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SUMMARY

Yeast prions are self-templating protein-based
mechanisms of inheritance whose conformational
changes lead to the acquisition of diverse new phe-
notypes. The best studied of these is the prion
domain (NM) of Sup35, which forms an amyloid that
can adopt several distinct conformations (strains)
that produce distinct phenotypes. Using magic-
angle spinning nuclear magnetic resonance spec-
troscopy, we provide a detailed look at the dynamic
properties of these forms over a broad range of time-
scales. We establish that different prion strains have
distinct amyloid structures, with many side chains in
different chemical environments. Surprisingly, the
prion strain with a larger fraction of rigid residues
also has a larger fraction of highly mobile residues.
Differences in mobility correlate with differences in
interaction with the prion-partitioning factor Hsp104
in vivo, perhaps explaining strain-specific differ-
ences in inheritance.

INTRODUCTION

Yeast prions are protein-based epigenetic mechanisms of inher-

itance (Shorter and Lindquist, 2005). They permit biological

information to be encoded and inherited solely through a self-

propagating conformation of a protein. Moreover, prions provide

a mechanism for generating heritable phenotypic diversity that

may promote survival in fluctuating environments. Indeed, a

recent screen of approximately 700 wild yeasts revealed that

strains recovered from diverse ecological niches harbored

different prion elements, many of which conferred beneficial

phenotypes in specific growth conditions (Halfmann et al.,

2012). Thus, heritable differences in protein conformations

represent a mechanism for the inheritance of biological traits

that is used widely in nature.

The best-characterized yeast prion, [PSI+] (Cox, 1965), is an

amyloid form of the translation termination factor Sup35 (Glover

et al., 1997; King and Diaz-Avalos, 2004; Paushkin et al., 1997;

Tanaka et al., 2004). Amyloid formation sequesters Sup35 from
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the ribosome, changing the rate of stop codon read-through

and creating a host of new phenotypes (True et al., 2004; True

and Lindquist, 2000). The protein-remodeling factor, Hsp104,

plays a critical role in this process by fragmenting replicating

prion templates (Romanova and Chernoff, 2009). Together, the

self-templating nature of prion conformational change and the

Hsp104-governed partitioning mechanism allow prions to be in-

herited by daughter cells with very high fidelity (Shorter and Lind-

quist, 2004, 2006). Many other yeast prions are now known to

share these basic mechanisms for protein-based inheritance.

Different regions of the Sup35 protein are responsible for prion

templating, prion inheritance, and translation termination (Fig-

ure 1A). The N-terminal domain ‘‘N’’ is Q/N-rich and is required

for the formation and templating of amyloid. The highly charged

K/E-rich middle domain ‘‘M’’ promotes solubility in the nonprion

form. It also contains Hsp104 binding sites (Helsen and Glover,

2012) and is required for propagon formation (Liu et al., 2002).

The C-terminal domain is necessary and sufficient for translation

termination. However, prion domains are modular. Transferring

the NMdomain to another protein creates a novel prion with phe-

notypes based on the NM amyloid-based sequestration of the

new C terminus (Li and Lindquist, 2000). Although some studies

suggest that the C-terminal domain can itself influence the prion

(Krzewska et al., 2007), the NM domain contains all of the neces-

sary features to act as a prion.

The ability of prions to propagate is afforded by the inherent

and extremely efficient self-templating capacity of the amyloid,

a highly ordered b sheet-rich protein polymer. The amyloid-

based prion state nucleates in cells at a low frequency de

novo, but once formed, efficiently propagates this change to sol-

uble conformers (Glover et al., 1997; Patino et al., 1996). Purified

NM remains soluble in solution for a long time before spontane-

ously forming self-seeding amyloid fibers in vitro. This lag phase

can be eliminated by the addition of a small amount of preformed

fibers to template the polymerization reaction (Glover et al.,

1997). Remarkably, introduction of the resulting fibers alone

can transform yeast to the corresponding prion state (King and

Diaz-Avalos, 2004; Sparrer et al., 2000; Tanaka et al., 2004).

Interestingly, yeast prions share many features with the

mammalian prion protein, PrP, the infectious agent involved in

a group of deadly neurodegenerative diseases known as trans-

missible spongiform encephalopathies (Prusiner et al., 1998).

PrP can cause pathologically distinct transmissible prion
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Figure 1. Regions of the Sup35 Protein

(A) Schematic diagram of the domains of the Sup35 protein.

(B) After a lag phase, purified NM spontaneously forms fibers in vitro.

(C) Fiber formation can be templated from yeast cell lysates. The character of

the fibers formed matches the character of the fibers in the yeast lysate used.

(D) Introduction of NM fibers into spheroplasted [psi�] yeast confers the [PSI+]

state in a strain-specific manner. Control of lysate-templated prion fibers.

(E) Fiber formation asmonitored by Thioflavin T fluorescence for lysate-seeded

NMmaintains distinct kinetic character for strong (black) andweak (pink) [PSI+]

strains. Lysates from [psi�] cells (red) do not template NM amyloid assembly.

(F–H) Introduction of lysate-templated strong fibers (F), weak fibers (G), and

unpolymerized NM (H) into [psi�] yeast cells confers expected [PSI+] pheno-

types. All 13 [PSI+] colonies resulting from transformation with strong prion

fibers had strong phenotypes and all three [PSI+] colonies resulting from

transformation with weak prion fibers had weak phenotypes.
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diseases when expressed in inbred mouse lines even though the

PrP proteins expressed are identical in amino acid sequence.

This is because PrP can exist in a number of related, but

structurally distinct prion conformations that are faithfully self-

templated and produce different phenotypes. These conforma-

tional variants are called prion ‘‘strains’’ (Chien et al., 2004;

Prusiner et al., 1998). Yeast prions can also form different strains,

which have different underlying structures and distinct pheno-

typic consequences. That is, the prion strains act, with respect

to protein-based inheritance, in a manner analogous to the

genetically distinct alleles of other genes that are encoded by

variations in DNA sequence. A detailed structural understanding

of prion protein-based ‘‘genetic alleles’’ is currently lacking.

The existence of distinct prion strains was first recognized

through genetic analyses. The variant phenotypes they pro-

duced were named for the strength of their read-through pheno-

types and the stability of their mitotic inheritance (Derkatch et al.,

1996). For example, [psi�] strains have no suppression of the

nonsense allele ade1-14 and, due to the buildup of an adenine

pathway intermediate, are red. Strong [PSI+] strains have higher

efficiency ade1-14 suppression and are white; weak [PSI+]

strains have lower efficiency suppression and are pink. Incuba-

tion of purified NM at different temperatures (Figure 1B) biases

de novo formation of fibers toward forms with different bio-

physical properties; fibers formed at 4�C are thermodynamically

less stable than those formed at 37�C (Krishnan and Lindquist,

2005). Interestingly, introduction of the thermodynamically

stronger 37�C fibers results in phenotypically weak [PSI+] yeasts,

while introduction of the biophysically weaker 4�C fibers results

in phenotypically strong [PSI+] yeasts. While this might seem

counterintuitive, it has a foundation in the mechanical properties

of the fibers. The physically less stable fibers are more efficiently

broken by the chaperone machinery. This exposes more fiber

ends for templating soluble Sup35 to the prion state, causing

greater sequestration of the protein and a stronger phenotype.

Moreover, because there are more propagating particles,

referred to as propagons (Cox et al., 2003), the stronger [PSI+]

phenotypes are also more stable.

A variety of approaches has been used to investigate Sup35

prion structures, but a consensus structural picture has yet to

emerge and we have only a minimal understanding of the differ-

ences in fiber structure associated with strong and weak prion

strains. At least some part of the N domain is involved in an

amyloid fold, although the arrangement of the strands within

the amyloid core is still unclear. The disposition of the M domain,

which is required for prion inheritance in vivo, is highly conten-

tious, with some reports suggesting that it is mostly solvent

accessible and flexible (Krishnan and Lindquist, 2005; Toyama

et al., 2007) and others placing it largely within the rigid amyloid

core (Shewmaker et al., 2006, 2009). These studies all used de

novo-formed NM fibers (Figure 1B) that are competent to confer

the [PSI+] phenotypes to [psi�] yeasts via fiber transformation

(Figure 1D). However, de novo formed fibers contain a mix of

strains and include off-pathway and noninfectious forms as

well (Hess et al., 2007). Moreover, some studies used proteins

with long N-terminal tags adjacent to the prion-forming domain

that can influence fiber assembly (Serio et al., 2000).

In this work, we use untagged protein, eliminate conforma-

tional heterogeneity, and faithfully maintain features required
vier Ltd All rights reserved
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for biological prion templating and inheritance. Rather than

letting the fibers assemble spontaneously, we use lysates of

prion-containing cells, with well-characterized and distinct prion

phenotypes (Tanaka et al., 2004), to template assembly (Fig-

ure 1C). We use magic-angle spinning (MAS) nuclear magnetic

resonance (NMR) to investigate structural features of distinct

prion forms in the solid state. This technique is uniquely suited

to the study of protein polymers and provides quantitative struc-

tural and dynamic insights at the atomic level (Comellas and

Rienstra, 2013; Debelouchina et al., 2010; Heise et al., 2005;

Wasmer et al., 2009). We report characterization of both the rigid

and highly dynamic portions of NM in two prion fiber forms and

use fluorescence recovery after photobleaching (FRAP) to inves-

tigate the dynamics of their interaction with the Hsp104 chap-

erone in vivo.

RESULTS

Lysate Seeding of NM
To enrich for biologically active prion conformers, we templated

NM prion fiber formation with yeast lysates of cells containing

phenotypically strong [PSI+] or phenotypically weak [PSI+]

strains (Figure 1C). To increase the starting amount of prion

template in these cells, they were transformed with a high

copy number plasmid encoding NM under the control of the

galactose promoter and expression was induced for 6 hr before

lysis. Lysates were diluted into buffer containing purified recom-

binant NM and incubated at 4�C (strong [PSI+] lysates) or 25�C
(weak [PSI+] lysates and [psi�] lysates) for 24 hr. These temper-

atures intrinsically favor the polymerization of strong and weak

fiber types, respectively, reducing adventitious spontaneous

formation of polymers of the wrong fiber type. To dilute away

cellular constituents, reactions were sonicated and used for

three sequential rounds of templated NM fiber assembly with

recombinant protein. Assembly reactions were monitored by

Thioflavin T fluorescence to determine the quantity of amyloid

formed. The strong and weak prion fibers retained their distinct

kinetic assembly properties throughout. Importantly, [psi�]
lysates did not seed fiber formation (Figure 1E available online).

To ensure that the fibers retained the biological properties of

the initial template, we used them for ‘‘protein-only’’ transforma-

tion of [psi�] yeast cells (Tanaka and Weissman, 2006). Intro-

ducing fibers templated by strong or weak prion forms into

[psi�] yeast cells conferred the expected phenotypes. Lysate-

templated prion fibers faithfully transmitted strain-specific

conformational information (Figure 1). To distinguish lysate-tem-

plated fibers from spontaneously polymerized preparations, we

will refer to the fibers by the phenotype rather than their biophys-

ical properties.

NM Fibers of Both Fiber Types Have Rigid and Dynamic
Regions
To assess the general structural and dynamic properties of NM,

we used MAS NMR spectroscopy using several different 13C

polarization schemes: direct polarization (DP), cross-polarization

(CP), and insensitive nuclei enhanced by polarization transfer

(INEPT). Lysate-templated NM fibers were assembled from puri-

fied NM proteins uniformly labeled with 13C and 15N. Fibers were

collected by centrifugation and the glassy pellet was transferred
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into the NMR rotor. To normalize for small variations in the

quantity of protein used in later experiments, we used one-

dimensional (1D) direct polarization to report on all the 13C atoms

in the sample independent of the timescale of motion (Fig-

ure S1A). As expected, the spectra from strong and weak prion

fibril were indistinguishable in amino acid composition and spec-

tral resolution.

To report on rigid sites, those experiencing motion on amicro-

second or longer timescale, we used the 1D 13C CP scheme

(Hartmann and Hahn, 1962; Hediger et al., 1994; Pines et al.,

1973). Both fibril types had rigid regions with comparable

apparent resolution (Figure S1B) and with peaks that were inho-

mogenously broadened. This is consistent with a rigid region

with a complex structure, where many amino acids are in diverse

rigid structural environments. The integrated intensities for the

two fiber types indicated that there were fewer rigid sites in the

strong prion fibers than in the weak prion fibers (p < 10�7,

student’s t test). The difference in intensity was robust to small

changes in experimental protocol with the weak prion fibers

having about one-third more signal than the strong prion fibers

(n = 6) over the entire experimental time course. This is in agree-

ment with previous data using several different techniques,

which have established that the amyloid core of the weak fibers

is larger than that of the strong fibers (Krishnan and Lindquist,

2005; Toyama et al., 2007).

To identify and characterize the flexible, highly dynamic

regions of the NM fibers (those experiencing motion on a nano-

second or shorter time scale) we used 13C-detected experi-

ments using the solution-based INEPT transfer (Burum and

Ernst, 1980; Morris and Freeman, 1979). For NM fibers of both

fiber types, 1D INEPT experiments resulted in spectra with

intense signals, suggesting that a significant proportion of the

sample experienced unconstrained motions. These strong sig-

nals were not simply a result of unpolymerized protein in the

NMR samples because the lines in the INEPT spectra did not

have signals for all of the amino acid types present in the protein

(Heise et al., 2005). Clearly, the rigid and dynamic portions of NM

contain distinct amino acids (Figure 2).

Unexpectedly, the INEPT spectrum of the strong prion fibers

had a lower intensity than that of the weak prion fibers. This sug-

gested that although proteins in the strong prion fibers had a

smaller amyloidcore, theyalsohad fewerhighlydynamic residues

thanproteins in theweakprionfibers (FigureS1C). That is, a larger

portion of NM in the strong prion fibers experiencesmotion on an

intermediate timescale that is undetectable in theseexperiments.

The M Domain of NM Is Highly Dynamic in Both Prion
Fibril Forms
To determine whether theM domain of NM is involved in the core

amyloid structure, we compared the peaks in the CP spectra

(rigid residues) and INEPT spectra (dynamic residues) to NMR

database values for amino acid types that are unique to the N

domain or the M domain (Figure 3C; Table 1). Only the M domain

contains lysines, glutamates, threonines, valines, and isoleu-

cines (K, E, T, V, and I; Figure 2C). Together, these residues

constitute more than half of the amino acids in this domain. For

the strong and weak prion fibers, the 1D INEPT spectra were

dominated by intense, narrow peaks with values consistent

with the side chain carbons of K, E, T, V, and I (Figure 2A). The
–305, February 20, 2014 ª2014 Elsevier Ltd All rights reserved 297
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Figure 2. The Dynamic Region of NM Is Localized to the M Domain

(A) The aliphatic region of the 1D INEPT spectrum of NM in the weak fiber form

has multiple strong peaks with chemical shifts characteristic of the indicated

amino acid atom types.

(B) These peaks are largely absent from the CP spectrum of the weak

fiber form.

(C) The primary sequence of NM. Colored amino acids are those visible in the

INEPT spectra, with red amino acids present only in the M domain.

See also Figure S1.
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resonances in the CP spectra (Figure 2B) were devoid of

residues found in the M domain. Therefore, in NM fibers of

both prion fiber forms, the M domain is highly dynamic and

does not participate in the amyloid core.

More of the M Domain Is Dynamic in Weak Than in
Strong Prion Fibers
Having established that the M domain is overall flexible, we

asked whether the flexibility of the M domain differs between

the strong and weak prion fiber types. To do so, we used a
13C-13C INEPT-TOBSY (total through-bond correlation spec-

troscopy; Andronesi et al., 2005) two-dimensional (2D) correla-

tion experiment. We combined the dynamic filter of INEPT with

the transfer of polarization through the side chains with TOBSY,

which allowed us to assign peaks in the spectra to spin systems

of individual residue types. We assigned complete spin systems

to all of the amino acid types found in the M domain of NM (Fig-

ure 3). All resonances for this region were completely consistent

with random-coil chemical shift values (Wang and Jardetzky,

2002). Moreover, there are 20 tyrosine residues and 2 arginines

distributed through the N domain. None of these residues gave

a signal in the INEPT-TOBSY spectra, establishing that most of

the N domain is not highly dynamic in either prion fibril type.

To examine the distribution of dynamic residues across the M

domain, we compared integrated peak intensities for individual
298 Chemistry & Biology 21, 295–305, February 20, 2014 ª2014 Else
amino acids in the strong and weak prion fibers (Table 1). The

integrated peak intensities for D, G, H, I, and Q were similar in

both spectra (Figures 3F and 3G). On the other hand, integrations

for A and S differed by 2-fold or more (Figure 3D); E, N, P, and T

differed by more than 50% (Figure 3E); and K, L, and V differed

by approximately 30% (Table 1).

To directly compare the number of mobile amino acids in the

two different fiber forms, we integrated the peaks in the CC-

TOBSY spectra. Cross-peaks were fit to Gaussian line shapes.

Peaks for all directly connected atoms were integrated, inten-

sities were added for each amino acid, and the sum was divided

by the number of carbon atoms in each residue. To calibrate

these peak intensities, we took advantage of the fact that NM

contains only three isoleucines, all of which are located in the

M domain. If the intensity we obtained for isoleucine corre-

sponded to one dynamic residue, it would result in a prediction

for the total number of dynamic residues that is too large for

the signals in the 1D INEPT experiments. If the intensity for

isoleucine corresponded to three dynamic residues, it would

predict more dynamic lysines, glutamic acids, valines, and thre-

onines than the number of these residues present in the NM

sequence. Assuming that the isoleucine signal corresponds to

two dynamic residues predicts reasonable values for both the

signal intensity of the 1D INEPT spectra and the estimated

number of dynamic amino acids in NM.

Using this calibration, the M domain for weak prion fiber has

40% more highly dynamic sites than the M domain in the strong

fiber type. Thus, although much of the M domain in both fiber

types is highly dynamic, there are, surprisingly, regions within

this domain that are not highly mobile. Moreover, these differ

between the two prion types. Specifically, the M domain of the

strong prion fibers has considerably fewer highly dynamic

residues than the M domain of the weak prion fibers. Because

the strong prion fibers have a smaller rigid core, one might

have expected that this would lead to a less constrained M

domain, but this is not the case.

The N Domain in Both Fiber Types Is Rigid
To directly characterize the rigid amyloid core of NM in the strong

and weak prion fiber types, we collected one-bond (20 ms

mixing time) 13C-13C correlation spectra using proton-driven

spin diffusion (PDSD; Szeverenyi et al., 1982) and one-bond

(1.6 ms mixing) 15N-13C 2D correlation spectra using Z-filtered

transferred echo double resonance (ZF-TEDOR; Hing et al.,

1992; Jaroniec et al., 2002; Figure 4). The majority of the signals

in both the PDSD and ZF-TEDOR experiments were consistent

with amino acids in the N domain. Nearly 75% of the N domain

is comprised of four amino acids: Q, N, G, and Y (Figure 2C,

Table 1). Regions of the spectra for these amino acids had strong

signals (Figures 4A–4D, boxes). Signals for all of the amino acids

that are unique to the M domain, with the exception of one peak

for a single K side chain, were absent. These results confirm that

it is the N domain, and only the N domain, that is involved in the

rigid amyloid core of both fiber forms.

The Rigid Regions Have Different, Well-Ordered
Structures that Are a Mix of b Sheets and Turns
Many amyloid fibers are polymorphic at the molecular level,

producing multiple peaks in NMR spectra for a single resonance
vier Ltd All rights reserved
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Figure 3. Weak Prion Fibers Have More Dynamic Residues Than Strong Prion Fibrils

(A) Two-dimensional 13C-13C INEPT-TOBSY for the strong (blue) and weak (red) prion fiber forms of uniformly 13C, 15N-labeled NM. Spin systems for lysine and

glutamic acid are connected in green and orange, respectively.

(B and C) Expansions from (A). Ellispes indicate the average chemical shift for alpha helical (orange), random coil (green), and b sheet (purple) secondary

structures. While the positions of the peaks in (A) are identical, the intensities of the peaks vary.

(D and E) One-dimensional slices through the cross peaks in (B) and (C) fit to two Gaussians (dotted line). These cross-peaks show 60 Hz of line splitting from

C0-Ca J-coupling.

(F and G) However, intensities for some sites are identical. One-dimensional slices at positions indicated in (A) with Gaussian fits (dotted lines). Results of the

quantification for both fiber types are reported in Table 1.

See also Figure S2 and Table S1.
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(Hu et al., 2011; Paravastu et al., 2008). This did not appear to be

the case for our lysate-seeded samples. While regions for abun-

dant amino acids were crowded, regions for less numerous

amino acid types had spectra that were typical for well-ordered,

uniformly 13C-labeled proteins, with 13C line widths of �1 ppm

and 15N line widths of �2.5 ppm. Narrow lines indicate high

microscopic order. Moreover, the number of peaks in well-

resolved regions was equal or smaller than the number of those

amino acid types in the sequence. These regions also reveal that

the conformations of the amino acids in the amyloid cores differ

between the weak and strong prion fibers, because the peaks

were in different positions. Few peaks for the weak prion fibers

(red) overlapped with those for the strong prion fiber (blue; Fig-

ures 4C and 4D). For example, the highest intensity alanines sites

differed in 13C chemical shift by >2 ppm, with no evidence of

spectral overlap. The nonoverlapping signals indicate that these

sites experience different chemical environments, providing the

direct observation that the structure of NM polypeptide chains in

these two different fiber forms are different.

The chemical shift is an excellent indicator of secondary struc-

ture. We compared the signals in our spectra to database values

for different secondary structural elements (Wang and Jar-

detzky, 2002). In resolved regions, the peaks for spectra of

both fiber types fell clearly in the random coil and b sheet

regions, illustrating that alanine and proline residues have a

mix of turn and beta secondary structure (Figure 4). Interestingly,
Chemistry & Biology 21, 295
glycines had chemical shifts consistent with, and indeed in some

cases even outside of, the statistical averages for all three

secondary structural elements. This suggests that glycines

experience some unusual environments in the amyloid forms of

NM, possibly due to tight turns that rely on the unusual confor-

mational flexibility of glycine (due to the absence of a side chain).

Due to the degenerate nature of the primary sequence of NM, we

did not have site resolution for all amino acid types. We were,

however, able to examine the general features of crowded

regions in the spectra (Figure 4, boxes). Even in these crowded

regions, the signals were predominantly consistent with random

coil (turn) and b sheet secondary structure.

Weak Prion Fibers Have More Rigid Sites Than Strong
Prion Fibers
Using a combination of site resolution and peak intensity, we

estimated the number of each amino acid type participating in

a rigid structure in the different prion fiber forms. The spectra

of strong prion fibers had fewer signals than the spectra of

weak prion fibers. However, most resolved peaks had similar

intensities when the two spectra were compared, suggesting

that the differences in the number of signals reflect changes

in the number of rigid sites in the protein. For PDSD spectra,

we assumed that symmetric resolved peaks with signal inten-

sities two orders of magnitude or higher above background

noise represented a single rigid site (Figures 4E and 4F;
–305, February 20, 2014 ª2014 Elsevier Ltd All rights reserved 299



Table 1. Amino Acid Composition and Population of Dynamic Classes

Q N G Y R F P A S M D L H I V T E K All

Composition

N domain 35 20 21 20 2 3 7 5 4 1 2 1 0 0 0 0 0 0 121

M domain 6 7 2 0 0 1 7 9 11 1 7 7 1 3 10 11 24 25 132

Rigid

Strong 9 4 6 5 0 a 1 4 3 0 2 0 0 0 0 0 0 1 35

Weak 29 14 16 14 1 a 3 6 4 0 2 0 0 0 0 0 2 1 92

Intermediate

Strong 30 20 15 15 2 a 9 8 8 2 4 6 0 1 5 6 12 6 153

Weak 10 9 5 6 1 a 5 7 3 2 5 5 0 1 3 3 5 1 70

Dynamic

Strong 2 3 2 0 0 0 4 2 4 0 3 2 1 2 5 5 12 18 65

Weak 2 4 2 0 0 0 6 5 8 0 2 3 1 2 7 8 17 23 91
aPhenylalanine is degenerate with tyrosine.
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Figure S2; Table 1). For ZF-TEDOR, resolved sites with a signal

intensity and order of magnitude above the background noise

of the spectra were assumed to represent a single site. The

cross-peaks used for quantization of each side chain are given

in Table S1.

Peak intensities for Q and N were higher by almost an order of

magnitude than those for less abundant residues in PDSD

spectra. For G, intensities were larger than other residues by a

factor of 3 to 5. Such intensity differences can arise for a variety

of reasons, including differences in dynamic motions, static

conformational disorder. However, given the large number of

these three amino acid types in this protein, the increased inten-

sity is likely a result of several amino acids having very similar

chemical shifts. For Q, N, and G, the signal in the boxed areas

(Figures 4A and 4B) was integrated and the number of rigid res-

idues was conservatively estimated by assuming that the values

of themost intense resolved sites represented amaximum signal

in these experiments for a single site. The results of this integra-

tion approximate the lower limit of the number of rigid sites in

each fiber type. Counting peaks in this way indicated that the

number of residues in a rigid structure in the weak prion fibers

was nearly twice as large as in the strong prion fiber.

Localization of Rigid, Intermediate, and Dynamic
Regions
While we have reasonable estimates for the number of amino

acids that are rigid, dynamic, or moving on an intermediate time-

scale, we do not have sequence-specific information. However,

relying on the fact that adjacent amino acids often have similar

dynamic properties, together with NM’s unusual amino acid

sequence, we set out to computationally determine which sec-

tions of the molecule were most likely to participate in each

dynamic class. The proline, alanine, and serine residues were

key to this analysis. These residues participated in all three

dynamic classes (Table 1). They are also relatively rare in the

NM sequence, and yet are spread throughout the protein (Fig-

ure 2C). Similar computational approaches were previously

used to determine which regions of a different yeast prion fibril,

Ure2p1, were likely involved in the amyloid core (Baxa et al.,

2007).
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To reduce the computational burden of a brute force

approach, we applied a heuristic model that treated the primary

sequence as blocks of six amino acids. Every residue in each

block was assigned to the same dynamic class. We defined a

function, D, as the absolute values of the difference between

the experimentally determined number of amino acids in each

class, Eaa,class (Table 1) and the number of amino acids in each

class for each proposed arrangement Caa,class:

Dh
X

aa

X

class

��ðEaa;class � Caa;classÞ
��: (Equation 1)

The proposed arrangements were scored by looking for the

closest match of amino acids in each class to the experimentally

determined values in Table 1. Data were preprocessed to elimi-

nate testing possibilities above a threshold energy, which is

largely driven by violations of the number of residues in a partic-

ular class. Preprocessing eliminated the testing of �30% of the

possible iterations. To avoid bias from the artificially imposed

block boundaries, the calculation was repeated with six amino

acid-long blocks starting at residues 3 or 5 instead of residue

1. We generated a collection of likely dynamic arrangements

for blocks of length 2 from all combinations of the dynamic class

assignments that occurred at least once in the collection of

lowest D arrangements. The D was calculated for the selected

block 2 arrangements and the fraction of lowest D arrangements

for each dynamic class is reported in Figure 5.

The resulting models, arrived at in an unbiased fashion, gave

the most likely placement of rigid, intermediate, and dynamic

regions (Figure 5). The N domain had a mix of rigid and interme-

diate sites. Within the N domain, the N-terminal-most residues

were likely to be rigid in both prion forms. The largest differences

between fiber types in the N domain were found in the oligopep-

tide repeat and adjacent regions. In these regions, the weak

prion fiber was largely predicted to be rigid and the strong prion

fiber was predicted to be experiencing motion on an intermedi-

ate timescale. The M domain had a mix of dynamic and interme-

diate sites. The C-terminal portion of the M domain was

predicted to be moving on the intermediate timescale in both

fiber types. Intriguingly, the largest difference between fiber

forms in theMdomain, where theweak prion fiber formwas likely
vier Ltd All rights reserved
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Figure 4. Weak Prion Fibers Have More Rigid Sites Than Strong

Prion Fibers

The rigid portions of both fiber forms have b sheet or random coil secondary

structure.

(A) 2D PDSD 13C-13C correlation spectra of the weak (red) and strong (blue)

prion fibers of uniformly 13C- and 15N-labeled NM with a 20 ms mixing time

(one bond) for the carbonyl carbon region. Spectra are all shown at compa-

rable contour levels, clearly demonstrating the increased intensity in the weak

fiber spectra.

(B) The aliphatic region of the PDSD spectra in (A). Strong cross-peaks are

indicated with amino acid type assignments.

(C) Carbonyl region of a heteronuclear 15N-13C correlation experiment

(TEDOR) with a 1.6 ms (one bond) mixing time.

(D) Aliphatic region of the spectra in (C).

(E and F) Expansions of the indicated areas in (B). Colored ellipses indicate

expected chemical shifts for alpha helical (orange), random coil (green), and b

sheet (purple) secondary structure.

Figure 5. Computational Fitting Localizes Rigid, Intermediate, and

Dynamic Regions

Fraction of lowest energy arrangement with indicated dynamic class assign-

ment is indicated for each position in NM. Assignments that are most likely

dynamic are represented by colored bars.
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to be dynamic and the strong prion fiber form to be in intermedi-

ate exchange (Figure 5), was at a region previously identified as

an Hsp104 binding site (Helsen and Glover, 2012).

In Vivo, More Hsp104 Is Bound to Weak Prion Fibers
Than Strong Prion Fibers
To determine whether there might be dynamic differences in the

interaction of Hsp104 with weak and strong prions in vivo, we

used fluorescence recovery after photobleaching (FRAP). We

analyzed cells carrying strong and weak [PSI+] prions and ex-

pressing an Hsp104-mCherry fusion under the control of the

endogenous promoter of Hsp104. The fusion protein had the

same capacity to faithfully propagate the Sup35 prion as wild-

type Hsp104 (Figure S3).
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The cells also carried a centromeric plasmid encoding

NM-GFP under the control of the galactose promoter. To depict

NM-GFP after capture by pre-existing [PSI+] elements, NM-GFP

expression was induced for a few hours by transferring the cells

to galactose media. As expected, Hsp104-mCherry colocalized

with the NM-GFP foci. The Hsp104-mCherry fluorescence in

these foci was bleached to 50%–20% of its original intensity.

The recovery of mCherry fluorescence was measured as a func-

tion of time. Image acquisition produced little or no additional

photobleaching.

For foci templated by both the strong and weak prion types,

the rate of FRAP for Hsp104-mCherry, as measured by the t1/2,

was similar. That is, the kinetics of exchange between [PSI+]-

bound Hsp104 and the soluble pool of Hsp104 was similar for

the different fiber types in vivo. Conversely, the immobile fraction

of Hsp104—the proportion of molecules that did not exchange

with the free pool of unbound Hsp104—was significantly greater

for the weak prion types (46 ± 1%) compared to the strong prion

types (34 ± 2%; Figure 6). Thus, there must be at least two

classes of binding sites for Hsp104 on prion assemblies. One

of these is similar for the two prion types and is readily exchange-

able with the free pool of Hsp104. The other ismore tightly bound

and weak prions contain a greater fraction of such sites.

DISCUSSION

Yeast prions represent a paradigm-shifting, protein-based

mechanism for the inheritance of biological phenotypes. The

strong and weak prion strains of Sup35 confer distinct heritable

phenotypes analogous to the distinct phenotypes conferred by

allelic differences in DNA sequence. They are, however, based

on different self-templating amyloid conformations of the same

protein. The inheritance of both prion types is governed by

intimate relations with the cellular chaperone machinery, with

Hsp104 playing a particularly important role. Despite intense

study, we still have only a rudimentary understanding of the

structural differences that underpin the inheritance of distinct

phenotypes. Using MAS NMR spectroscopy, we establish that

the region of the prion that drives heritable, strain-specific differ-

ences in prion polymerization (the N-terminal amyloid domain)

has a distinct structure in different strains. Many side chains
–305, February 20, 2014 ª2014 Elsevier Ltd All rights reserved 301
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Figure 6. More Hsp104 Binds to Weak Prion Fibers Than to Strong

Prion Fibers In Vivo

The fluorescence recovery after photobleaching curves for Hsp104-mCherry

containing foci in strong (blue) and weak (red) [PSI+] are shown. The traces

were normalized for both the initial intensity and the depth of photobleaching.

Figure S3 shows that Hsp104-mCherry does not affect chaperone function.

Error bars represent SEM.
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exhibit distinct chemical shifts, indicating that they are in

different chemical environments. We also find that the regions

that do not participate in the amyloid are also structurally

distinct, with very different dynamic properties, particularly in a

segment previously identified as a key interaction site for

Hsp104. Indeed, using fluorescence recovery after photob-

leaching, we establish differences in the nature of interaction of

Hsp104 with the two prion types in vivo.

Previous work had established that the N-terminal domain

forms the amyloid core of de novo NM fibers and that the core

of fibers formed at 4�C is shorter than that of fibers formed at

higher temperatures (Krishnan and Lindquist, 2005; Toyama

et al., 2007). Fibers formed at 4�C are biased toward structures

that confer strong prion phenotypes in vivo, while fibers formed

at higher temperatures are biased toward structures that confer

weaker phenotypes. Although spontaneously assembling fibers

always contain some mixture of forms, work with such material

made substantial contributions to our understanding of strain-

specific differences in inheritance. In contrast to previous work,

we used fibers templated from prions formed in vivo, with well-

characterized and highly reproducible biological phenotypes.

Also in contrast with previous studies, which used indirect label-

ing or deuterium-exchange techniques, we used NMR to directly

observe the amino acid side chains of such fibers. This revealed

that theamyloid coreof thestrongprion fiber is somewhat smaller

and that of the weak prion fiber is considerably larger than those

defined previously. More importantly, our data directly establish

that the larger amyloid core of theweak prion fibers is structurally

distinct from that of the strong prion fibers, and not simply an

extension of a shared common structure.
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For both prion forms, we observed resolved peaks with

different chemical shifts, reflecting different well-ordered envi-

ronments. Striking differences in the intercalations of the side

chains have been described in microcrystals formed from small

pieces of the N domain, suggesting they might be the basis of

strain-specific differences in prion inheritance (Sawaya et al.,

2007; Wiltzius et al., 2009). However, the biological correlates

of these structures were never determined. Changes in the

assembly kinetics of a collection of several NM mutants also

suggested that the structures of the amyloid core likely differ

between fiber forms (Toyama et al., 2007). Here, we establish

directly that the two prion types do indeed have distinct

amyloid structures, with many side chains in different chemical

environments.

Unlike the N domain, considerable confusion exists about the

fundamental nature of the M domain of the NM prion. It has been

alternatively reported to be flexible (Krishnan and Lindquist,

2005; Toyama et al., 2007) or to be primarily in a rigid parallel-

in-register amyloid core (Shewmaker et al., 2006, 2009). We do

not know what accounts for these discrepancies. They might

reflect the use of fibers assembled de novo, which contain

heterogeneous mixtures of multiple fiber forms (Hess et al.,

2007; Shewmaker et al., 2009; Toyama et al., 2007) or simply

the liabilities in the interpretation of experimental outputs from

the distinct techniques used. For example, the previous NMR

study focused on a single amino acid type, labeled only at one

backbone atom position. We have analyzed instead the dynamic

properties of the side chains. Rigorously, we cannot exclude the

possibly that the backbone somehow remains rigid, but we

clearly establish that the amino acid side chains in the M domain

of both prion fiber forms are highly dynamic. The chemical

shifts establish that they are neither in an alpha helical nor a

b sheet structure, but have the character of a random coil.

Furthermore, more of the M domain is dynamic in the weak prion

fibers than in the strong prion fibers. We also infer that a portion

of the M domain experiences motion on an intermediate time

scale.

Differences in the dynamic properties of the M domain likely

have important biological ramifications for the two prion types.

In vivo, strong and weak strains of NM have different inheritance

patterns and the M domain is implicated in propagon formation,

which is important for stable inheritance of the prion (Liu et al.,

2002). In vitro, the M domain contains the primary Hsp104 bind-

ing sites (Helsen and Glover, 2012) and mutations in this region

prevent curing by overexpression of Hsp104. Together, these

results suggest that the M domain contains a key site involved

in Hsp104-mediated prion severing activity, a requirement for

prion inheritance. Moreover, nucleotide hydrolysis and hexamer

subunit co-operativity requirements of Hsp104 are distinct for

fragmentation of the two fiber forms in vitro (DeSantis et al.,

2012). Specifically, the weak prion fiber types require the coop-

erative activity of more than six Hsp104 monomers, indicative of

more than one hexamer being required to fragment these fibers.

Computational fitting of our data to the Sup35 sequence points

to differences in mobility of the M domain of prion fibers

occurring at the previously identified Hsp104 binding site.

Furthermore, our fluorescence recovery after the photobleach-

ing experiments indicates that a larger fraction of Hsp104 mole-

cules associated with the weak prion fibers do not undergo rapid
vier Ltd All rights reserved
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exchange with the free pool of Hsp104. This observation sug-

gests conformational accessibility may drive distinct modes of

interaction with Hsp104.

Strong and weak [PSI+] strains have different stop-codon

read-through phenotypes. Sup35 expression levels are the

same in [psi�] and [PSI+] cells, as they are in weak and strong

[PSI+] strains. The differences in phenotype are caused by

having differing amounts of soluble Sup35 available for transla-

tion termination (Uptain et al., 2001). Recruitment of monomers

into the amyloid fiber is limited not by the rate of templating

per se, but by the number of free templating ends available

from fiber fragmentation. NM fibers producing strong pheno-

types are thermodynamically less stable and more easily frag-

mented. They recruit a greater fraction of Sup35 monomers

into the amyloid form and produce a stronger phenotype.

Conversely, NM fibers producing weak phenotypes are more

stable, recruit fewer monomers, and leave behind a larger pool

of functional Sup35. Although weak prion strains have less of

the protein in the amyloid state, our results indicate that weak

prion fibers contain the greater amount of bound Hsp104. There-

fore, the fraction of Sup35 that is in the prion form cannot be the

sole determinant of Hsp104 binding. Instead, we suggest that

the properties that drive Hsp104 binding to NM are also encoded

in the dynamic differences of the prion fiber types. A mixture of

rigid and mobile regions may prove to be a general feature of

prion inheritance; mutations that increase solution-state rigidity

of a fragment containing the second repeat in the N domain

are associated with impaired prion propagation (Marchante

et al., 2013). Thus, prion strain differences may be encoded by

differences in the structure of the amyloid core as well as by dif-

ferences in the dynamics of the chaperone binding sites.

Despite differences in the population of NM in each dynamic

class, strong and weak prion fibers share some common

features. In both forms, a single, compact, well-defined folded

domain is seen alongside a second disordered segment that

lacks tertiary structure and is highly dynamic. This is an organi-

zation strategy seen in another functional amyloid Het-s

(Wasmer et al., 2009), as well as for proteins of disease-associ-

ated amyloids such as a-syn (Heise et al., 2005) and PrP (Helmus

et al., 2010). In the case of NM, at least, the organization of the

rigid and dynamic regions may be particularly important to main-

tain the prion strains. The prion form of Sup35 can be eliminated

either by deletion or overexpression of Hsp104. Therefore, for an

amyloid form of NM to be a prion, interactions with the chap-

erone machinery must be sufficient to create propagons but

not so strong as to eliminate the amyloid form altogether. Our

work suggests that chaperone interactions may be mediated

by dynamic information encoded in the prion conformation.

SIGNIFICANCE

Yeast prions are self-templating, protein-based genetic

elements whose conformational changes enable enhanced

phenotypic diversity. One of the best-studied prions,

[PSI+], results from the sequestration of Sup35 in a heritable

amyloid state, leading to the reduction of translation termi-

nation efficiency. Most prions, including [PSI+], exhibit

stable phenotypic changes of varying magnitudes called

‘‘strains.’’ The strength of a strain is determined by the deli-
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cate interplay between the thermodynamic stability of the

intermolecular interactions between protein monomers

and the activity of the prion propagation machinery that

fragments the fibers. Usingmagic angle spinning solid-state

nuclear magnetic resonance spectroscopy, we provide

direct, detailed structural observations of two different

phenotypic strains of [PSI+] over a broad range of time-

scales. Using lysate templated fibrils to replicate the in vivo

structure, we confirm that the two strains differ in the size of

the rigid amyloid core and, more importantly establish that

the amyloid cores have different structures. Additionally,

we discovered that the more thermodynamically stable

fibers, which give rise to weak [PSI+], harbor regions of

more dynamic residues compared to less stable fibers that

give rise to strong [PSI+]. These dynamic regions seem to

enable increased access of chaperones involved in fiber

fragmentation. Thus, stable prion states are limited by

both the number of potential conformations capable of

forming a heritable amyloid core and also by a structure

with sufficient dynamic regions to enable the binding of

disaggregating chaperones.
EXPERIMENTAL PROCEDURES

Sample Preparation

Recombinant prion domain of the yeast prion protein (NM) was expressed in

M9 minimal media and purified as described elsewhere (Serio et al., 1999).

Uniformly 13C- and 15N-labeled NM samples were prepared by growing

BL21(DES)-Rosetta Esherichia coli in the presence of minimal media enriched

with 1 g/l 15NH4Cl and 2 g/l D-glucose 13C6 (Cambridge Isotope Labs). A

concentrated stock solution of purified NM in 6 M GdHCl was boiled for

10min, then diluted at least 120-fold intoNMassembly buffer (5mMpotassium

phosphate pH 7.5, 150 mM NaCl) pre-equilibrated at either 4�C or 37�C and

containing lysate-derivedNMseeds (see below) at 2.5% (monomer concentra-

tion) and allowed to assemble at 4�C or 37�C for the strong and weak prion

fibers respectively, quiescent for 48 hr. Fibers were pelleted by ultracentrifuga-

tion at 500,000 3 g for 1 hr at 15�C, washed with 5 mM KPi pH 7.5, and

collected by centrifugation at 430,000 3 g for 1 hr at 15�C. Twenty milligrams

of hydrated pellet were packed into a Varian 3.2 mm rotor (Revolution NMR).

Lysate Seeding

Yeast cells manifesting a [psi�], weak [PSI+], or strong [PSI+] ade1-14 read-

through phenotype were transformed with a 2 mm plasmid with NM behind

the galactose promotor. Cells were grown in a 50 ml culture volume to mid-

log phase in SD-raffinose and NM production was induced by the addition

of 2% galactose to the media for 6 hr. Cells were collected by centrifugation,

washed in water, and pellets were flash-frozen. Cell pellets were resuspended

in 250 ml of lysis buffer (50 mM Tris pH 7.4, 200 mM NaCl, 2 mM TCEP, 5%

glycerol, 1 mM EDTA, 4 mM PMSF, 5 mg/ml aprotinin, 5 mg/ml leupeptin,

and one protease inhibitor cocktail pellet [Roche]) with an equal volume of

acid-washed glass beads. Cells were lysed by bead beading for 8 min at

4�C. Lysates were diluted 1:5 into 5 mM potassium phosphate pH 7.5 and

150 mM NaCl. Purified NM was diluted at least 100-fold out of 6 M GdHCl to

a final concentration of 5 mM and reactions were incubated without shaking

at 4�C (strong lysates) or 25�C (weak lysates) for 24 hr. Reactions were soni-

cated (power level 3, 50%duty cycle, 30 s) and used as a template for NM fiber

formation at 5% of the reaction volume three times, successively diluting away

cellular constituents, before being used to seed NMR samples of purified

uniformly isotopically enriched protein. As a control, during preparation of

seeds, assembly reactions were monitored for Thioflavin T fluorescence;

[psi�] lysates did not seed fiber formation (Figure 1E). Fiber transformations

were done as described (Tanaka and Weissman, 2006) using quiescent,

lysate-seeded reactions. As expected, transformation efficiencies were low

(under 2%) but true to type.
–305, February 20, 2014 ª2014 Elsevier Ltd All rights reserved 303
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MAS NMR Spectroscopy

Experiments were performed with a custom designed spectrometer (courtesy

of D.J. Ruben, Francis Bitter Magnet Laboratory, Massachusetts Institute of

Technology, Cambridge, MA) operating at 700 MHz 1H Larmor frequency

equipped with a triple resonance 1H/13C/15N Varian Chemagnetics 3.2 mm

probe (Agilent). The sample was cooled with a stream of dry air maintained

at a temperature of 0�C, while we estimate that the sample temperature was

10�C to 15�C higher. The spectra were recorded at 12.5 kHz MAS. The mixing

period for 13C-13C 2D correlation spectra was set to 20 ms. 15N-13C correla-

tions were recorded with TEDOR dipolar recoupling with a mixing period of

1.6 ms. All recycle delays were set to 3 s, except for the direct polarization ex-

periments that had a recycle day of 10 s. All spectra were processed in

NMRpipe (Delaglio et al., 1995) and analyzed using Sparky (T.D. Goddard

and D.G. Kneller, University of California, San Francisco).

Fluorescence Recovery after Photobleaching

A w303 yeast strain was transformed with a CEN plasmid containing

C-terminally mCherry-tagged Hsp104 under the endogenous promoter. This

strain was then crossed to either the strong or weak [PSI+] yeast strains

used for the NMR experiments. Yeast growing in log phase were mounted

on a glass side with the growth medium and subjected to FRAP with an Andor

Revolution spinning disk confocal microscope using a 60X oil immersion lens

and the 561 nm excitation line. The single observable focus in the cell was

bleached with a 750 microsecond pulse at 40% of maximum laser intensity,

resulting in a 50%–80% loss of fluorescence intensity. Recovery from photo-

bleaching was then measured every 5 s, with a 1 s exposure time. Little or no

additional photobleaching was observed during imaging. All data were

normalized, both for photobleaching and for bleach depth, and fit using the

easyFRAP software package (Rapsomaniki et al., 2012).
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