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Abstract

This paer presents a new encoding scheme for real algebraic number manipulations which
enhances current Axiom’s real closure. Algebraic manipulations are performed using different
instantiations of sub-resultant-like algorithms instead of Euclidean-like algorithms. We use these
algorithms to compute polynomial gcds and Bezout relations, to compute the roots and the signs of
algebraic numbers. This allows us to work in the ring of real algebraic integers instead of the field of
real algebraic numbers avoiding many denominators. © 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Real algebraic numbers are relevant for symbolic computations since they are the
natural frame where computer algebra users expect solutions of polynomial systems to
lie. Exact computations with real algetzaiumbers are however hard to achieve and
few end user packages (suchlagatsikas et al. 1996 Strzebmski, 1997 exist far this
purpose inside general purpose computer algebra systems. The real closure of Axiom
which is basean algorithms ofRioboo(1992 andLigatsikas et al(1999 is one of the
few packages that can perform non-trivial exales. This is because we avoid primitive
elements and costly polynomial factorizations.

For instance, Ramanujan’s example DBvenport et al.(1987%:

§_ 527 j?_ LS ﬁ
\/;+ 5_(f3+f3+1) e 1)

is, toour knowledge, impossible to solve by any package but Axiom’s real closure.
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Other tetiniques described iDuval and ®nzalez Vegg199§ are implenented in
Lecerf (1996 and also avoid primitive elements. They provide real root functionalities
using dynamic evaluation (sdeella Dora et al. 1985 ideas and algorithms based on
Coste and Roy1988, Basu efal. (1999 andDuval and ®nzalez Veg41996. However
theRealRoot functionality of this package does not offer the usual arithmetic. It cannot
be used as a back-end for triangular systems resolution nor as a tool for cylindrical
decomposition and we did not compare with it.

This paper presents the basics for faster versions of Axiom’s real closure.
1.1. Real closed fields

We recall (seeLang 1969 Bochnak et al, 1989 that a eal field is a fieldK where
(—1) is not a sum of squares. An ordered field is a fildvith a total ordering which
is compatible with additionMx,y,z € Kx <y = x + z < y + 2) and multiplication
(VX,y € Kx = 0,y > 0= xy > 0,Vxx2 > 0). An ordered field is a real field and a real
field admits at least an ordering turning it into an ordered field.

Areal closed field is a real field which admits no strict algebraic extension which is real,
itis uniquely ordered and this is equivalent to saying that this is a field where every positive
number has a square root and where every odd degree polynomial has at least a root. From
an effective point of view (sekigatsikas et a].1996 we nodel these properties into those
of an ordered field together with an1Roots0f function taking a univariate polynomial
and returning all its distinct roots.

1.2. Real closure

Given a computde ordered field Q the real closureQ of Q is the smallest
extenson field of Q which is real closed. It is computable (séembardi and Roy
1991, Zassenhausd497Q Hollcott, 1941 and weuse here the same scheme of towers
of extensions whig is desribed in Ligatsikas et al.(1999. This schemaallows us to
manipulate real algebraic numbers encoded as pairQ) wherey is a real algebraic
variableand whereQ is a univariate polynomial. In this scheme is a member of an
external stucture wth its own data representation. This structure is in charge of creating
new algebraic variables and computes bagierations such as checking if a univariate
polynomial is zero at a real algebraic variable. This external structure is also responsible
for computing the sign and the inverse of a univariate polynomial when evaluagedrat
this scheme the only requirements for the univariate polynomials is that their coefficients
are simpler (i.e. already defined). Thus thaiefficients belong to # closue itself. That
is, if we denote byQ the real closure of an ordered fie@] the polynomials involved lie
in Q[X].

Roughly speaking we may view an elementf Q as a tree whose leaves are elements
of Q and whose nodes contain two elemefif3’. HereC is interpreted as a rogt of
a univariate polynomiaP, (X) € Q[X] andV is interpreted as a univariate polynomial
A € Q[X] representing the equatian= A(y). Seeligatsikas et al(1996 for detals.



R.Rioboo / Journal of Symbolic Computation 36 (2003) 513-533 515

R - A — R
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Fig. 1. The new scheme of encoding.

1.3. Algebraic integers

We recall (seeLang 1964 for instarce) that ifR is an integral domain and F is an
algebraic extension of the fraction field Rf the agebraic integers df are those elements
of F which verify a monic polynomial relation dR[ X].

For a aib-ringR of a fieldK we denote byR* the st of regular (i.e. non-null) elements
of R and if A is an extension ring oR contained inK. We also @note byR*~*A the
sub-ring of K with numegtors inA and denominators iR*. If A is an algebraic integral
extenson of R thenR*~1A is a sib-field ofK .

When managing polynomial gcds, the main advantage of algebraic integers is that they
have no denominator (see howewsction 4. In this paper, we propose the following
scheme inspired by éhreal closure of Axiom. We start from a rirlg and work over the
algebraic integerR of the real closur®) of the fradion field Q of R. It is summarized in
Fig. L

Throughout this paper, unless otherwise nofeds a gcd domain which is called the
base ring and) is its fraction field. The rincA is an integral finite @ebraic extension of
R andF is the fieldR*~1A of fractions with numerators iA and denominators iR*. Q
will be the realclosure ofQ, andR will be the algebraic integers & which is also the
field of fradions withnumerators irkR and denominators iR*.

In Section 2we introduce weak sub-resultants which enable us to compute univariate
polynomial gcds. We describe the quasi sub-resultant algorithigofithm 4 which
extends algorithms ilMoreno Maza and Riobod.996 and agorithms inLoos(1982.

Section 3xtends the quasi sub-resultant algorithm in order to compute the real roots of
aunivariate polynomial and the sign of univariate expressions depending on one root of this
polynomial. We introduce quasi Sylvester sequenédgdrithm 5 which are related to
algorithms inCollins and Loog1982, Gonzalez Vega et a(1998ha), Basu efal. (1999
andLickteig and Roy(2007).

Section 4adapts the real closure constructionLégatsikas et al(1996 and eplains
the necessary localization process whichniseded to compute with real algebraic
integers.

Finally Section 5gives some practical behaviour of the algorithms presented.

This paper is an extended version of a presentation at the ISSAC 2002 conference.
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2. Quas sub-resultants

In this section we present weak sub-resultant algorithms which are efficient when
working over dgebraic extensions afngs. These algorithms enable us to compute gcds,
Bezout relations, or real roots of polynomials.

2.1. Quasiremainders

Let P andQ be two non-constant polynomials Af X] and f be a function fromA*
to A*. Fora € A* we denote f (a) by af and the producf (a)a by ||a| . We often call
af the f-pseudo inverse af and|ja|| ; the f-pseudo norm o&. We call the f -normalized

of P the polynomial||P| = Wf P where I¢P) denotes the leading coefficient Bf
We thus have| P+ = | pll X!Pl + B P’ for P = pXIPl + P’ with |P’| < |P| denoting
by | P| the degree of a polynomiaP.

We define grentP, Q, f) the f-quasi remainder of by Q to be the gaudo remainder
of P by || Q| 1. The f-quasi remainder oP by Q thus verifies:

grem(P, Q. f) = premP, Q' Q) = (ic(Q) )™ +PI-IRLOpremP, Q).

The main advantage of quasi remainders over pseudo remainders is that the relation
between quasi remainders can be kept with (erpentdly) “smaller” coefficients. Let

R andK be the pseudo remainder and the pseudo quotieRtln§ Q, andR andK’ be

the f-quasi remainder and quasi quotientbby Q, we have

q8+lP= KQ+R

when|P| > |Q| with g = Ic(Q) andé = |P| — |Q|. Whereas we have under the same
assumptions

lal™P =K'Q+R

and if ||| ¢ is “simpler” thanq the division is easier to perform in practice. This is the
schene ofMoreno Maza and Riobo(996 and we se that f -pseudo inverses enable us
to conpute f -quasi remainders as pseudo remainder$ mormalized polynomials.

Examplel. Let P = X3 + 1 andQ = +/2X + 1, the pseudo remainder prém Q) is
272 — 1. For f (x) = /2, thequasi remainder gre(®, Q, f) is 8 — 2./2.

2.2. Weak sub-resultants

Sub-resultants are widely discussed in computer algebra literature. For indtanse,
(1982, Basu efal. (1996, Ducos (2000, Lombardi et al.(2000Q and Lickteig and Roy
(2001 give theirdefinitions and properties. We are more interested in computing univariate
polynomial gcds, Bezout relations and Sturm-like sequences than in algorithms which
compute the resultant. Our motivation is to obtain efficient algorithms for manipulating
real algebraic numbers. We thus concentrate on the different values produced during
computations and we want them to be easy to compute. We concentrate on sub-resultant
algorithms because they have the advantagatroduce simplifications by predicting
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divisors. For the case of integer coefficients this entails that coefficients are made shorter
without computing gcds.
We aralyse here the inner loop of the sub-resultant algorithm to compute the resultant.

Algorithm 1. We can define the sub-resultant algorithm in terms of three operations:
nextAlpha, nextDefective andnextNonDefective. Using Axiomiike syntax we
have:

generalResultant (P, Q, o, ¥) =
Q=0=>
IP|>0=0
14
Q' < nextNonDefective (Q, a, ¥, |P| — |Q|)
R < nextDefective (P, Q, «, )
generalResultant (Q, R, nextAlpha (Ic(Q)), Ic(Q"))

Of course, this algorithm must be modified appropriately if one wants to compute
polynomial gcds, all sub-resultants or an extended version of the algorithm which computes
the cofactrs of Bezout relation.

Algorithm 2. We obtain the classical sub-resultant algorithnLobs (1982 by taking:

nextAlpha () =,

aﬁle
nextNonDefective (Q, o, ¥, §) = W

remP
nextDefective (P, Q, o, ¥) = %

and initializinge andy to 1 in Algorithm 1

Indeed, let us denote bl _1, Fi, aj_1, ¥i—1 the values passea tthe function of
Algorithm 1for the parameter®, Q, « andy. We daote byé; the differene of degees
|Fi_1] — |Fj]. Let usassume that~ is not zero, by the definition of paramet®rin
Algorithm 1and the definition oAlgorithm 2we have a paglo division:

le(F)* Ry = KiFi — aioa(—¥i-0)" Fisa,

which is the sib-resultant pseudo division relatia)
FromAlgorithm 2we olviously see thad; = Ic(F;) and by the definition of parameter
Q' in Algorithm 1, we sedhat:

o' 1 F
§i—1"~"
¥ila
from which we can deduce sub-resultant relati8n Now whenQ is null the function of

Algorithm 1returns the value;_; and for two polynomial$ andQ with |P| > |Q]|, the
call generalResultant (P, Q, 1, 1) returns the resultant @ and Q.

S =
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Example 2. Let P be X3 + (v24 v/3) X% 4+ (3v2 + 2¢/3)X + 1 andQ be its denvative
in X, the sib-resultant sequence BfandQ is:

Fo= X3+ (V3+vV2)X?+ (2V3+3vV2)X +1

F1=3X2+ (V3 +2V2)X +2V/3+3V2

Fo = (—4v2 4 12)4/34 182 - 10X — 5V/2V/3 - 3

F3 = (—210v2 4 564)+/3 + 692v/2 — 483
Remark 1. In Example 2the last renainder computed is:

(—210V2 + 564)+/3 + 6922 — 483
Algorithm 3. For any finction f from A* to A* we obtain the algorithnlewSubResGcd
of Moreno Maza and Riobo{.996 by taking:

nextAlpha (q) = ||q] f,

§—1
nextNonDefective (Q, a, ¥, §) = %,
I//5—1
. _ pren(|P]+, IQIl t)
nextDefective (P, Q,a, V) = (= y)lP1Q]

and initializinge and to 1 in Algorithm 1 Againdenotingf (a) = al, fa)a=|als
Tt
and|Q[ls =1c(Q) Q.

This algorithm specializes to the sub-resultant algorithm when téi(ing 1 (ard thus
lall+ = aand| Q|+ = Q). WhenA is a field the algorithm specializes to the Euclidean
primitive gcd algorithm by takin@’ = 1/a (and thusjal|+ = 1 and|| Q|| is monic and
simliar to Q).

Example 3. For the polynomials ofExample 2 the primitive Euclidean gcd algorithm
computes the following terms:

Fo= X3+ (W3+V2)X2+ (2V/3+3V2)X + 1
F1= X+ <§J§+§«/§)x+§«/§+ﬁ

251 1638 2655 207
Fo=X+(— 3 2
2=2xt ( ) V3 4754“[ 4754

4754f2 2377

Fs=1

Remark 2. In this example the last remainder computed is:

7661745 n 400117 n 14738 78];/— n 61034481
11300258 5650129 11300258 22600516
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2.3. Weak quotients and divisors

In Example 2the leading coefficients are algaiic numbers. So, pseudo divisions
in Algorithm 2involve multiplication by algebraic numbers. Subsequent simplifications
involve division of twoalgebraic numbers.

We can constrairAlgorithm 1to make “simple”divisions by providing a functiorf
that maps € Atoa' in A, such that the producta’ = |ja|| lies in a sib-ringR of A.
This is always possible A is an integral finite aebraic extension d?. Indeed, leta € A
andP; be the minimal polynomial cdi. If ais not zero,P; can be written apg+ X Qa(X),
wherepg and Qz are both non-zero and relatigny = —aQa(a) holds inA.

In practice the functionf will remain fixed through-out the process. ot A, we let
abeaf be the pseudo inverse afand|al| be|lal + be the pseudo norm @f. In gereral
we will rely on a functionconjNorm that returns both term@, ||aj|) € A x R for an
elementa of A.

Example 4. As in Moreno Maza and Riobo¢1996, Algorithm 3uses pseudo inverses
and computes the following terms:

Fo= X3+ (V3+vV2)X2+ (2V3+3V2)X +1
F1=3X2+ (2V3+2V2)X + 24/3+3V2

Fo = 4754X + (—251«/5 - 3276) V3 + 2655/2 — 207
F3 = 506 595 634 305 713

for the polynomiald? andQ of Example 2

Remark 3. In this example, the last remainder computed is:

(—5107 836/2 + 5334 904+/3 + 9825 854/2 + 20 344 827

Of course, pairs verifyinga = ||aj| are not unique and we want to maintain both terms
of the pair as simple as possible. Thusydred the possibility to divide an elementafoy
an element oR, we reed ggcd function taking as argument a pairAfx R and returning
an element oR which divides both of its arguments. We will require the base Rtg be
a gcddomain.

We now recall classical sub-resultantlatons in the sequence computed by
Algorithm 2

For two polynomialsP andQ, we will denote byF; the polynomials of the sub-resultant
sequence of° andQ as computed bylgorithm 2 We will let f; be the leading coefficient
of F. Other sgcessive parameters in sub-resultaAhgorithm 2 will be denoted byy;,
andy;.

We hawe a pseuddlivision relation:

fiéi +1Fi—1 =K F — ai—l(_Wi—l)Si Fit1. (2

HereK; is the pseudajuotient and—a;j_1(—yi_1)% Fi11 is the pseudo reainder of the
pseudo division of_1 by F;. We stat with «g = ¥ = 1 andhave:
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®it1 = fing
i 3
Vig1 = l:(Is,tll ®)

We are now eady to generalizAlgorithm 3
2.4. Quasi sub-resultants

We include here full proofs of the algorithms. This is both for completeness and since
these cannot be easily deduced frfareno Maza and Riobod 996. The formuation of
Algorithm 1is a direct consquence of this section.

A simple renark is that we can take quasi remainders instead of pseudo remainders in
Algorithm 1when f is a multiplicative morphism fromA* to A*.

Algorithm 4. For a multiplicative morphismf of A* and for any functiorg from A* to
A*, retuning a divisor of its argument. We define theasiSubResultant algorithm by
selecting:

nextAlpha (q) = g(q),

Sfl—f
nextNonDefective (Q, «, ¥, §) = %,
remP, Q, f
nextDefective (P, Q, o, ¥) = %

and initializinga andy to 1 in Algorithm 1 As usualf (a) = afandf(aa=||a| .

This algorithm also specializes to the sub-resultant algorithm when tafirg 1 (and
thus|alls = aand| Q|+ = Q) andg(a) = a. But whenA is a field, the quasi sub-
resultant algathm specializes to the Euclidean gcd algorithm by talé“ﬁg: 1/a (and
thusjlallf = 1 and| Q|| ; is the monic polynomial similar toQ) andby takingg(a) = 1.
If we let g bethe identity functionAlgorithm 4specializes toAlgorithm 3

In practice, this means only that we need to compg@d| + to peform the pseudo
division and do not need to remember it after.

Example5. For the polynomialsP and Q of Example 2 the Eutidean remainder
sgquence ofP andQ is:

Fo= X34+ (WV3+vV2)X%+2V3+3V2)X +1
F1=3X2+ (2V3+2V2)X + 23+ 32

4 4 10 5 1
Fo = <<—§ﬁ+§)ﬁ+2ﬁ— §> X — 5f2d§— 3

o 22985235 54 1200353 44216 343 54 183103443
3= 11300258 5650129 11300258 22600516

Proposition 1. LetA beanintegral domain. Let f be a multiplicative morphism fréxh
to A* and g be any function frolA* to A*, retuming a divisor of its argument. Let/fbe
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the f, g-quasi sub-resultant sequence of two polynomials P and [ %fl as computed
by Algorithm4. The cefficients of Freman in A[X].

We deote by f/ the leading coefficient oF/. Let «f, and v/ be the successive
parameters in quasi sub-resulta&igorithm 4 For simpicity, we denote bya = f(a)
and|a| = f(a)a.

We hawe a pseuddlivision relation:

I 1Ry = KR — o g (=% Fyy (4)
with
1 =arem(F/_,, F/, ) = premF/_y, f/F)).
We stat with oy = 1, ¥§ = 1 and
o= g(fi/+1_)
w/ _ H"‘i/-#l”(SI ) (5)

i+1 — 51
v !

Falowing Moreno Maza and Riobo(1996, we write F/ = u; Fj and relations are to be
staked in the fraction field oA. We have to prove that; remains inA.
Let us examine the first terms, singg= 1 andy; = 1 we have:

Fj = —qrem(Fo, F1) = —prem(F{, f/F})
—51+1 —31+1
Fo=—1] o prem(Fg, F)) = —f] " premFo, F)

sinceFp = FyandF; = F| and thusuo = 111 = 1. Now,

5+l ——81+1
poF2 =1 TaoygtFa =1 Fa

We thus see that lies in A. Let usnow examine further terms, we have:
oy Flyy = ()% HaremF_y, F)
= (=1)%*tprem(ui—1Fi-1, f/uiFi)
of ¥ 4" pisaFiva = (=D [ F i HpremFi_g, )
= i1 f wicial F/ i i—11% Fia
and thus
W1 i1 = pica  piei—alf i vioa1%. (6)
But, f/ = w; fi and thusf, = 7 f;. Now (6) becomes:
of _y W% pig1 = w1t G pici—a [ G i Yi-a]” ()

and, as ilMMoreno Maza and Riobod.996, we writethis in the form;

_ — Si
Kitl  Hi—10i—1fi fi [mfi ,U«iWil:|

; ; (8)
Wi oy Vi1
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and we put — i + 1 toobtain:

— [ dit1
piv2  picifti+t fivr | gt fivapmivai )
Hi+1 Oli/ Wi/ .
From sub-resultant relatio®) we have:
Siy1—1 ]
Vil T =l (10)
and from @) multiplied by (10), we have:
Sip1—1 -— -— i1
RitoVip1y; _picittiga fipr | it fipapivaciv " o
Mi+1 of Wi !
— — Sit1
Mit2¥ivr  picifita figa | Ipivall figaciva
i1 o v
dividing both sides byy/_ , gives:
piv2Vicn _ Hieadi pic e (i firraipe)iet
= i+1 T+ — .
Vi v ylom Tty
Fromquasi sub-redtant relation ), we see that the teer rewrites in:
Hi+2Vi Hi+1¥i pioi _ —— Hit10 e
i+2V¥i+1 i+1¥i Wi : i+10+1
I+/ - = I+/ I I/I iy fi+1)6|+1+1 I+/ - ’ (11)
i+1 Ui o q

We now, re-induce relatiop; fi = f/ ande; = fj to obtain:

S
MHit2Vitr 7 L L " Hi+1¥i
I/f-/ - i+1z 7 I/f-/ .
i+1 i i

%t
Since f/ /o] is in the ringA, we see tht the sequencgui1¥i)/v] has coefficients im.
Relation 8) shows thajtj+1/ui iISinA.
This shows that the sequengghas coefficients ik and thus thaff/ = u; f; also has
coefficients inA.

Example 6. As in this paper, the pseudo inverse function is a multiplicative morphism.
We take forg(q) the function thateturns a common divisor (iR) of g and||q||. For the
polynomialsP andQ of Example 2 Algorithm 4computes the following terms:

Fo= X3+ (V3+vV2)X2+ (2V3+3V2)X +1

F1 = 3X2+ (2V3+ 2vV2)X +2V/3+3V2

Fo = (—4v2+ 123+ 18V2 - 10)X — 5v/2v/3 -3

F3 = (—5107 83G/2 + 5334 904+/3 + 9825 854/2 + 20 344 827

Remark 4. In this example the last remainder is the same d&amark 3
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3. Real algebraicintegers

In this section we present generalizations of previous algorithms which have good
properties for the interpretation of their result in an ordered ring.

3.1. Sign computations

One advatageof Algorithm 4is that we have been able keep the relation between
terms rather simple ikq. (4):

IR = KR — oy Fly

and the| f/||, o and they; remainin the base rinR. We can define a Sylvester-like
sejuence by simply requiring that the coefficientsHq. (4) are of opposite signs. This
has the advantage that signsRrare easier to compute than signsAin\We can state an
analogy ofAlgorithm 4

Algorithm 5. Let P and Q be two polynomials oA[X]. Let f be a morphism taking an
elementa of A* and returning an elemeat of A* suchthata’a = ||a| ; with |al|s > O
(in R). Letg be a function taing an elemena of A* and returning a positive (iR) divisor
of a. The f, g-quasi Sylvester sequence®BfandQ is obtained by selecting

nextAlpha () = g(q),

nextDefective (P, Q,a, V) = %ﬁ’g’f),
| §—1
nextNonDefective (P, a, ¥, §) = (I C(Q)J’L;)l QI

and initializingae andy to 1 in Algorithm 1

This algorithm specializes to the Sylvester algorithm @asu etal., 1996 by taking
af = 1/a (and thug|a| s = 1 and|| Q|| 1 is the primitive part ofQ) andg(a) = 1 whenA
is a field.Algorithm 5specializes to the negative remainder sequencel(eeg 1982 by
taking afl = sign(a) (and thug|a|| is the absalte value ofa) andg(a) = a.

Since he quasi Sylvester sequence differsyony signs from the quasi sub-resultant
sgjuence its computation can be carried out in the ngf coefficients of the input
polynomials.

Let K be a a real closed fiel®R be a sub-ring oK andA be an integral algebraic
extengon of R contained inK. Let {Fi}gz‘(‘) be the quasi Sylvester sequenceRPoind Q
in A[X]. Let usassume thatFx| = 0 andFx # 0 and letx be a root of somd~ for
i > 0thenF_1(x) andFi_+1(x) are of opposite signs and regardless of the sigF; af a
neighbourhood ok, F_1 andF;41 remain of opposite sign in this neighbourhood.

Let S = {Fi}}j‘) be a sequence of polynomials &f X] suchthat Fy is a non-
null constant polynomial. Followingasu efal. (1996 and Rioboo (1992, we define
the sign variations ofS at a pointx of K as being the number of sign variations of
S = F,(x), Fi,(X), ..., F,(x) with ip = 0 and whereF; , is the first polynomial in
the sejuencer; 41... Fx thatdoes not vanish at.
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(@) zim z; ziy (b)) mi— m; xiy
Fa+ + + Fa — — —
FFE £ 0+ F £ 0 &£
Fipn — = = Fp + + +

Fig. 2. Local behaviour of Sylvester sequence.

Let P and Q be two polynomials with no common roots & and let{F; }}j‘c‘, be the
guasi Sylvester sequenceBfand Q. As noted before (seEig. 2), the sgn variation ofS
does not change when crossing a painthich is a oot of someF;, with i > 1, but only
changes when crossing a roodf P.

Basu efal. (19969 proposes to compute the sign of an expressipmat a root of P
by computing the sign variations of the Sylvester sequenc® @ihd P'Q where P’/
denotes the derivative ¢f. Even wha rephcing Sylvester sequences with quasi Sylvester
sequences this thnique has the drawback that sparsity is almost always lost in the process.
For instance if Q is a simple &pression of degree 1, the Sylvester sequencP aind
P’Q mod P usually hagP| terms. On the conary the Sylvester sequence Bfand Q
only has three terms.

Example 7. The polynomialP of Example 2has one single root. In order to compute its
sign, Basu efal. (1996 will compute the Sylester sequence ¢f and X Q mod P which

is (—/3 — V2)X? 4+ (—4/3 — 64/2)X — 3 wheras we would compute the Sylvester
sgquence ofP andX.

We propose an alternate method which takes advantage of the fact that, when we
distinguish the distinct roots of a square free polynorRidly an irterval(a, b) containing
one single root oP, the sgn of P is known in(a, b). Sincethe sign variations of the quasi
Sylvester squence can only change at a rapbof a square free polynomi&d we can write
the variation table ofig. 2at the vicinity of a root; of P.

We see that irtases (a) and (b) the sign @f at x is given byV (x_) — V(x4) and in
cases (c) and (d) it is given By(x+) — V(x-). If we sekct the intervala, b) to be such
that P, (b) # 0 we are abldo include the case whef, vanistes ata and we can thus
work with left closed right open intervals. This is the reason why our definition of sign
variations slightly differs from the usual definitions which never count zeros.

Proposition 2. Let K be a real closed field, lIeéR be a sub-ring oK and letQ be its
fraction field. LetA be an integral algebraic extension BfandF be the fieldR*~1A. Let
[a, b[ be a left open, right closed interval & with a andb lying in Q. Let P(X) be a
square free polynomial oA[X] such hat P(b) # 0 (in K) and such thata, b[ contains
only one rooto of P. Let QX) be a polynomial oA[X] such hat P and Q have no
common root oveK. Let S be the quasi Sylvester sequence of P and Q. [(&tay and
V (S, b) be the number of sign variations of S ata and b.
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(a) z_ x x4 b))z = x4
r -0 + P — 0 +
Q++ + Q- - -
Voeoovev-1 V voeotlo+l

)z =z zy (d)z-z x4
P + 0 — P +0 -

Q + + + Q — - -
V v v+1lov+1 V v vov—-1

Fig. 3. Initial variation of Sylvester sequence.

If P(b) is positive inK then (S, a) — V (S, b) gives the gn of Q(«) in K and if P(b)
is negatie then M S, b) — V (S, a) gives the gn of Q(«) in K.

We will now summarize the advantages @&froposition 2over comnonly used
techniques.

e Many algorithms work by “refining” an isolating interval for an algebraic number.
This is the case for instance whasing Descartes’rule of sign inRioboo(1992 or
Ligatsikas et al(1996. This can be a long process in certain special cases, we now
completely avoid these refinements.

e The quasi Sylvester sequence is faster to compute than the general negative
remainder sequences©@bllins and Loog1982 sincein quasi sub-resultatiiq. (4):

1R =K fi/f F — oy F g,
proportionality coefficients are kept in the base riRg Signs inR are faster to
compute than in the algebraic extensomvhere lie the coefficients of thig 's.

e Sturm Halicht sequences oBasu efal. (1999, Gonzalez Vega et a[19983 and
Lickteig and Roy(2001) do not require to compute signs i but are still based
on straight sub-resultaig. (2):

R = KiFi — iy Fioa.

Simplificationsof pseudo remainders in sub-resultant computations involve divisions
performed inA x A. We peform those simiifications using divisions ilA x R and
they are easier to perform in practice.

Remark 5. If we look again aFig. 2 we see tht we can avoid sign computations in some
cases. In particular for a list of length 3, we can sometimes compute its sign variation using
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only two sign computations. We thus can design a method to compute the sign variations
of a list of numbers which steps elements by two instead of by one. Our experiments show
that we avoid 20—-30% of the sign computations.

3.2. Root finding

Sincequasi Sylvester sequences have the same properties as Sylvester sequences, one
can define the quasi Sturm sequence of a polynohiaf A[X] to be the quasi Sylvester
seguence ofP and its derivative®’. Ca®s (a) and (d) oEqg.(3) can then be used to count
the number of roots of a square free polynomial. Starting with an interval containing all the
roots of P, it is possible to refine it inteubintervals containing one single root®Bf Since
we choose to count the first 0 of a sequence as a sign, we are able to count the number of
roots in a left closed right open interval.

4. Localization
4.1. Internallocalization

In previous sections intervals have bounds in the fraction €@edd the bag ringR and
we need to evaluate a polynomial &f X] at points ofQ with result inF. In pradice we
return the resulas a faction

pad
P(an/aa) = — o,
a

whereP?2 = alPIP(X/a) can be obtained remaining A

{ 0d =0

(P X"+ P (X)® = pnX" +a"IRIP3(X). (12)

Note that these fractions can better be stored as triplesy, k) for the fractiona, /a‘é.
We thus store the denominatag in a compact form. Sinceery little arithmetic is done
with these fractions we can assume denatons are positive and we simply return the
denominator since we only need its sign.

However there are cases where more coogpéid fractions must be used, in particular
the quasi sub-resultant algorithm returns a pseudo divisor of its input polynomials, and
though both of its arguments may be monic polynomials, there is no reason for the result
to be a monic polynomial. We cannot even assume that it is similar to a monic polynomial.

Example 8. One can consider the polynomiak? — X — 1 andX? — v/5X + 1 with the
coefficient ring beincA = Z [\/%] the quasi gcd for these polynomials iX2- 1 — /5
which cannot be made monic i[X], sinceit is not true that 1 /5 is amultiple of 2 in

2|}

To tackle this problem, inrMoreno Maza and Riobo¢1996, we proposed a global
localization process. We want here to take advantage that we are building an integral
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extenson of R and that defining polynomials can be kept monic with real algebraic
coefficients as shown iRig. 1
We will encode algbraic expressions as triples:

(J/7 Q’ d)a

wherey/d is an algebraic integer, the univariate polynom@lwill be taken to have
coefficients in the closure and the value @hwhich isencoded by this triple iQ(y /d).
The(r, Q) — Q' operation has obvious properties in particular we have:

Q~I'1I'2 — (Q~I'2)~I'l' (13)

We now have to desibe the arithmetic of these triples. We assume some knowledge of
the tower maagement process bfgatsikas et al(1996 and wedo not describe the cases
when algebraic variables are nafual. We use the same techniques here.

4.2. Zero check

The triple (v, Q, d) encodesQ(y/d) = ng’l’), thus checking the ipple to zero is

equivalent to checking to zer@9(y). That is askinghe coding domain which holds an
encoding fory if the polynomialQY(X) is zero when evaluated at

Since the elements wmanipulate are algebraic integers, we will encode a particular
root y of a polynomialP, by P, together with an isolating intervah, , b,[. Here the
endpoints lie inQ encoded as pairs of elementsRfWe will always takeP, monic and
square free and work with reduced (m&yl) polynomials.

For an epressionQ to benull at y it is necessary thalP, and Q have a non-trivial
qguasi gcds. We require that the zero check returns either a boolean valued result or a new
encoding of some rogt’ related toy whenP, andQ have a non-trivial gcd. In Axiom,
the type of the zero check of the root coding domain becomes:

zero?: (UP,%) -> Union(Boolean,Record(new:%,local:R))

This returns either an answer or a p@if, r,,) wherey’ is a simpler enading for the real
algebraicy’ =r,, y. This is the case when a non-trivial quasi divisoiRyfis encountered.
This scheme is simpler than the discussion procesdatno Maza and Riobo(996
or Della Dora et al(1985 sinceit returns a new ecoding for the same number whereas
Moreno Maza and Riobo@1996 or Della Dora et al. (1985 would return a list of
encodings (a split iMoreno Maza and Riobqd 99§.

Wheneer the zero check returns a new eligaic variable, we have a pseudo
factorizationgP, = G, Gg. Here, G, is a polynomial which changes signs betwesn
andb, . G, is thus a non-monic defining polynomial fprand we want to only work with
monic polynomials. We will return an algebraic integérand a localization information
r, expressing the rule tha y = y’. In Q, G, is a defining polynomial fory and if we let
0, be the leading coefficient @, we have:

0776, (X) = G, (X/gy).
Here,G,, is a monic polynomial with coefficients i which define the agjebraic number
Yy’ = g,y. Ifwe selectg, to be in the base rinB and positive we can derive bounds fot
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a,” = g,a, andb,, = g, b,. We thus have completed an encoding for the new algebraic
numbery’.
In order to computé&s, we use the classical Tschirnkes transformation fror,, :

G, [X] =g ""'6,(X/g,).

which can easily be computed.Pi(X) = pn X"+ P; (X) with p, # 0andn > 1. We have:

PPLP(X/pn) = X" + IR pPr(x).

Now, when askig if a triple (y, Q,r) is zero we may receive the information that
y = ¥'/9,. We thus need to produce a new triple’, Q’,r’) with the same value in

Q. We have:

. Qe (Y
Q(T) Tyl T Q(gy_r
and the encodingy, Q, d) can be replaced by the encodiag, Q'.r") = (y’. Q. g,r)
provided thatQ9%" is reduced modul®.

The Tschirnhauss transformation increases the size of the coefficients of the polynomial
relations verified by the algebraic variable but in practice the case is very rare.

4.3. Reduction

Wheneer we have a real algebraic variablevhich gets simplifiedn a localized real
algebraic variablgy’, g, ), expressions must be expressed in termg’dhstead ofy.

We know thaty’ = g,y and thus a defining polynomial for’ is P;,gy whereP,, is
a cefining polynomial fory. If P, is the cefining polynomial fory” we know that the

P,/(gy X )
V‘F(,,gly 1) = P/,(X) is exact and that the
9 7

leading coefficient oiP;, is g,. For an &pressionQ(y) we can write down the pseudo
division of Q(X) = Q% (X) by P)//,(X). Assuming Q| > |P;,|, we have:

pseudo division ofP, (X) by the polynomial

IQI-IP,1+1 «
gV ’ Q = K P;/ + R7

IP/,1-1
that we multiply byg, ©  to obtain:

. P -1 P, |—1-|R|
o Q=Kg,” P, +g,’ (g7 R,
which is:
Q1A IPUI-1=IRI Ry
g2 Q(X) = K(X)P, (g, X) + 9y (9RO

[—1-|

P, Rl
Q(gy X) =KX)P,(g,X)+0,” [R¥ (g, X)].
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When we evaluate this relation dt= y’ we see that:

PLI-1-IRI
Q) =g9," R% (v)

and that we are able to further redu@e
4.4. Addition

We wanthere to addwo triples(y, Q1, r1) and(y, Q2,r2). We have:
(y, Q1,r) ® (y, Q2,1r2) = Q1 (%) + Q> (é)

_ Qi |

[ Q1] Q2| -~
ry ra

We letr bethe least common multiple (iR) of r1 andr, andd be the maximum ofQ1|
and|Q2|. We nowcan express the fraction:

Q1+ [Qal ~
Fo ()" e ()™ g

rlQl rd rd
Qi+
-1 (£) 7 Q)
+ rd.

Q2
=102l (£) ™ Q)
Now the coeffitent of degreei of Q" is always a multiple of 121~ as can be seen in
Eq.(12). Thus forj being 1 or 2, the coefficient of degreef r4-IQi '(r'—J_)‘QJ'|QrJ-j (y)isa
1Qjl—

multiple of rd-1Qj '(rr—j)‘QJ Ir; ' that isrd-1 (rr—j)i which is a multiple of 9.

We thus see that if we leQ. be the numerator of the above fracti@g can be divided
by rd-I1Q¢l and that we can express the result as the tipleQc/r9-12¢!, d).
45. Multiplication

We now multiply two triples (v, Q1,r1) and(y, Q2,r2), weknow that:

QL(y) Q2(»)
1l ]Qa]
1 2

(y,Q1.r) ® (y, Qa,r2) =

and we letQ. be the polynomiai;)Tl1 QTZZ. The ceefficient of degreé of Q¢ is

j=i
Zququ—j,
j=0

whereqy, j anddp,j are the coefficients of degrgeof QTl1 and Q~r22. We takeqy, j anddp,j

to be zero vmeneverj exceeds the degree. Singg; is a multiple ofr‘lQlH andopi_j is

a nultiple of rgQZ'“ 1 weknow thatgy jap,i—j is a multiple ofr‘lQlH r'ZQZ‘“ -



530 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513-533

We letr be the Icm of 1 andrz andd be the sumQ1| + |Q2|. We re-express:

Qr() QZ(y)  (r/r)'AQu(y) (r/r2) 2 Qa(y)
(Ol Qe dicul diQzl ’

QL) Q) (r/r)!®Qu()(r/r2!Qa(y)
Pl Qe r1QudiQal '

Let s, be the degree of the defining polynomiyl of y and letQ. be the denominator of
the above fraction. Theoefficient of degree of Q¢ is:
j=i
(r/rp)' /1)y "y o (14)
j=0

IlQl\—J' r\ZQz|+J' =i , we sedhat:

Sinceqy, jop,i—j is a multiple ofr
/r)! @ /ra) Pla japi
is a multiple of:
(/1)@ (r /)l Qalp A1 JR2 =T,
which is:
(r/rl)j (r/l’z)ifj g/ Qul+1Qal—i

The coefficient of degreieof Qc is thus a multiple of 41,
We can now reduc€). and express the final result as a triple Q, r) as inSection 4.3

4.6. Pseudo inversion

For an algebria expressionq = (y, Q,r) with Q € A[X] we conpute a pseudo

inverseq and a pseudo nortfg|| by first computing a paifQ, p) with an extended version
of Algorithm 4with input P, andQ". We seéct the functionf in Algorithm 4to be the

pseudo inverse function itself. The functigiis such thag(a) = gcd(a, ||a||). HereQ lies
in A[X] and p lies in A. We then ecursively compute the pseudo invepand pseudo
norm| p|| of p which lie respectively irA andR. We thus have:

Q' (X)QX) + P(X)P, (X) = p
and
PANQ (X) + (FP))IP, (X) = lIpll.
Evaluating aty gives:
POMT () = Ipl
PrRA1)Q /M) = lipl
PrPLQ()Qy/r) = r!P =R ).

Since|O| < | p, | we can writer P71-18 as a polynomiab (y /).
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Ran | Rat-mr | Rat-rr | Int-mr | Int-rr
0.04 0.05 0.06 0.05 0.06
0.14 0.15 0.15 0.13 0.11
0.82 0.66 0.76 0.39 0.37
22.85 8.47 9.79 4.49 4.58
34.99 1225 | 19.88 | 9.55 | 10.88
1035.74 | 245.12 | 333.90 | 193.47 | 203.70

0 [ N[O | O | = | W | &

Fig. 4.al1Roots0f ([[I=9(X — i) + ¥2x9-1).

We can now return the pseudo inver§e= (y, pQ,r) and the pseudo norfg| =
rIF =10 pj

Other operations proceed as liioreno Maza and Riobo¢1996 or Ligatsikas et al.
(1996 maraging towers of extensions when we operate on two triplesQs, r1) and

(y2, Q2,r2) with y1 # y».

5. Conclusion

Very recently, thanks to the initiative of Tim Daly, NAG Ltd has released the copyright
of Axiom. A new version will soon be available under a free and open source license. There
is thusno practical objection on using Axiom to develop algorithms anymore.

We give here some examples which give an experimental validation of the utility of the
algorithms presented here. These are the computation of the roots of a polynomial of degree
d with coefficients overmaextersionof degreel. All calculations are done in an extension
of degread and the roots produced enable us to work in an extension of ddfree

Running times given irFig. 4 are in seconds of Axiom-2.3 time when running on a
Linux 400 MHz machine with 64 MB of physical memory. Columns are to be interpreted
as follows:

Ran is the standard Axiom algorithm which uses the primitive Euclidean algorithms
inside zero checks and its ertied version inside inversions. Sign computations use
refinements and Descartes rule of sign. Roots production use Sylvester sequences.

Rat-mr is the specialization o&lgorithm 4which uses the primitive Euclidean algorithm
and its extended version together with Sylvester sequences.

Rat-rr is the specialization oflgorithm 4which uses the Euclidean algorithm and its
extended version together with Sylvester sequences.

Int-mr is the specialization ofAlgorithm 4 which uses theMoreno Maza and Rioboo
(1999 algorithm and its extended version together with quasi Sylvester sequences.

Int-rr is the specialization oflgorithm 4which uses the weakub-resultant algorithm
and its extended version together with quasi Sylvester sequences.



532 R.Rioboo / Journal of Symbolic Computation 36 (2003) 513-533

The caseRat-mr, Rat-rr, Int-mr andInt-rr are computed by different instantiations
of the same program. We clearly see that the scheme using rings is faster than the scheme
using fields. When working over a field it is faster to compute Sylvester sequences than
compute refinements and use Descartes rule of sign. For the scheme of fields the primitive
version of the aorithm is faster whereas this is not so obvious for the scheme of rings.

We plan to réease our implementation for therthcoming new version of Axiom.

Using an Intel Pentium 400 under Linux, Ramanujaigsg. (1) of the introduction used

to take 15 s to solve with Axiom 2.3 and wiwn 1 of he real closure. Our current
development version 2 uses algoritiRat-mr and takes less than 1 s under the same
conditions.

Another possible use of quasi Sylvester sequenc8sciion Zan be to take advantage
of their propertiesniside a solver dedicated to real solutions.

A natural extension of the techniques presented here would be to use faster sub-resultant
algorithms thanCollins and Loos(1982. For instance algorithms dbucos (2000 or
Lombardi et al.(2000 could be considered. We think that there is no objection for this
generalization. Our main problem in this generalization is that we need to further inspect
the reduction case in the algorithm and canndy ien pseudo remainder properties.
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