
Journal of Symbolic Computation 36 (2003) 513–533

www.elsevier.com/locate/jsc

Towards faster real algebraic numbers

Renaud Rioboo
Laboratoire d’Informatique de Paris 6 (LIP6), Universit´e Pierre et Marie Curie (Paris 6),

8, Rue du Capitaine Scott, 75015, Paris, France

Received 15 November 2002; accepted 10 April 2003

Abstract

This paper presents a new encoding scheme for real algebraic number manipulations which
enhances current Axiom’s real closure. Algebraic manipulations are performed using different
instantiations of sub-resultant-like algorithms instead of Euclidean-like algorithms. We use these
algorithms to compute polynomial gcds and Bezout relations, to compute the roots and the signs of
algebraic numbers. This allows us to work in the ring of real algebraic integers instead of the field of
real algebraic numbers avoiding many denominators. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Algebraic numbers; Algebraic integers; Fractions; Real closed fields; Real closure; Sub-resultants;
Fractions

1. Introduction

Real algebraic numbers are relevant for symbolic computations since they are the
natural frame where computer algebra users expect solutions of polynomial systems to
lie. Exact computations with real algebraic numbers are however hard to achieve and
few end user packages (such asLigatsikas et al., 1996; Strzebo´nski, 1997) exist for this
purpose inside general purpose computer algebra systems. The real closure of Axiom
which is basedon algorithms ofRioboo(1992) andLigatsikas et al.(1996) is one of the
few packages that can perform non-trivial examples. This is because we avoid primitive
elements and costly polynomial factorizations.

For instance, Ramanujan’s example ofDavenport et al.(1987):

3

√
− 5

√
27

5
+ 5

√
32

5
= (− 5

√
32+ 5
√

3+ 1) 5

√
1

25
(1)

is, toour knowledge, impossible to solve by any package but Axiom’s real closure.

E-mail address:Renaud.Rioboo@lip6.fr (R. Rioboo).
URL: http://www-calfor.lip6.fr/∼rr/.

0014-5793/03/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0747-7171(03)00093-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82811452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www-calfor.lip6.fr/~rr/

514 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

Other techniques described inDuval and Gonzalez Vega(1996) are implemented in
Lecerf (1996) and also avoid primitive elements. They provide real root functionalities
using dynamic evaluation (seeDella Dora et al., 1985) ideas and algorithms based on
Coste and Roy(1988), Basu etal. (1996) andDuval and Gonzalez Vega(1996). However
theRealRoot functionality of this package does not offer the usual arithmetic. It cannot
be used as a back-end for triangular systems resolution nor as a tool for cylindrical
decomposition and we did not compare with it.

This paper presents the basics for faster versions of Axiom’s real closure.

1.1. Real closed fields

We recall (seeLang, 1969; Bochnak et al., 1988) that a real field is a fieldK where
(−1) is not a sum of squares. An ordered field is a fieldK with a total ordering which
is compatible with addition (∀x, y, z ∈ Kx ≤ y ⇒ x + z ≤ y + z) and multiplication
(∀x, y ∈ Kx ≥ 0, y ≥ 0⇒ xy ≥ 0, ∀xx2 ≥ 0). An ordered field is a real field and a real
field admits at least an ordering turning it into an ordered field.

A real closed field is a real field which admits no strict algebraic extension which is real,
it is uniquely ordered and this is equivalent to saying that this is a field where every positive
number has a square root and where every odd degree polynomial has at least a root. From
an effective point of view (seeLigatsikas et al., 1996) we model these properties into those
of an ordered field together with anallRootsOf function taking a univariate polynomial
and returning all its distinct roots.

1.2. Real closure

Given a computable ordered field Q the real closureQ̃ of Q is the smallest
extension field of Q which is real closed. It is computable (seeLombardi and Roy,
1991; Zassenhauss, 1970; Hollcott, 1941) and weuse here the same scheme of towers
of extensions which is described in Ligatsikas et al.(1996). This schemeallows us to
manipulate real algebraic numbers encoded as pairs(γ, Q) whereγ is a real algebraic
variableand whereQ is a univariate polynomial. In this schemeγ is a member of an
external structure with its own data representation. This structure is in charge of creating
new algebraic variables and computes basic operations such as checking if a univariate
polynomial is zero at a real algebraic variable. This external structure is also responsible
for computing the sign and the inverse of a univariate polynomial when evaluated atγ . In
this scheme the only requirements for the univariate polynomials is that their coefficients
are simpler (i.e. already defined). Thus their coefficients belong to the closure itself. That
is, if we denote byQ̃ the real closure of an ordered fieldQ, the polynomials involved lie
in Q̃[X].

Roughly speaking we may view an elementa of Q̃ as a tree whose leaves are elements
of Q and whose nodes contain two elementsC,V . HereC is interpreted as a rootγ of
a univariate polynomialPγ (X) ∈ Q̃[X] andV is interpreted as a univariate polynomial
A ∈ Q̃[X] representing the equationa = A(γ). SeeLigatsikas et al.(1996) for details.

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 515

Fig. 1. The new scheme of encoding.

1.3. Algebraic integers

We recall (seeLang, 1964, for instance) that ifR is an integral domain and ifF is an
algebraic extension of the fraction field ofR, the algebraic integers ofF are those elements
of F which verify a monic polynomial relation ofR[X].

For a sub-ringR of a fieldK we denote byR∗ the set of regular (i.e. non-null) elements
of R and if A is an extension ring ofR contained inK. We also denote byR∗−1A the
sub-ring ofK with numerators inA and denominators inR∗. If A is an algebraic integral
extension of R thenR∗−1A is a sub-field ofK.

When managing polynomial gcds, the main advantage of algebraic integers is that they
have no denominator (see howeverSection 4). In this paper, we propose the following
scheme inspired by the real closure of Axiom. We start from a ringR and work over the
algebraic integers̃R of the real closurẽQ of the fraction field Q of R. It is summarized in
Fig. 1.

Throughout this paper, unless otherwise noted,R is a gcd domain which is called the
base ring andQ is its fraction field. The ringA is an integral finite algebraic extension of
R andF is the fieldR∗−1A of fractions with numerators inA and denominators inR∗. Q̃
will be the realclosure ofQ, andR̃ will be the algebraic integers of̃Q which is also the
field of fractions withnumerators iñR and denominators inR∗.

In Section 2we introduce weak sub-resultants which enable us to compute univariate
polynomial gcds. We describe the quasi sub-resultant algorithm (Algorithm 4) which
extends algorithms inMoreno Maza and Rioboo(1996) and algorithms inLoos(1982).

Section 3extends the quasi sub-resultant algorithm in order to compute the real roots of
aunivariate polynomial and the sign of univariate expressions depending on one root of this
polynomial. We introduce quasi Sylvester sequences (Algorithm 5) which are related to
algorithms inCollins and Loos(1982), Gonzalez Vega et al.(1998b,a), Basu etal. (1996)
andLickteig and Roy(2001).

Section 4adapts the real closure construction ofLigatsikas et al.(1996) and explains
the necessary localization process which isneeded to compute with real algebraic
integers.

Finally Section 5gives some practical behaviour of the algorithms presented.
This paper is an extended version of a presentation at the ISSAC 2002 conference.

516 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

2. Quasi sub-resultants

In this section we present weak sub-resultant algorithms which are efficient when
working over algebraic extensions ofrings. These algorithms enable us to compute gcds,
Bezout relations, or real roots of polynomials.

2.1. Quasi remainders

Let P and Q be two non-constant polynomials ofA[X] and f be a function fromA∗
to A∗. For a ∈ A∗ we denote f (a) by a f and the productf (a)a by ‖a‖ f . We often call
a f the f -pseudo inverse ofa and‖a‖ f the f -pseudo norm ofa. Wecall the f -normalized

of P the polynomial‖P‖ f = lc(P)
f
P where lc(P) denotes the leading coefficient ofP.

We thus have‖P‖ f = ‖p‖ f X|P| + p f P′ for P = pX|P| + P′ with |P′| < |P| denoting
by |P| the degree of a polynomialP.

We define qrem(P, Q, f) the f -quasi remainder ofP by Q to be the pseudo remainder
of P by ‖Q‖ f . The f -quasi remainder ofP by Q thus verifies:

qrem(P, Q, f) = prem(P, Q
f
Q) = (lc(Q) f

)max(1+|P|−|Q|,0)prem(P, Q).

The main advantage of quasi remainders over pseudo remainders is that the relation
between quasi remainders can be kept with (experimentally) “smaller” coefficients. Let
R andK be the pseudo remainder and the pseudo quotient ofP by Q, andR′ andK ′ be
the f -quasi remainder and quasi quotient ofP by Q, we have

qδ+1P = K Q+ R

when|P| ≥ |Q| with q = lc(Q) andδ = |P| − |Q|. Whereas we have under the same
assumptions

‖q‖δ+1
f P = K ′Q+ R′

and if ‖q‖ f is “simpler” thanq the division is easier to perform in practice. This is the
scheme ofMoreno Maza and Rioboo(1996) and we see that f -pseudo inverses enable us
to compute f -quasi remainders as pseudo remainders byf -normalized polynomials.

Example 1. Let P = X3 + 1 andQ = √2X + 1, the pseudo remainder prem(P, Q) is
2
√

2− 1. For f (x) = √2x, thequasi remainder qrem(P, Q, f) is 8− 2
√

2.

2.2. Weak sub-resultants

Sub-resultants are widely discussed in computer algebra literature. For instance,Loos
(1982), Basu etal. (1996), Ducos(2000), Lombardi et al.(2000) and Lickteig and Roy
(2001) give theirdefinitions and properties. We are more interested in computing univariate
polynomial gcds, Bezout relations and Sturm-like sequences than in algorithms which
compute the resultant. Our motivation is to obtain efficient algorithms for manipulating
real algebraic numbers. We thus concentrate on the different values produced during
computations and we want them to be easy to compute. We concentrate on sub-resultant
algorithms because they have the advantageto introduce simplifications by predicting

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 517

divisors. For the case of integer coefficients this entails that coefficients are made shorter
without computing gcds.

We analyse here the inner loop of the sub-resultant algorithm to compute the resultant.

Algorithm 1. We can define the sub-resultant algorithm in terms of three operations:
nextAlpha, nextDefective andnextNonDefective. Using Axiom-like syntax we
have:

generalResultant (P, Q, α,ψ) =
Q = 0 ⇒
|P| > 0⇒ 0
ψ

Q′ ← nextNonDefective (Q, α,ψ, |P| − |Q|)
R← nextDefective (P, Q, α,ψ)
generalResultant (Q, R, nextAlpha (lc(Q)), lc(Q′))

Of course, this algorithm must be modified appropriately if one wants to compute
polynomial gcds, all sub-resultants or an extended version of the algorithm which computes
the cofactors of Bezout relation.

Algorithm 2. We obtain the classical sub-resultant algorithm ofLoos(1982) by taking:

nextAlpha (q) = q,

nextNonDefective (Q, α,ψ, δ) = αδ−1Q

ψδ−1 ,

nextDefective (P, Q, α,ψ) = prem(P, Q)

−α(−ψ)|P|−|Q|

and initializingα andψ to 1 inAlgorithm 1.

Indeed, let us denote byFi−1, Fi , αi−1, ψi−1 the values passed to the function of
Algorithm 1for the parametersP, Q, α andψ. We denote byδi the difference of degrees
|Fi−1| − |Fi |. Let us assume thatFi is not zero, by the definition of parameterR in
Algorithm 1and the definition ofAlgorithm 2we have a pseudo division:

lc(Fi)
δi+1Fi−1 = Ki Fi − αi−1(−ψi−1)

δi Fi+1,

which is the sub-resultant pseudo division relation (2).
FromAlgorithm 2we obviously see thatαi = lc(Fi) and by the definition of parameter

Q′ in Algorithm 1, we seethat:

Si =
α
δi−1
i−1 Fi

ψ
δi−1
i−1

,

from which we can deduce sub-resultant relation (3). Now whenQ is null the function of
Algorithm 1returns the valueψi−1 and for two polynomialsP andQ with |P| ≥ |Q|, the
call generalResultant (P, Q,1,1) returns the resultant ofP andQ.

518 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

Example 2. Let P be X3+ (√2+√3)X2+ (3√2+ 2
√

3)X + 1 andQ be its derivative
in X, the sub-resultant sequence ofP andQ is:

F0 = X3+ (√3+√2)X2+ (2√3+ 3
√

2)X + 1

F1 = 3X2+ (2√3+ 2
√

2)X + 2
√

3+ 3
√

2

F2 = ((−4
√

2+ 12)
√

3+ 18
√

2− 10)X − 5
√

2
√

3− 3

F3 = (−210
√

2+ 564)
√

3+ 692
√

2− 483.

Remark 1. In Example 2, the last remainder computed is:

(−210
√

2+ 564)
√

3+ 692
√

2− 483.

Algorithm 3. For any function f from A∗ to A∗ we obtain the algorithmNewSubResGcd
of Moreno Maza and Rioboo(1996) by taking:

nextAlpha (q) = ‖q‖ f ,

nextNonDefective (Q, α,ψ, δ) = αδ−1‖Q‖ f

ψδ−1
,

nextDefective (P, Q, α,ψ) = prem(‖P‖ f , ‖Q‖ f)

−α(−ψ)|P|−|Q|

and initializingα andψ to 1 in Algorithm 1. Againdenoting f (a) = a f , f (a)a = ‖a‖ f

and‖Q‖ f = lc(Q)
f
Q.

This algorithm specializes to the sub-resultant algorithm when takinga f = 1 (and thus
‖a‖ f = a and‖Q‖ f = Q). WhenA is a field the algorithm specializes to the Euclidean
primitive gcd algorithm by takinga f = 1/a (and thus‖a‖ f = 1 and‖Q‖ f is monic and
simliar to Q).

Example 3. For the polynomials ofExample 2, the primitive Euclidean gcd algorithm
computes the following terms:

F0 = X3+ (√3+√2)X2+ (2√3+ 3
√

2)X + 1

F1 = X2+
(

2

3

√
3+ 2

3

√
2

)
X + 2

3

√
3+√2

F2 = X +
(
− 251

4754

√
2− 1638

2377

)√
3+ 2655

4754

√
2− 207

4754

F3 = 1.

Remark 2. In this example the last remainder computed is:(
− 7661 745

11 300 258

√
2+ 4001 178

5650 129

)√
3+ 14 738 781

11 300 258

√
2+ 61 034 481

22 600 516
.

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 519

2.3. Weak quotients and divisors

In Example 2the leading coefficients are algebraic numbers. So, pseudo divisions
in Algorithm 2 involve multiplication by algebraic numbers. Subsequent simplifications
involve division of twoalgebraic numbers.

We can constrainAlgorithm 1to make “simple”divisions by providing a functionf
that mapsa ∈ A to a f in A, such that the productaa f = ‖a‖ f lies in a sub-ringR of A.
This is always possible ifA is an integral finite algebraic extension ofR. Indeed, leta ∈ A
andPa be the minimal polynomial ofa. If a is not zero,Pa can be written asp0+X Qa(X),
wherep0 andQa are both non-zero and relationp0 = −aQa(a) holds inA.

In practice,the function f will remain fixed through-out the process. Fora ∈ A, we let
a bea f be the pseudo inverse ofa and‖a‖ be‖a‖ f be the pseudo norm ofa. In general
we will rely on a functionconjNorm that returns both terms(a, ‖a‖) ∈ A × R for an
elementa of A.

Example 4. As in Moreno Maza and Rioboo(1996), Algorithm 3 uses pseudo inverses
and computes the following terms:

F0 = X3+ (√3+√2)X2+ (2√3+ 3
√

2)X + 1

F1 = 3X2+ (2√3+ 2
√

2)X + 2
√

3+ 3
√

2

F2 = 4754X +
(
−251

√
2− 3276

)√
3+ 2655

√
2− 207

F3 = 506 595 634 305 713.

for the polynomialsP andQ of Example 2.

Remark 3. In this example, the last remainder computed is:

(−5107 830
√

2+ 5334 904)
√

3+ 9825 854
√

2+ 20 344 827.

Of course, pairs verifyingaa = ‖a‖ are not unique and we want to maintain both terms
of the pair as simple as possible. Thus, beyond the possibility to divide an element ofA by
an element ofR, we need agcd function taking as argument a pair ofA×R and returning
an element ofR which divides both of its arguments. We will require the base ringR to be
a gcddomain.

We now recall classical sub-resultant relations in the sequence computed by
Algorithm 2.

For two polynomialsP andQ, we will denote byFi thepolynomials of the sub-resultant
sequence ofP andQ as computed byAlgorithm 2. We will let fi be the leading coefficient
of Fi . Other successive parameters in sub-resultantAlgorithm 2 will be denoted byαi ,
andψi .

We have a pseudodivision relation:

f δi+1
i Fi−1 = Ki Fi − αi−1(−ψi−1)

δi Fi+1. (2)

HereKi is the pseudoquotient and−αi−1(−ψi−1)
δi Fi+1 is the pseudo remainder of the

pseudo division ofFi−1 by Fi . We start with α0 = ψ0 = 1 andhave:

520 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

αi+1 = fi+1

ψi+1 = α
δi
i+1

ψ
δi −1
i

.
(3)

We are now ready to generalizeAlgorithm 3.

2.4. Quasi sub-resultants

We include here full proofs of the algorithms. This is both for completeness and since
these cannot be easily deduced fromMoreno Maza and Rioboo(1996). The formulation of
Algorithm 1is a direct consequence of this section.

A simple remark is that we can take quasi remainders instead of pseudo remainders in
Algorithm 1when f is a multiplicative morphism fromA∗ to A∗.

Algorithm 4. For a multiplicative morphism f of A∗ and for any functiong from A∗ to
A∗, returning a divisor of its argument. We define theQuasiSubResultant algorithm by
selecting:

nextAlpha (q) = g(q),

nextNonDefective (Q, α,ψ, δ) = αδ−1lc(Q)
f
Q

ψδ−1 ,

nextDefective (P, Q, α,ψ) = qrem(P, Q, f)

−α(−ψ)|P|−|Q|

and initializingα andψ to 1 inAlgorithm 1. As usual f (a) = a f and f (a)a = ‖a‖ f .

This algorithm also specializes to the sub-resultant algorithm when takinga f = 1 (and
thus‖a‖ f = a and‖Q‖ f = Q) andg(a) = a. But whenA is a field, the quasi sub-
resultant algorithm specializes to the Euclidean gcd algorithm by takinga f = 1/a (and
thus‖a‖ f = 1 and‖Q‖ f is the monic polynomial similar toQ) andby takingg(a) = 1.
If we let g bethe identity function,Algorithm 4specializes toAlgorithm 3.

In practice, this means only that we need to compute‖Q‖ f to perform the pseudo
division and do not need to remember it after.

Example 5. For the polynomialsP and Q of Example 2, the Euclidean remainder
sequence ofP andQ is:

F0 = X3+ (√3+√2)X2+ (2√3+ 3
√

2)X + 1

F1 = 3X2+ (2√3+ 2
√

2)X + 2
√

3+ 3
√

2

F2 =
((
−4

9

√
2+ 4

3

)√
3+ 2

√
2− 10

9

)
X − 5

9

√
2
√

3− 1

3

F3 =
(
−22 985 235

11 300 258

√
2+ 12 003 534

5650 129

)√
3+ 44 216 343

11 300 258

√
2+ 183 103 443

22 600 516
.

Proposition 1. Let A bean integral domain. Let f be a multiplicative morphism fromA∗
to A∗ and g be any function fromA∗ to A∗, returning a divisor of its argument. Let F′i be

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 521

the f, g-quasi sub-resultant sequence of two polynomials P and Q ofA[X] as computed
byAlgorithm4. The coefficients of F′i remain in A[X].

We denote by f ′i the leading coefficient ofF ′i . Let α′i , and ψ ′i be the successive
parameters in quasi sub-resultantAlgorithm 4. For simplicity, we denote bya = f (a)
and‖a‖ = f (a)a.

We have a pseudodivision relation:

‖ f ′i ‖δi+1F ′i−1 = K f ′i F ′i − α′i−1(−ψ ′i−1)
δi F ′i+1 (4)

with

F ′i+1 = qrem(F ′i−1, F ′i , f) = prem(F ′i−1, f ′i F ′i).

We start with α′0 = 1,ψ ′0 = 1 and

α′i+1 = g(f ′i+1)

ψ ′i+1 =
‖α′i+1‖δi

ψ
′δ−1

i
i

. (5)

Following Moreno Maza and Rioboo(1996), we write F ′i = µi Fi and relations are to be
stated in the fraction field ofA. We have to prove thatµi remains inA.

Let us examine the first terms, sinceα′0 = 1 andψ ′0 = 1 we have:

F ′2 = −qrem(F0, F1) = −prem(F ′0, f ′1F ′1)

F ′2 = − f ′1
δ1+1

prem(F ′0, F ′1) = − f ′1
δ1+1

prem(F0, F1)

sinceF0 = F ′0 andF1 = F ′1 and thusµ0 = µ1 = 1. Now,

µ2F2 = f1
δ1+1

α0ψ
δ1
0 F2 = f1

δ1+1
F2.

We thus see thatµ2 lies in A. Let usnow examine further terms, we have:

α′i−1ψ
′
i−1

δi F ′i+1 = (−1)δi+1qrem(F ′i−1, F ′i)
= (−1)δi+1prem(µi−1Fi−1, f ′i µi Fi)

α′i−1ψ
′
i−1

δiµi+1Fi+1 = (−1)δi+1µi−1[f ′i µi]δi+1prem(Fi−1, Fi)

= µi−1 f ′i µiαi−1[f ′i µiψi−1]δi Fi+1

and thus

α′i−1ψ
′
i−1

δiµi+1 = µi−1 f ′i µiαi−1[f ′i µiψi−1]δi . (6)

But, f ′i = µi fi and thusf ′i = µi fi . Now (6) becomes:

α′i−1ψ
′
i−1

δiµi+1 = µi−1µi fi µiαi−1[µi fi µiψi−1]δi (7)

and, as inMoreno Maza and Rioboo(1996), we writethis in the form:

µi+1

µi
= µi−1αi−1µi fi

α′i−1

[
µi fi µiψi−1

ψ ′i−1

]δi
(8)

522 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

and we puti → i + 1 toobtain:

µi+2

µi+1
= µiαiµi+1 fi+1

α′i

[
µi+1 fi+1µi+1ψi

ψ ′i

]δi+1

. (9)

From sub-resultant relation (3) we have:

ψi+1ψ
δi+1−1
i = αδi+1

i+1 (10)

and from (9) multiplied by (10), we have:

µi+2ψi+1ψ
δi+1−1
i

µi+1
= µiαiµi+1 fi+1

α′i

[
µi+1 fi+1µi+1αi+1

ψ ′i

]δi+1

ψ
δi+1
i

µi+2ψi+1

µi+1ψi
= µiαiµi+1 fi+1

α′i

[
‖µi+1‖ fi+1αi+1

ψ ′i

]δi+1

dividing both sides byψ ′i+1 gives:

µi+2ψi+1

ψ ′i+1
= µi+1ψi

ψ ′i
µiαi

α′i
µi+1 fi+1

(‖µi+1‖ fi+1αi+1)
δi+1

ψ
′δi+1−1
i ψ ′i+1

.

Fromquasi sub-resultant relation (5), we see that the latter rewrites in:

µi+2ψi+1

ψ ′i+1
= µi+1ψi

ψ ′i
µiαi

α′i
(µi+1 fi+1)

δi+1+1

[
µi+1αi+1

α′i+1

]δi+1

. (11)

We now, re-induce relationµi fi = f ′i andαi = fi to obtain:

µi+2ψi+1

ψ ′i+1
= f ′i+1

f ′i
α′i

[
f ′i+1

α′i+1

]δi+1
µi+1ψi

ψ ′i
.

Since f ′i /α′i is in the ringA, we see that the sequence(µi+1ψi)/ψ
′
i has coefficients inA.

Relation (8) shows thatµi+1/µi is in A.
This shows that the sequenceµi has coefficients inA and thus thatf ′i = µi fi also has

coefficients inA.

Example 6. As in this paper, the pseudo inverse function is a multiplicative morphism.
We take forg(q) the function that returns a common divisor (inR) of q and‖q‖. For the
polynomialsP andQ of Example 2, Algorithm 4computes the following terms:

F0 = X3+ (√3+√2)X2+ (2√3+ 3
√

2)X + 1

F1 = 3X2+ (2√3+ 2
√

2)X + 2
√

3+ 3
√

2

F2 = ((−4
√

2+ 12)
√

3+ 18
√

2− 10)X − 5
√

2
√

3− 3

F3 = (−5107 830
√

2+ 5334 904)
√

3+ 9825 854
√

2+ 20 344 827.

Remark 4. In this example the last remainder is the same as inRemark 3.

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 523

3. Real algebraic integers

In this section we present generalizations of previous algorithms which have good
properties for the interpretation of their result in an ordered ring.

3.1. Sign computations

One advantageof Algorithm 4is that we have been able tokeep the relation between
terms rather simple inEq.(4):

‖ f ′i ‖δi+1F ′i−1 = K f ′i F ′i − α′iψδii F ′i+1

and the‖ f ′i ‖, α′i and theψ ′i remainin the base ringR. We can define a Sylvester-like
sequence by simply requiring that the coefficients inEq.(4) are of opposite signs. This
has the advantage that signs inR are easier to compute than signs inA. We can state an
analogy ofAlgorithm 4.

Algorithm 5. Let P andQ be two polynomials ofA[X]. Let f be a morphism taking an
elementa of A∗ and returning an elementa f of A∗ suchthata f a = ‖a‖ f with ‖a‖ f > 0
(in R). Let g be a function taking an elementa of A∗ and returning a positive (inR) divisor
of a. The f, g-quasi Sylvester sequence ofP andQ is obtained by selecting

nextAlpha (q) = g(q),

nextDefective (P, Q, α,ψ) = −qrem(P, Q, f)

αψ |P|−|Q|
,

nextNonDefective (P, α,ψ, δ) = (‖lc(Q)‖ f)
δ−1‖Q‖ f

ψδ−1

and initializingα andψ to 1 inAlgorithm 1.

This algorithm specializes to the Sylvester algorithm (seeBasu etal., 1996) by taking
a f = 1/a (and thus‖a‖ f = 1 and‖Q‖ f is the primitive part ofQ) andg(a) = 1 whenA
is a field.Algorithm 5specializes to the negative remainder sequence (seeLoos, 1982) by
takinga f = sign(a) (and thus‖a‖ is the absolute value ofa) andg(a) = a.

Since the quasi Sylvester sequence differs only by signs from the quasi sub-resultant
sequence its computation can be carried out in the ringA of coefficients of the input
polynomials.

Let K be a a real closed field,R be a sub-ring ofK andA be an integral algebraic
extension of R contained inK. Let {Fi }i=k

i=0 be the quasi Sylvester sequence ofP and Q
in A[X]. Let usassume that|Fk| = 0 and Fk = 0 and letx be a root of someFi for
i > 0 thenFi−1(x) andFi+1(x) are of opposite signs and regardless of the sign ofFi in a
neighbourhood ofx, Fi−1 andFi+1 remain of opposite sign in this neighbourhood.

Let S = {Fi }i=k
i=0 be a sequence of polynomials ofA[X] such that Fk is a non-

null constant polynomial. FollowingBasu etal. (1996) and Rioboo (1992), we define
the sign variations ofS at a pointx of K as being the number of sign variations of
S′ = Fi0(x), Fi1(x), . . . , Fil (x) with i0 = 0 and whereFi j+1 is the first polynomial in
the sequenceFi j+1 . . . Fk thatdoes not vanish atx.

524 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

Fig. 2. Local behaviour of Sylvester sequence.

Let P and Q be two polynomials with no common roots inK and let{Fi }i=k
i=0 be the

quasi Sylvester sequence ofP andQ. As noted before (seeFig. 2), the sign variation ofS
does not change when crossing a pointx which is a root of someFi , with i ≥ 1, but only
changes when crossing a rootx of P.

Basu etal. (1996) proposes to compute the sign of an expressionQ at a root ofP
by computing the sign variations of the Sylvester sequence ofP and P′Q where P′
denotes the derivative ofP. Even when replacing Sylvester sequences with quasi Sylvester
sequences this technique has the drawback that sparsity is almost always lost in the process.
For instance if Q is a simple expression of degree 1, the Sylvester sequence ofP and
P′Q mod P usually has|P| terms. On the contrary the Sylvester sequence ofP and Q
only has three terms.

Example 7. The polynomialP of Example 2has one single root. In order to compute its
sign, Basu etal. (1996) will compute the Sylvester sequence ofP andX Q mod P which
is (−√3 − √2)X2 + (−4

√
3 − 6

√
2)X − 3 whereas we would compute the Sylvester

sequence ofP andX.

We propose an alternate method which takes advantage of the fact that, when we
distinguish the distinct roots of a square free polynomialP by an interval(a,b) containing
one single root ofP, the sign of P is known in(a,b). Sincethe sign variations of the quasi
Sylvester sequence can only change at a rootxi of a square free polynomialP we can write
the variation table ofFig. 2at the vicinity of a rootxi of P.

We see that incases (a) and (b) the sign ofQ at x is given byV(x−) − V(x+) and in
cases (c) and (d) it is given byV(x+) − V(x−). If we select the interval(a,b) to be such
that Pα(b) = 0 we are ableto include the case wherePα vanishes ata and we can thus
work with left closed right open intervals. This is the reason why our definition of sign
variations slightly differs from the usual definitions which never count zeros.

Proposition 2. Let K be a real closed field, letR be a sub-ring ofK and let Q be its
fraction field. LetA be an integral algebraic extension ofR andF be the fieldR∗−1A. Let
[a,b[be a left open, right closed interval ofK with a andb lying in Q. Let P(X) be a
square free polynomial ofA[X] such that P(b) = 0 (in K) and such that[a,b[contains
only one rootα of P. Let Q(X) be a polynomial ofA[X] such that P and Q have no
common root overK. Let S be the quasi Sylvester sequence of P and Q. Let V(S,a) and
V(S,b) be the number of sign variations of S at a and b.

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 525

Fig. 3. Initial variation of Sylvester sequence.

If P(b) is positive inK then V(S,a)−V(S,b) gives the sign of Q(α) in K and if P(b)
is negative then V(S,b)− V(S,a) gives the sign of Q(α) in K.

We will now summarize the advantages ofProposition 2 over commonly used
techniques.

• Many algorithms work by “refining” an isolating interval for an algebraic number.
This is the case for instance whenusing Descartes’s rule of sign inRioboo(1992) or
Ligatsikas et al.(1996). This can be a long process in certain special cases, we now
completely avoid these refinements.
• The quasi Sylvester sequence is faster to compute than the general negative

remainder sequences ofCollins and Loos(1982) sincein quasi sub-resultantEq.(4):

‖ f ′i ‖δi+1
f F ′i−1 = K f ′i

f
F ′i − α′iψ ′δii F ′i+1,

proportionality coefficients are kept in the base ringR. Signs in R are faster to
compute than in the algebraic extensionA where lie the coefficients of theFi ’s.
• Sturm Habicht sequences ofBasu etal. (1996), Gonzalez Vega et al.(1998a) and

Lickteig and Roy(2001) do not require to compute signs inA but are still based
on straight sub-resultantEq.(2):

f δi+1
i Fi−1 = Ki Fi − αiψ

δi
i Fi+1.

Simplificationsof pseudo remainders in sub-resultant computations involve divisions
performed inA×A. We perform those simplifications using divisions inA×R and
they are easier to perform in practice.

Remark 5. If we look again atFig. 2, we see that we can avoid sign computations in some
cases. In particular for a list of length 3, we can sometimes compute its sign variation using

526 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

only two sign computations. We thus can design a method to compute the sign variations
of a list of numbers which steps elements by two instead of by one. Our experiments show
that we avoid 20–30% of the sign computations.

3.2. Root finding

Sincequasi Sylvester sequences have the same properties as Sylvester sequences, one
can define the quasi Sturm sequence of a polynomialP of A[X] to be the quasi Sylvester
sequence ofP and its derivativeP′. Cases (a) and (d) ofEq.(3) can then be used to count
thenumber of roots of a square free polynomial. Starting with an interval containing all the
roots ofP, it is possible to refine it intosubintervals containing one single root ofP. Since
we choose to count the first 0 of a sequence as a sign, we are able to count the number of
roots in a left closed right open interval.

4. Localization

4.1. Internallocalization

In previous sections intervals have bounds in the fraction fieldQ of the base ringR and
we need to evaluate a polynomial ofA[X] at points ofQ with result inF. In practice we
return the result as a fraction

P(an/ad) = P̃ad(an)

a|P|d

,

whereP̃a = a|P|P(X/a) can be obtained remaining inA:{
0̃a = 0

(pnXn + Pr (X))̃a = pnXn + an−|Pr | P̃a
r (X).

(12)

Note that these fractions can better be stored as triples(an,ad, k) for the fractionan/ak
d.

We thus store the denominatorak
d in a compact form. Sincevery little arithmetic is done

with these fractions we can assume denominators are positive and we simply return the
denominator since we only need its sign.

However there are cases where more complicated fractions must be used, in particular
the quasi sub-resultant algorithm returns a pseudo divisor of its input polynomials, and
though both of its arguments may be monic polynomials, there is no reason for the result
to be a monic polynomial. We cannot even assume that it is similar to a monic polynomial.

Example 8. One can consider the polynomialsX2 − X − 1 andX2 −√5X + 1 with the

coefficient ring beingA = Z
[√

�
]
, the quasi gcd for these polynomials is 2X − 1−√5

which cannot be made monic inA[X], sinceit is not true that 1+√5 is amultiple of 2 in

Z
[√

�
]
.

To tackle this problem, inMoreno Maza and Rioboo(1996), we proposed a global
localization process. We want here to take advantage that we are building an integral

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 527

extension of R and that defining polynomials can be kept monic with real algebraic
coefficients as shown inFig. 1.

We will encode algebraic expressions as triples:

(γ, Q,d),

whereγ /d is an algebraic integer, the univariate polynomialQ will be taken to have
coefficients in the closure and the value (inQ̃) which isencoded by this triple isQ(γ /d).

The(r, Q)→ Q̃r operation has obvious properties in particular we have:

Q̃r1r2 = (Q̃r 2)̃r 1. (13)

We now have to describe the arithmetic of these triples. We assume some knowledge of
the tower management process ofLigatsikas et al.(1996) and wedo not describe the cases
when algebraic variables are not equal. We use the same techniques here.

4.2. Zero check

The triple (γ, Q,d) encodesQ(γ /d) = Qd̃(γ)

d|Q| , thus checking the triple to zero is

equivalent to checking to zeroQ̃d(γ). That is asking the coding domain which holds an
encoding forγ if thepolynomialQ̃d(X) is zero when evaluated atγ .

Since the elements wemanipulate are algebraic integers, we will encode a particular
root γ of a polynomialPγ by Pγ together with an isolating interval[aγ ,bγ [. Here the
endpoints lie inQ encoded as pairs of elements ofR. We will always takePγ monic and
square free and work with reduced (modPγ) polynomials.

For an expressionQ to benull at γ it is necessary thatPγ and Q have a non-trivial
quasi gcdG. We require that the zero check returns either a boolean valued result or a new
encoding of some rootγ ′ related toγ when Pγ andQ have a non-trivial gcd. In Axiom,
the type of the zero check of the root coding domain becomes:

This returns either an answer or a pair(γ ′, rγ)whereγ ′ is a simpler encoding for the real
algebraicγ ′ = rγ γ . This is the case when a non-trivial quasi divisor ofPγ is encountered.
This scheme is simpler than the discussion process ofMoreno Maza and Rioboo(1996)
or Della Dora et al.(1985) sinceit returns a new encoding for the same number whereas
Moreno Maza and Rioboo(1996) or Della Dora et al. (1985) would return a list of
encodings (a split inMoreno Maza and Rioboo, 1996).

Whenever the zero check returns a new algebraic variable, we have a pseudo
factorizationgPγ = GγGβ . Here, Gγ is a polynomial which changes signs betweenaγ
andbγ . Gγ is thus a non-monic defining polynomial forγ and we want to only work with
monic polynomials. We will return an algebraic integerγ ′ and a localization information
rγ expressing the rule thatrγ γ = γ ′. In Q̃, Gγ is a defining polynomial forγ and if we let
gγ be the leading coefficient ofGγ we have:

g
|Gγ |−1
γ Gγ (X) = Gγ ′(X/gγ).

Here,Gγ ′ is a monic polynomial with coefficients inA which defines the algebraic number
γ ′ = gγ γ . If we selectgγ to be in the base ringR and positive we can derive bounds forγ ′:

528 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

aγ ′ = gγaγ andbγ ′ = gγbγ . We thus have completed an encoding for the new algebraic
numberγ ′.

In order to computeGγ ′ we use the classical Tschirnhauss transformation fromGγ :

Gγ ′ [X] = g
|Gγ |−1
γ Gγ (X/gγ),

which can easily be computed. IfP(X) = pnXn+Pr (X)with pn = 0 andn ≥ 1. We have:

pn−1
n P(X/pn) = Xn + pn−1−|Pr |

n P̃pn
r (X).

Now, when asking if a triple (γ, Q, r) is zero we may receive the information that
γ = γ ′/gγ . We thus need to produce a new triple(γ ′, Q′, r ′) with the same value in
Q̃. We have:

Q
(γ

r

)
= Q̃r (γ)

r |Q|
= Q

(
γ ′

gγ r

)

and the encoding(γ, Q,d) can be replaced by the encoding(γ ′, Q′, r ′) = (γ ′, Q, gγ r)
provided thatQ̃gγ r is reduced moduloP′γ .

The Tschirnhauss transformation increases the size of the coefficients of the polynomial
relations verified by the algebraic variable but in practice the case is very rare.

4.3. Reduction

Whenever we have a real algebraic variableγ which gets simplifiedin a localized real
algebraic variable(γ ′, gγ), expressions must be expressed in terms ofγ ′ instead ofγ .

We know thatγ ′ = gγ γ and thus a defining polynomial forγ ′ is P̃
gγ
γ where Pγ is

a defining polynomial forγ . If Pγ ′ is the defining polynomial forγ ′ we know that the

pseudo division ofPγ (X) by the polynomial
Pγ ′ (gγ X)

g
|P′γ |−1
γ

= P′
γ ′(X) is exact and that the

leading coefficient ofP′
γ ′ is gγ . For an expressionQ(γ) we can write down the pseudo

division of Q̃(X) = Q̃gγ (X) by P′
γ ′(X). Assuming|Q| ≥ |P′

γ ′ |, we have:

g
|Q|−|P′

γ ′ |+1
γ Q̃ = K P′γ ′ + R,

that we multiply byg
|P′
γ ′ |−1

γ to obtain:

g|Q|γ Q̃ = Kg
|P′
γ ′ |−1

γ P′γ ′ + g
|P′
γ ′ |−1−|R|

γ [g|R|γ R],
which is:

g|Q|γ Q̃(X) = K (X)Pγ ′(gγ X)+ g
|P′
γ ′ |−1−|R|

γ [g|R|γ R(X)]

Q(gγ X) = K (X)Pγ ′(gγ X)+ g
|P′
γ ′ |−1−|R|

γ [R̃gγ (gγ X)].

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 529

When we evaluate this relation atX = γ ′ we see that:

Q(γ) = g
|P′
γ ′ |−1−|R|

γ R̃gγ (γ)

and that we are able to further reduceQ.

4.4. Addition

We wanthere to add two triples(γ, Q1, r1) and(γ, Q2, r2). We have:

(γ, Q1, r1)⊕ (γ, Q2, r2) = Q1

(
γ

r1

)
+ Q2

(
γ

r2

)

= Q̃r1
1 (γ)

r |Q1|
1

+ Q̃r2
2 (γ)

r |Q2|
2

.

We letr bethe least common multiple (inR) of r1 andr2 andd be the maximum of|Q1|
and|Q2|. We nowcan express the fraction:

Q̃r (γ)

r |Q|
=

r d−|Q1|
(

r
r1

)|Q1|
Q̃r1

1 (γ)

r d
+

r d−|Q2|
(

r
r2

)|Q2|
Q̃r2

2 (γ)

r d

=

r d−|Q1|
(

r
r1

)|Q1|
Q̃r1

1 (γ)

+
r d−|Q2|

(
r
r2

)|Q2|
Q̃r2

2 (γ)

/
r d.

Now the coefficient of degreei of Q̃r is always a multiple ofr |Q|−i as can be seen in

Eq.(12). Thus for j being 1 or 2, the coefficient of degreei of r d−|Q j |(r
r j
)|Q j | Q̃r j

j (γ) is a

multiple of r d−|Q j |(r
r j
)|Q j |r |Q j |−i

j that isr d−i (r
r j
)i which is a multiple ofr d−i .

We thus see that if we letQc be the numerator of the above fraction,Qc can be divided
by r d−|Qc| and that we can express the result as the triple(γ, Qc/r d−|Qc|,d).

4.5. Multiplication

We now multiply two triples (γ, Q1, r1) and(γ, Q2, r2), weknow that:

(γ, Q1, r1)⊗ (γ, Q2, r2) = Q̃r1
1 (γ)

r |Q1|
1

Q̃r2
2 (γ)

r |Q2|
2

and we letQc be the polynomialQ̃r1
1 Q̃r2

2 . The coefficient of degreei of Qc is

j=i∑
j=0

q1, j q2,i− j ,

whereq1, j andq2, j are the coefficients of degreej of Q̃r1
1 andQ̃r2

2 . We takeq1, j andq2, j

to be zero wheneverj exceeds the degree. Sinceq1, j is a multiple ofr |Q1|− j
1 andq2,i− j is

a multiple of r |Q2|+ j−i
2 , weknow thatq1, j q2,i− j is a multiple ofr |Q1|− j

1 r |Q2|+ j−i
2 .

530 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

We letr be the lcm ofr1 andr2 andd be the sum|Q1| + |Q2|. We re-express:

Q̃r1
1 (γ)

r |Q1|
1

Q̃r2
2 (γ)

r |Q2|
2

= (r/r1)
|Q1|Q1(γ)

d|Q1|
(r/r2)

|Q2|Q2(γ)

d|Q2| ,

Q̃r1
1 (γ)

r |Q1|
1

Q̃r2
2 (γ)

r |Q2|
2

= (r/r1)
|Q1|Q1(γ)(r/r2)

|Q2|Q2(γ)

r |Q1|d|Q2| .

Let δγ be the degree of the defining polynomialPγ of γ and letQc be the denominator of
the above fraction. The coefficient of degreei of Qc is:

(r/r1)
|Q1|(r/r2)

|Q2|
j=i∑
j=0

q1, j q2,i− j . (14)

Sinceq1, j q2,i− j is a multiple ofr |Q1|− j
1 r |Q2|+ j−i

2 , we seethat:

(r/r1)
|Q1|(r/r2)

|Q2|q1, j q2,i− j

is a multiple of:

(r/r1)
|Q1|(r/r2)

|Q2|r |Q1|− j
1 r |Q2|+i− j

2 ,

which is:

(r/r1)
j (r/r2)

i− j d|Q1|+|Q2|−i .

The coefficient of degreei of Qc is thus a multiple ofr d−i .
Wecan now reduceQc and express the final result as a triple(γ, Q, r) as inSection 4.3.

4.6. Pseudo inversion

For an algebraic expressionq = (γ, Q, r) with Q ∈ A[X] we compute a pseudo

inverseq and a pseudo norm‖q‖ by first computing a pair(Q̃, p)with an extended version
of Algorithm 4with input Pγ and Q̃r . We select the functionf in Algorithm 4to be the

pseudo inverse function itself. The functiong is such thatg(a) = gcd(a, ‖a‖). HereQ̃ lies
in A[X] and p lies in A. We then recursively compute the pseudo inversep and pseudo
norm‖p‖ of p which lie respectively inA andR. We thus have:

Q̃r (X)Q̃(X)+ P(X)Pγ (X) = p

and

(pQ̃(X))Q̃r (X)+ (p P(X))Pγ (X) = ‖p‖.
Evaluating atγ gives:

pQ̃(γ)Q̃r (γ) = ‖p‖
pr |Q| Q̃(γ)Q(γ /r) = ‖p‖
pr |Pγ |−1Q̃(γ)Q(γ /r) = r |Pγ |−|Q|−1‖p‖.

Since|Q̃| < |pγ | we can writer |Pγ |−1Q̃ as a polynomialQ(γ /r).

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 531

Fig. 4.allRootsOf (
∏i=d

i=1(X − i)+ d√2Xd−1).

We can now return the pseudo inverseq = (γ, pQ, r) and the pseudo norm‖q‖ =
r |Pγ |−|Q|−1‖p‖

Other operations proceed as inMoreno Maza and Rioboo(1996) or Ligatsikas et al.
(1996) managing towers of extensions when we operate on two triples(γ1, Q1, r1) and
(γ2, Q2, r2) with γ1 = γ2.

5. Conclusion

Very recently, thanks to the initiative of Tim Daly, NAG Ltd has released the copyright
of Axiom. A new version will soon be available under a free and open source license. There
is thusno practical objection on using Axiom to develop algorithms anymore.

We giveheresome examples which give an experimental validation of the utility of the
algorithms presented here. These are the computation of the roots of a polynomial of degree
d with coefficients over an extensionof degreed. All calculations are done in an extension
of degreed and the roots produced enable us to work in an extension of degreedd.

Running times given inFig. 4 are in seconds of Axiom-2.3 time when running on a
Linux 400 MHz machine with 64 MB of physical memory. Columns are to be interpreted
as follows:

Ran is the standard Axiom algorithm which uses the primitive Euclidean algorithms
inside zero checks and its extended version inside inversions. Sign computations use
refinements and Descartes rule of sign. Roots production use Sylvester sequences.

Rat-mr is the specialization ofAlgorithm 4which uses the primitive Euclidean algorithm
and its extended version together with Sylvester sequences.

Rat-rr is the specialization ofAlgorithm 4which uses the Euclidean algorithm and its
extended version together with Sylvester sequences.

Int-mr is the specialization ofAlgorithm 4 which uses theMoreno Maza and Rioboo
(1996) algorithm and its extended version together with quasi Sylvester sequences.

Int-rr is the specialization ofAlgorithm 4which uses the weak sub-resultant algorithm
and its extended version together with quasi Sylvester sequences.

532 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533

The casesRat-mr, Rat-rr, Int-mr andInt-rr are computed by different instantiations
of the same program. We clearly see that the scheme using rings is faster than the scheme
using fields. When working over a field it is faster to compute Sylvester sequences than
compute refinements and use Descartes rule of sign. For the scheme of fields the primitive
version of the algorithm is faster whereas this is not so obvious for the scheme of rings.

We plan to release our implementation for the forthcoming new version of Axiom.
Using an Intel Pentium 400 under Linux, Ramanujan’sEq.(1) of the introduction used
to take 15 s to solve with Axiom 2.3 and version 1 of the real closure. Our current
development version 2 uses algorithmRat-mr and takes less than 1 s under the same
conditions.

Another possible use of quasi Sylvester sequences ofSection 2can be to take advantage
of their properties inside a solver dedicated to real solutions.

A natural extension of the techniques presented here would be to use faster sub-resultant
algorithms thanCollins and Loos(1982). For instance algorithms ofDucos (2000) or
Lombardi et al.(2000) could be considered. We think that there is no objection for this
generalization. Our main problem in this generalization is that we need to further inspect
the reduction case in the algorithm and cannot rely on pseudo remainder properties.

Acknowledgements

The author would like to thank the differentreferees for their patience and very useful
comments and corrections.

References

Basu, S., Pollack, R., Roy, M.F., 1996. On the combinatorial and algebraic complexity of quantifier
elimination. Journal of the ACM 43 (6), 1002–1046.

Bochnak, J., Coste, M., Roy, M., 1988. G´eométrie Algébrique Réelle. Springer.
Collins, G.E., Loos, R., 1982. Real zeros of polynomials. In: Computer Algebra.Springer, New York,

pp. 83–94.
Coste, M., Roy, M., 1988. Thom’s lemma, the coding of real algebraic numbers and the computation

of the topology of semi-algebraic sets. Journal of Symbolic Computation 5, 121–129.
Davenport, J., Siret, Y., Tournier, E., 1987. Calcul Formel: syst`emes et algorithmes de manipulations

algébriques. Masson.
Della Dora, J., Discrescenzo, D., Duval, D., 1985. About a new method for computing in algebraic

number fields. In: Lecture Notes in Computer Science, vol. 204.
Ducos, L., 2000. Optimizations of the subresultant algorithm. Journal of Pure and Applied Algebra

145, 149–163.
Duval, D., Gonzalez Vega, L., 1996. Dynamic evaluation and real closure. Mathematics and

Computers in Simulation 42, 551–560.
Gonzalez Vega, L., Rouillier, F., Roy, M.-F., Trujillo, G., 1998a. Symbolic recipes for real solutions.

In: Cohen et al. (1998), pp. 121–167.
Gonzalez Vega, L., Roy, M.-F.,Rouillier, F.,1998b. Symbolic recipes forpolynomial system solving.

In: Cohen et al. (1998), pp. 34–65.
Hollcott, A., 1941. Finite konstruktion geordneter algebraischer erweterungen von geordneten

grundkorpern. Ph.D. Thesis, Univ. of Hamburg.

R.Rioboo / Journal of Symbolic Computation 36 (2003) 513–533 533

Lang, S., 1964. Algebraic Numbers. Addison-Wesley Pub. Co, New York.
Lang, S., 1969. Algebra. Addison-Wesley Pub. Co, New York.
Lecerf, G., 1996. Dynamic evaluation and real closure. Implementation in Axiom. Available from

http://www.medicis.polytechnique.fr/∼lecerf/.
Lickteig, T., Roy, M.-F., 2001. Sylvester-Habicht sequences and fast Cauchy index computations.

Journal of Symbolic Computation 31, 315–341.
Ligatsikas, Z., Rioboo, R., Roy, M.F., 1996. Generic closure of an ordered field, implementation in

Axiom. Mathematics and Computers in Simulation 42, 541–549.
Lombardi, H., Roy, M.F., 1991. Elementary constructive theory of ordered fields. Progress in

Mathematics 34, 249–262.
Lombardi, H., Roy, M.F., Safey, M., 2000. New structure theorems for subresultants. Journal of

Symbolic Computation 29, 663–690.
Loos, R., 1982. Generalized polynomial remainder sequences. In: Computer Algebra. Springer, New

York, pp. 115–137.
Moreno Maza, M., Rioboo, R., 1996. Polynomial gcd computations over towers of algebraic

extensions. In: Lecture Notes in Computer Science, vol. 948.
Rioboo, R., 1992. Computation of the real closure of an ordered field. In: ISSAC’92. Academic

Press, San Francisco.
Strzeboński, A., 1997. Computing in the field of complex algebraic numbers. Journal of Symbolic

Computation 647–656.
Zassenhauss, H., 1970. A real root calculus. In: Computational Problems in Abstract Algebra.

Pergamon Press, Oxford, pp. 383–392.

Further reading

Buchberger, B., Collins, G., Loos, R., 1982. Computer Algebra. Springer.
Cohen, A., Cuyper, H., Sterk, H. (Eds.), 1998. Some Tapas of Computer Algebra, In: Algorithms and

Computation in Mathematics, vol. 4. Springer.
Loos, R., 1982. Computing in algebraic extensions. In: Computer Algebra, Springer, pp. 173–187.
Rioboo, R., 1991. Quelques aspects du calcul exact avec les nombres r´eels. Ph.D. Thesis, Laboratoire

d’Informatique Théorique et Programmationg.

http://www.medicis.polytechnique.fr/~lecerf/

	Towards faster real algebraic numbers
	Introduction
	Real closed fields
	Real closure
	Algebraic integers

	Quasi sub-resultants
	Quasi remainders
	Weak sub-resultants
	Weak quotients and divisors
	Quasi sub-resultants

	Real algebraic integers
	Sign computations
	Root finding

	Localization
	Internal localization
	Zero check
	Reduction
	Addition
	Multiplication
	Pseudo inversion

	Conclusion
	Acknowledgements
	References

