concentration kinetics of ionic species and the
influence of several important parameters on the displacement of
the electric-stimulus responsive hydrogels. The parameters include
externally applied electric voltage, initially fixed-charge density
and surrounding bath solution concentration.

2. Formulation of MECe model

2.1. Transient governing equations of the MECe model

Formulation of the MECe model is based on the two assump-
tions: (a) the smart hydrogel is immersed in an unstirred solution
in vibration-free experimental device; the bulk flow of fluid or
hydrodynamic velocity can thus be eliminated and subsequently
the convective flux is neglected and (b) the pore of the present
hydrogel is narrow enough and thus the diffusion dominates the
transmission of flux. The governing equations of the MECe model
are composed of (Li et al., 2004a,c)

(a) Nernst–Planck equation for the concentration ck of the kth
diffusive ion species
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;iÞ;i þ
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(b) Poisson equation for the electric potential w,
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(c) the continuity and momentum equations of the mixture for the
fluid pressure p and displacement u of the hydrogel,
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(d) the constitutive equation of the fixed-charge density cf and the
volume fraction /w of water phase,

cf ¼ cf
0

ð1þ trðEÞ=/w
0 Þ
; /w ¼ 1� /s

0

ð1þ trðEÞÞ ð5Þ

where Dk, ck and zk are the diffusive coefficient, concentration and
valance of the kth ion species, respectively. Fc is the Faraday con-
stant, R is the universal gas constant, T is the absolute tempera-
ture, w is the electric potential, e is the dielectric constant and e0

is the permittivity of free space. cf and zf are the density and va-
lence of the fixed-charge group. /w is the volume fraction of
water phase, fws is the diffusive drag coefficient between the
polymeric matrix solid and interstitial water phases, Uk is the os-
motic coefficient of the kth ion species and p is the fluid pressure.
u and E are the displacement and elastic strain vector of the
polymeric solid matrix. ks and ls are Lamé coefficients of the ma-
trix. cf

0; /s
0 and /w

0 are the fixed-charge density and volume frac-
tions of solid and water phases at a reference configuration,
respectively, where the reference configuration is defined as the
equilibrium state of the studied system when the hydrogel is im-
mersed in the bath solution without the externally applied elec-
tric field.

For simplification of numerical simulation, six non-dimensional
variables are defined as follows:
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where f denotes spatial coordinate variable. a and b are non-dimen-
sional adjustable parameters, which are introduced for more flexi-
ble simulating regions of the electric potential w and fluid
pressure p.

By substituting the non-dimensional variables defined in (6)–
(9) into the MECe transient governing equations (1)–(4), we derive
the non-dimensional form of the MECe model as

L2
ref
@�ck

@t
¼ ðDk�ck

;iÞ;i þ azkðDk�ck �w;iÞ;i ðk ¼ 1;2; . . . ; nf Þ ð10Þ

r2 �w ¼ �
F2

c L2
ref cref

ee0RTa
Xnf

k¼1

ðzk�ck þ zf �cf Þ ð11Þ

L2
ref

cref RT
r @

�u
@t
¼ r ð/

wÞ2

fws
ðbr�pþ RTr

X
k

ð1�UkÞ�ck þ a
X

k

zk�ckr�wÞ
" #

ð12Þ

bRTcrefr � ðpIÞ ¼ rðkstrðEÞIþ 2lsEÞ ð13Þ

One-dimensional transient numerical simulations as prelimin-
ary study are conducted in this paper. As shown in Fig. 2, an elec-
tric-sensitive hydrogel strip is placed into the ideal NaCl solution
subject to an externally applied electric field. Displacement along
the x direction is computed here. It is assumed in this paper that
one of two edge points a and b in the thickness h direction is fixed
to eliminate the rigid-body displacement of the hydrogel strip. The
governing equations (10)–(13) of MECe model are thus reduced to
the 1D non-dimensional partial differential transient equations as
follows:
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Fig. 2. Diagram of a hydrogel strip immersed in bath solution under applied electric
field, where the whole computational domain is defined as the X-coordinate system
and the hydrogel domain as the X gel-coordinate system.
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2.2. Boundary and initial conditions

The computational domain of Eqs. (14) and (15) is defined as
covering both the hydrogel and surrounding bath solution for the
ionic concentrations �ck and electric potential �w. As such, the bound-
ary conditions of the unknown �ck and �w are imposed at the two
electrodes located at the ends of bath solution as illustrated in
Fig. 2,

�cjAnode ¼ �cjCathode ¼ �c� ð18Þ

�wjAnode ¼ 0:5Ve and �wjCathode ¼ �0:5Ve ð19Þ

where �c� is the initial concentration of the bath salt solution and Ve

is the applied voltage.
For the fluid pressure �p and hydrogel displacement �u

however, the computational domain of Eqs. (16) and (17)
covers the hydrogel region only. The corresponding boundary
conditions are required at both the interfaces between the
hydrogel and surrounding solution. It is assumed in an equi-
librium state that the chemical potentials of fluid and ion
phases inside the hydrogels should be equal to those outside
the hydrogels. As such, the boundary condition of the fluid
pressure �p at the hydrogel–solution interfaces is given as
(Li et al., 2007)
�pinterface ¼ RTð�cþin�interface þ �c�in�interface � �cþout�interface

� �c�out�interfaceÞ � p0 ð20Þ

where �ck
in�interface and �ck

out�interface (k = +, �) are the ionic concentra-
tions within the hydrogels near the interfaces and within the bath
solution near the interfaces, respectively. p0 denotes the surround-
ing fluid pressure at reference configuration. In state of the mechan-
ical equilibrium of the hydrogels, the boundary condition of the
displacement �u at the hydrogel–solution interface may be written as

ð3ks þ 2lsÞ
@�uinterface

@�x
¼ bRTcref �pinterface ð21Þ

In order to implement the transient simulation for kinetics of
the electric-sensitive hydrogels, initial conditions are required. It
is assumed here that initially the hydrogel is in the equilibrium
state when the effect of bath solution is considered only, namely
no external electric field is applied. This equilibrium state will be
taken as initial condition for transient simulation. Thus corre-
sponding steady-state computational results are used as the initial
conditions as

�ctransient
initial ¼ �csteady

v¼0 ð22Þ
�wtransient

initial ¼ �wsteady
v¼0 ð23Þ

�ptransient
initial ¼ �psteady

v¼0 ð24Þ
�utransient
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v¼0 ð25Þ

where �csteady
v¼0 ; �wsteady

v¼0 ; �psteady
v¼0 and �usteady

v¼0 are the steady-state simulat-
ing results without the effect of externally applied electric field.

2.3. Discretization of the transient governing equations of the MECe
model

A meshless numerical method, termed the Hermite-cloud
method (Li et al., 2003, 2004b), is used for transient solution of
the nonlinear partial differential governing equations (14)–(17)
of the MECe model. The Hermite-cloud method constructs the Her-
mite-type interpolation functions and employs the point colloca-
tion for discretization of the governing equations to directly
compute the approximate solutions of both unknown functions
and first-order derivatives (Li et al., 2003, 2004b). By the Her-
mite-cloud method, an unknown continuous real function f(x,y)
can expressed approximately by
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where Nn(x,y) and Mn(x,y) are defined as the shape functions of
the unknown function f(x,y) and corresponding first-order differ-
ential functions gx(x,y) and gy(x,y), respectively, which are simply
polynomials in x and y. fn denotes the unknown point value of
f(x,y) at the nth discrete point, gxm and gym the unknown point
values of gx(x,y) and gy(x,y) at the mth discrete point. NT and NS

are total numbers of discrete points scattered within the compu-
tational domain.

By the h-weighted finite difference scheme (0.5 < h < 1.0) (Red-
dy, 1993), Eq. (14) is discretized first in time t domain
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where the subscript n denotes time t = tn and Dt = tn+1 � tn is time
step. By the Hermite-cloud method (Li et al., 2003, 2004b), Eq.
(27) is further discretized in spatial domain as shown in Appendix.
Similarly, Eqs. (15)–(17) are also discretized in both time and spa-
tial domains and shown in Appendix.

3. Validation of the MECe model

Computational accuracy of the MECe model for steady-state
simulation has been examined for equilibrium of the electric-sen-
sitive hydrogels (Li et al., 2004a,c). In this section, the MECe model
will be further validated for transient simulation and compared
with published experimental data. In terms of the experiment of
the hydrogel kinetics subject to external electric field, only one
study was found and done by Shiga and Kurauchi (1990). As illus-
trated in Fig. 2, they experimentally measured the endpoint dis-
placement D of a hydrogel strip in a straightforward manner,
instead of the displacement u at the edge point b of the present
1D computational domain between the edge points a and b in
the hydrogel thickness h direction along symmetric x-axis. In other
words, the experimentally measured displacement D and the com-
puted displacement u are located in different regions of the hydro-
gel strip. For an approximate comparison, an analogue relation is
required between the two displacements u and D at different posi-
tions of the hydrogel strip. The experimental data (Shiga and
Kurauchi, 1990) used as input data for the present numerical sim-
ulation of the MECe model include T = 298 K, R = 8.314 J/mol K,
Fc ¼ 9:648 � 104 C=mol; e0 ¼ 8:854 � 10�12 C2=Nm2; e ¼ 80;
/w

0 ¼ 0:8; cf
0 ¼ 35:3 mol=m3; zf ¼ �1; c� ¼ 35:3 mol=m3; Ve ¼

3:0 V; 3k þ 2l ¼ 1:8 � 104 Pa; L ¼ 5:0 � 10�2 m, and h = 5.0 �
10�3 m, which were obtained experimentally by Shiga and Kurau-
chi (1990). The computed displacement u and experimentally mea-
sured displacement D are tabulated at time t = 1, 2, 3, 4 and 5 min,
respectively, as shown in Table 1. The relation between the dis-
placements u and D is constructed as a result of using the least
square technique with best fitting to the displacements u and D
at time t = 1, 3 and 5 min only, and expressed by

D ¼ 1:58þ 0:93uþ 0:47u2 ð28Þ

For examination of the above relation, the displacements u and D
are substituted at time t = 2 and 4 min into Eq. (28), respectively,
the relative discrepancies are computed and they are generally less
than 6%. The relation (28) is thus validated acceptable. Finally, for
comparison of the transient displacements D between experiment
(Shiga and Kurauchi, 1990) and computation by Eq. (28), Fig. 3 is
plotted and good agreement is achieved for the transient simula-
tion. This validates the MECe model suitable for kinetics of the elec-
tric-sensitive hydrogels.
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4. Simulation and discussion for parameter study of kinetics of
the hydrogels

For deeper understanding of the kinetics of smart hydrogels
responding to electric stimulus, numerical simulations are con-
ducted. Several parameters, including T = 298 K, R = 8.314 J/mol K,
Table 1
Displacements D and u at different time.

Time (min) 1 2 3 4 5

Displacement D (mm) 2.1 3.1 4.1 5.0 6.1
Displacement u (mm) 0.45 0.97 1.54 1.94 2.27

D is the experimentally measured displacement at the endpoint of hydrogel strip.
u is the displacement at the edge point a of the one-dimensional computational
domain.
Fc ¼ 9:648 � 104 C=mol; e0 ¼ 8:854 � 10�12 C2=Nm2; e ¼ 80;
/w

0 ¼ 0:8; 3k þ 2l ¼ 1:2 � 105 Pa; f ws ¼ 7:0 � 10�16 Ns=m4;

Dk ¼ 1:0 � 10�7 m2=s; zf ¼ �1; L ¼ 1:5 � 10�2 m and
h = 5 � 10�3 m, are taken as input data of the MECe model for
the following parameter studies.

4.1. Kinetics of diffusive ion concentrations

Figs. 4–7 are plotted for analysis of the kinetics of diffusive ion
concentrations under different externally applied electric voltages
Ve and bath solution concentrations c* when the initially fixed-
charge density cf

0 ¼ 2 mol=m3. Deformations of the electric-sensi-
tive hydrogels with time are also presented accordingly. It is
shown from these figures that the concentrations of diffusive ions
are distributed symmetrically over whole computational domain
at initial time t = 0 when no external electric field is applied,
although the distributions of the diffusive ion concentrations are
not exactly symmetrical due to the approximate discretization.
These are achieved by the steady-state simulations as mentioned
above. When the external electric voltage Ve is applied, the concen-
tration distributions of the diffusive ionic species are no longer
0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2

N
a+  C

on
c

Coordinate X(mm)

Fig. 4. Na+ concentration kinetics when Ve = 0.3 V, cf
0 ¼ 2 mol=m3 and c* = 1 mol/

m3.
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Fig. 5. Na+ concentration kinetics when Ve = 0.2 V, cf
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Fig. 6. Cl� concentration kinetics when Ve = 0.3 V, cf
0 ¼ 2 mol=m3 and c* = 1 mol/m3.
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symmetric. The concentrations of diffusive ions redistribute con-
tinuously with time in both the hydrogel and bath solution. The
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Fig. 7. Cl� concentration kinetics when Ve = 0.2 V, cf
0 ¼ 2 mol=m3 and c*=8 mol/m3.
differences of the concentrations near the hydrogel–solution inter-
faces increase accordingly with time. It is predictable that the ionic
diffusion and convection will reach an equilibrium state after cer-
tain time, which depends on material properties and environments
such as the initially fixed-charge density cf

0, electric voltage Ve and
surrounding bath solution concentration c*. It is found that the
trends of kinetics of distributive concentrations illustrated in Figs.
4–7 are in good agreement with the FEM simulation by Wallmer-
sperger et al. (2001, 2004).

For further analysis of the transport rate from the unsteady to
equilibrium states, Figs. 4–7 are studied again in detail. The cou-
pled influences of the externally applied electric voltage Ve and
bath solution concentration c* on the transport rate are shown in
Figs. 4 and 5 for the cation Na+, and in Figs. 6 and 7 for the anion
Cl�. For a given initially fixed-charge density cf

0 ¼ 2 mol=m3, it is
seen from the figures that the transport rate increases with
decreasing the electric voltage Ve or with increasing the bath solu-
tion concentration c*. In any case however, the peak values of ionic
concentrations over the hydrogel–solution interface near the cath-
ode always increase with time t, while those near the anode always
decrease with time t. As a result, the concentration differences of
diffusive ion species between the two hydrogel–solution interfaces
increase monotonically with time t.

4.2. Variation of distributive electric potential with time

Figs. 8 and 9 illustrate the variations of the distributive electric
potential w with time for different externally applied electric volt-
ages Ve and surrounding bath solution concentrations c* when the
initially fixed-charge density cf

0 ¼ 2 mol=m3. It is observed that the
downward steps of distributive profiles of the electric potential w
within hydrogels increase with time. After a time of about 100 s,
the variation of the downward steps becomes gradual. The coupled
influences of the environmental conditions are also found from the
two figures. The downward steps of electric potential w profiles
over the hydrogel–solution interface diminish obviously either
with the increment of the bath solution concentration c*, or with
decreasing the electric voltage Ve.

4.3. Variation of distributive displacement of the hydrogel with time

Variations of the distributive displacements of the hydrogels
with time are presented in Figs. 10–15 for analysis of the deforma-
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Fig. 8. Variation of electric potential with time when Ve = 0.3 V, cf
0 ¼ 2 mol=m3 and

c* = 1 mol/m3.
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Fig. 10. Variation of displacement with time when Ve = 0.2 V, cf
0 ¼ 2 mol=m3 and

c* = 1 mol/m3.
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Fig. 11. Variation of displacement with time when Ve = 0.3 V, cf
0 ¼ 2 mol/m3 and

c* = 1 mol/m3.
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Fig. 12. Variation of displacement with time when Ve = 0.4 V, cf
0 ¼ 2 mol=m3 and

c* = 1 mol/m3.
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Fig. 13. Variation of displacement with time when Ve = 0.2 V, cf
0 ¼ 4 mol=m3 and

c* = 1 mol/m3.
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Fig. 14. Variation of displacement with time when Ve = 0.2 V, cf
0 ¼ 2 mol=m3 and

c* = 2 mol/m3.
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Fig. 15. Variation of displacement with time when Ve = 0.2 V, cf
0 ¼ 2 mol=m3 and

c* = 8 mol/m3.
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tion of the electric-sensitive hydrogel. It is known that the trend of
variations of distributive displacements is similar to that of the dis-
tributive electric potential, and the displacement of the hydrogel
increases with time. Initially the displacement increases rapidly
and then gradually. It is also observed that the displacements of
the hydrogels linearly distribute along the x direction before the
external electric field is applied. With applied electric voltage Ve,
the distributions of the displacement become more and more non-
linear. It is evidently seen from Figs. 10–15 that the distributive
curves are linear at t = 0 and subsequently become nonlinear.
One of the reasons may be that the coupled effect of chemical
and electric fields appears in the considered system when the elec-
tric field is applied, and then the displacement of the hydrogel
immediately demonstrates the nonlinear distribution. In addition,
the influence of the externally applied electric voltage Ve on the
variations of the distributive displacements of the hydrogels is
shown in Figs. 10–12, in which the increment of the electric volt-
age Ve makes the hydrogels have larger deformation. Figs. 10–13
demonstrate the influence of the initially fixed-charge density cf

0

on the variations of the distributive displacements of the hydro-
gels, in which the displacements increase with the initially fixed-
charge density cf

0. The influence of the surrounding bath solution
concentration c* is illustrated in Figs. 10, 14 and 15, in which the
displacements decrease with the increment of the bath solution
concentration c*. Based on the above discussions of Figs. 10–15, it
is concluded that the displacement of the hydrogel first increases
rapidly with time and then in a more gradual manner. Therefore,
the electric-sensitive hydrogels can be designed with capability
of fast responding to external electric trigger. This is an attractive
feature of the electric-sensitive hydrogels used as biosensors/bio-
actuators for BioMEMS applications.

5. Conclusions

The transient simulation has been conducted by the MECe
model for analysis of the kinetics of electric-stimulus responsive
hydrogels. The model is composed of coupled nonlinear partial dif-
ferential governing equations, and it has been examined for kinetic
study by comparison with published experiments. The kinetics of
diffusive ionic species concentration is simulated well and is good
agreement with the published steady-state simulation. Influences
of important parameters are discussed in detail, including the
externally applied electric voltage, initially fixed-charge density
and surrounding bath solution concentrations as well as the dis-
placement of the hydrogel. By the present transient simulations,
it is concluded that the smart hydrogels have the capability of
responding to the externally applied electric field in short time.
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Appendix A. Discretization of the governing Eqs. (15)–(17) and
(27)

By the Hermite-cloud method, Eq. (27) is further discretized in
spatial domain as
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Eqs. (15)–(17) are also discretized similarly in both time and spatial
domains as follows:
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By the Hermite theorem (Li et al., 2003, 2004b), the following aux-
iliary equations are required,
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