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Abstract We have previously demonstrated that introgression
of PcINO1 gene from Porteresia coarctata (Roxb.) Tateoka,
coding for a novel salt-tolerant L-myo-inositol 1-phosphate
synthase (MIPS) protein, confers salt tolerance to transgenic
tobacco plants (Majee, M., Maitra, S., Dastidar, K.G.,
Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P. and Majum-
der, A.L. (2004) A novel salt-tolerant L-myo-inositol-1-phos-
phate synthase from Porteresia coarctata (Roxb.) Tateoka, a
halophytic wild rice: molecular cloning, bacterial overexpression,
characterization, and functional introgression into tobacco-con-
ferring salt-tolerance phenotype. J. Biol. Chem. 279, 28539–
28552). In this communication we have shown that functional
introgression of the PcINO1 gene confers salt-tolerance to evo-
lutionary diverse organisms from prokaryotes to eukaryotes
including crop plants albeit to a variable extent. A direct corre-
lation between unabated increased synthesis of inositol under
salinity stress by the PcINO1 gene product and salt tolerance
has been demonstrated for all the systems pointing towards the
universality of the application across evolutionary divergent taxa.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Salinity presents a multifold challenge to all organisms in

terms of perturbed osmotic balance, ionic disequilibria and

generation of toxic metabolites and is a major abiotic stress

affecting the biological systems particularly limiting plant

productivity worldwide [1]. All organisms exhibit characteris-

tic responses towards such abiotic stress effects and possess

means to combat these. Depending upon the genetic

make-up of the organism and the environment it normally

dwells in, these responses vary greatly although some

reactions seem to be universal for steady survival in salt-

environment. Plant salt tolerance is known to be a multigenic
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trait [2] and classical breeding for developing salt tolerance in

crops have been attempted with limited success [3]. Genetic

engineering of several metabolic pathways producing osmo-

protectants/osmolytes or sugars [4–10], regulation of ion

homeostasis or other salt tolerance determinants like vacuolar

transporters like AtNHX1 [11], transcriptional activators and

regulatory genes for raising salt-tolerant plants have earlier

been reported by several researchers [1] . However, a well

documented mechanism to balance osmotic pressure within

the cell and to protect the biomolecules from downward ef-

fects has been the increased production of osmoprotectants/

osmolytes. Increased production of a number of osmolytes

such as proline [4] and glycine-betaine [5], sugar alcohols such

as mannitol [6,7], sorbitol [8] and pinitol [9], or a sugar like

trehalose [10] have been reported to confer salt tolerance to

several groups of plants.

Inositol, an ubiquitous six-carbon cyclohexane hexitol, and

its methylated derivative pinitol are implicated in stress re-

sponses having a role as osmolytes in several biological systems

[8]. In addition to such function, inositol and its derivatives are

also implicated in a variety of other cellular processes includ-

ing growth regulation, membrane biogenesis, signal transduc-

tion, ion channel physiology and membrane dynamics [12].

In all inositol producing organisms studied to date this impor-

tant cyclitol is produced via conversion of glucose-6 phosphate

to inositol-1 phosphate by the L-myo-inositol 1-phosphate syn-

thase (MIPS; EC 5.5.1.4) involving NAD+ followed by

dephosphorylation catalyzed by inositol monophosphatase

(IMPase; EC 3.1.3.25) [13]. The MIPS enzyme or its structural

gene INO1 has been reported from diverse sources, including

higher plants and animals, parasites, fungi, green algae, bacte-

ria and archaea, and has been considered to be an ancient pro-

tein/gene [13].

Because inositol is able to protect cells from effects of osmo-

tic imbalance caused by high salinity, search for a positive cor-

relation between increase in the cellular inositol pool and

growth and survival of organisms during salt stress is worth

investigation. A prerequisite of this is unabated production

of inositol under salt stress by a salt-tolerant inositol biosyn-

thetic machinery operative in the surviving system. We have

previously reported an INO1 gene from Porteresia coarctata

(Roxb.) Tateoka (PcINO1), a halophytic wild rice, that codes

for a unique salt-tolerant MIPS enzyme. The corresponding

homologue, termed OsINO1 from the cultivated rice, Oryza

sativa, however, codes for a salt-sensitive MIPS protein [14].
blished by Elsevier B.V. All rights reserved.
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An insight into the molecular mechanism of salt tolerance of

PcINO1 and the importance of a unique 37 amino acid stretch

in conferring the aforesaid trait has recently been documented

[15]. Further, PcINO1 transformed tobacco plants were able to

grow in 200–300 mM NaCl with unabated photosynthetic

competence and a 2–7-fold increase in cellular level of inositol

compared to the corresponding control plants [14]. Because of

the ubiquitous presence of inositol throughout the biological

kingdom, it was thought pertinent to address the question as

to whether increased synthesis of inositol under the influence

of PcINO1 gene can effectively confer salt tolerance to organ-

isms distantly placed in the lineage of evolution.
2. Materials and methods

2.1. Transformation of E. coli and their growth pattern in presence of

salt
E. coli BL21 (DE3), transformed with the vector pT7-7 (obtained

from Dr. S. Dasgupta, Department of Microbiology, Bose Institute),
constructs containing OsINO1 and PcINO1 genes and no insert were
grown in 5 ml culture at 37 �C, induced with 1 mM IPTG and further
grown for 2 h (A600 nm = 0.45) at 22 ± 2 �C . Finally, equal amount of
inoculum, determined by turbidometric method [16] was spread onto
solid Luria Broth containing 0–400 mM NaCl containing 1 mM IPTG,
under ampicillin selection (100 lg/ml) and incubated at 22 ± 2 �C for
24 h. The growth of the cells in each set was measured quantitatively
by count of the colony forming units (cfu).

2.2. Protein expression, purification and checking for in vitro salt

tolerance
For checking protein expression, all transformed E. coli BL21 (DE3)

cells were grown at 37 �C up to A600 = 0.3 and induced as described
above. 500 mM NaCl was added to each culture and the cells further
grown overnight at 22 ± 2 �C . After 14 h, �30 lg protein from each
set was analyzed in 10% SDS–PAGE [17] and immunodetected using
polyclonal anti-OsMIPS antibody. For determining MIPS activity in
presence of salt, overexpressed OsMIPS and PcMIPS proteins were
isolated and purified from transformed E. coli BL21 (DE3) cultures
following the three-step purification protocol described elsewhere
[14]. In vitro MIPS activity and salt tolerance property from system
was measured [14] with �25 lg of purified proteins in presence of 0–
500 mM NaCl.

2.3. Transformation of Schizosaccharomyces pombe and their growth in

presence of salt
OsINO1 and PcINO1 genes were cloned in the yeast expression vec-

tor pREP1 downstream to thiamine repressible promoter (nmt) using
NdeI and SalI sites. Schizosaccharomyces pombe PR109 (h-ura4-D18
leu1–32) cells were transformed [18] with pREP1 constructs and the
transformants were picked up by leu prototrophy. For checking
growth profile in presence of salt, transformants were first grown in li-
quid EMM [19] media supplemented with 2 lM inositol at 30 �C for
�24 h (OD600 = 0.6–0.7). Thereafter, equal volume of inoculum, as
determined by the hemocytometer counting of cells, was allowed to
grow at 30 �C onto both solid and liquid EMM media supplemented
with 2 lM inositol at different NaCl concentrations (0–500 mM).
Growth was monitored for 72 and 50 h, respectively by counting the
number of viable cells forming colonies (cfu).
2.4. Expression and purification of MIPS proteins from S. pombe and

their enzymatic activity in presence of NaCl
To check for MIPS expression total protein was extracted [20] from

the transformed cells, run on a 10% SDS–PAGE [17], and expression
was confirmed by Western blotting with polyclonal anti-OsMIPS anti-
body. MIPS was purified from the total protein by 35%–65% ammo-
nium sulfate fractionation followed by gel filtration chromatography
through Superose-12 [14]. Purified MIPS proteins (�20 lg) were as-
sayed for enzyme activity [14] in presence of increasing salt concentra-
tion (0–500 mM).
2.5. Construction of vectors for plant transformation and raising of

transgenic Oryza and Brassica plants
OsINO1 and PcINO1 coding sequences were cloned at XbaI and

KpnI site of pCAMBIA1301 under CaMV35s promoter and Nos ter-
minator and mobilized in Agrobacterium sp. strain LBA4404 [14,21]
Scutellar calli derived from Oryza sativa var. Pusa Basmati 1 seeds
and Brassica juncea var. B85 hypocotyl explants were transformed fol-
lowing standardized protocol [22,23]. Hygromycin selected T0 plants
were grown at 70% humidity and 16 h:8 h photoperiod in hormone free
MS medium [24]. Seven independently transformed hygromycin se-
lected and PCR positive PcINO1 transformed (six copies each of 7
T0 lines namely P3, P8, P9, P10, P12, P20 and P22) and OsINO1 trans-
formed (six copies each of 8 T0 lines namely R5, R6, R7, R9, R12,
R16, R19 and R20) and three sets of untransformed in vitro regener-
ated Oryza plants (var. Pusa Basmati 1) were tested by growing them
in presence of 0, 50, 100, 200, 250, 300 mM NaCl. Similarly, six inde-
pendently transformed, hygromycin selected and PCR positive PcI-
NO1 transformed (10 copies each of 6 T0 lines namely, Pb2, Pb4,
Pb9, Pb11, Pb19 and Pb21) and OsINO1 transformed (10 copies each
of 6 T0 lines namely, Rb2, Rb6, Rb12, Rb15, Rb19 and Rb25) and
three sets of untransformed Brassica plants were tested. The single
transformants for each crop were selected for experimentation based
on the Mendelian segregation pattern for the transgene and the hptII
gene.

2.6. Molecular analysis of transgenics
DNA was isolated by modified CTAB method [25]. Transformants

were confirmed by PCR for hptII gene using 5 0 ATG AAA AAG
CCT GAA CTC ACC GCG 3 0 forward and 5 0CTA TTT CTT TGC
CCT CGG ACG AGT 3 0 reverse primers. Introgression of PcINO1
was confirmed using PcINO1 specific primers, designed based on the
difference between OsINO1 and PcINO1 at the nucleotide level e.g.
forward (from bp 526 to bp 547): 5 0CTC TCC CTG GCA TCT
ATG ATC C 3 0 and reverse primer (bp 956 to bp 933): 5 0 CCG
GTT TTT TTT TTT GGT TTG CCC 3 0 . Histochemical GUS assay
[26] was performed using calli or leaf segments from the putative T0

transformants. Southern blot for PcINO1 gene was performed accord-
ing to standard protocol [27].

2.7. Growth pattern and MIPS assay of transgenic plants in NaCl
Eight independent PcINO1- and OsINO1 transformed Pusa Basmati

1 plants and six independent transformed Brassica plants along with
untransformed control plants were grown in presence of increasing
NaCl in hormone free MS media for 21 or 10 days. Cytosolic MIPS
from leaves of transformed and control Oryza and Brassica plants
was isolated and purified [14]. MIPS activity was assayed in increasing
NaCl concentration using �15 lg of purified protein.

2.8. Measurement of photosynthetic efficiency
Photosynthetic efficiency of plants during growth in increasing NaCl

concentration was calculated by measuring chlorophyll a fluorescence
using a Plant Efficiency Analyzer (Hansatech Instruments Ltd., King’s
Lynn, UK) using a single flash of light intensity of 3000 lmol/m2/s
after 10 min dark adaptation using Hansatech Biolyzer software. Each
chlorophyll a fluorescence transient O-J-I-P was analyzed according to
the JIP-test [28].
2.9. Determination of inositol content
Leaf inositol content was measured through gas liquid chromatogra-

phy (GLC) as described by Majee et al. [14] following the method of
Bieleski and Redgwell (1977). GLC was done in a Chemito 1000 GC
equipped with flame ionization detector. Trimethylsilyl (TMS) deriva-
tives of the samples were prepared with Tri-Sil- Z (Pierce) and were run
through 3% SP-2100 stationary phase (Supelco) supported on Chro-
mosorb-W (Sigma). Quantification was made against similar runs with
authentic myo-inositol as standard.
3. Results and discussion

To evaluate whether PcINO1 can confer salt tolerance

to widely diverse organisms , the gene was introgressed and



Fig. 1. (A and B) Protection of salt induced growth inhibition of E. coli by PcINO1 expression. (A) Growth of E. coli BL21(DE3) transformed with
pT7-7 (I), OsINO1 (II) and PcINO1 (III) on solid LB agar, supplemented with 100 lg/ml ampicillin under IPTG induction and in absence or presence
of various concentrations of NaCl at 22 ± 2 �C. (B) Quantitative estimation of survivality of E. coli BL21 (DE3) transformed with pT7-7, Os INO1
and PcINO1 in presence of increasing NaCl concentration. Cell survivality is expressed in terms of colony forming unit/ml under induced condition,
in presence of 0, 200 and 400 mM NaCl. Grey bar-empty vector (pT7-7), white bar-OsINO1 and black bar-PcINO1 transformed cells. Error bars
indicate standard deviation from triplicate experiments. (C and D) MIPS protein expression and immunodetection in transformed cells 10% SDS–
PAGE (C) and corresponding Western blot analysis using anti Os-MIPS antibody (D) of the protein extract from IPTG induced E. coli BL21 (DE3)
cells transformed with empty pT7-7 vector, OsINO1 and PcINO1 and grown overnight at 22 ± 2 �C in absence of NaCl (lanes 1, 3 and 5) and in
presence of 400 mM NaCl (lanes 2, 4 and 6). Lane 7 in (C) represents MW markers. Each lane contains �30 lg total protein. (E) MIPS activity of
PcINO1 and OsINO1 transformed salt treated cultures. Enzyme activity assay of purified MIPS isolated from IPTG induced E. coli BL21(DE3)
cultures in presence of increasing concentration of NaCl in vitro. E. coli cells transformed with Os INO1 and PcINO1 were grown in 400 mM NaCl
overnight at 22 ± 2 �C. MIPS activity from PcINO1 (-j-) and OsINO1 (-d-) transformed cells are designated. (F) Myo-inositol content of salt
treated cultures. Free myo-inositol content of E. coli BL21(DE3) cultures expressing PcINO1 and OsINO1 both under salt stressed and unstressed
condition. Amount of myo-inositol has been expressed in terms of lmole inositol/gm of fresh weight of cells. Error bars indicate standard deviation
from three independent estimations. Grey bar-empty vector (pT7-7), white bar-OsINO1 and black bar-PcINO1 transformed cells. (G) Protection of
salt induced growth inhibition of untransformed E. coli BL21(DE3) in presence of 400 mM NaCl by different concentrations of myo-inositol. Cell
survivality is expressed in terms of colony forming units/ml. Error bars indicate standard deviation from triplicate experiments. Different systems
containing salt and inositol have been numbered below each lane. Lane a, 0 mM NaCl + 0 mM inositol; lane b, 100 mM inositol; lane c, 400 mM
NaCl; lane d, 400 mM NaCl + 10 mM inositol; lane e, 400 mM NaCl + 20 mM inositol; lane f, 400 mM NaCl + 40 mM inositol; lane g, 400 mM
NaCl + 60 mM inositol; lane h, 400 mM NaCl + 80 mM inositol and lane i, 400 mM NaCl + 100 mM inositol. All experiments have been performed
with three independently transformed E. coli cells lines.
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tested for functional expression in four distantly related

organisms from unicellular prokaryote E. coli, unicellular

non-photosynthetic eukaryote Schizosaccharomyces pombe, a

monocotyledonous crop , rice (Oryza sativa) and a dicotyle-

donous oil-yielding crop , mustard (Brassica juncea). E. coli,

besides serving as the prokaryotic model, seemed to us very

relevant for this study because it inherently lacks an MIPS

protein although contains suhB, a homologue of IMPase

[29]. Schizosaccharomyces pombe is considered a natural ino-

sitol auxotroph lacking the MIPS coding gene despite har-

boring an IMPase activity [30] and requires external

inositol for its normal growth. Thus the organism presents

an ideal model for studying the growth of the transformed

cells in increasing salt concentration under the influence of

a salt-tolerant MIPS. The INO1 genes from two experimental

crop plants such as Oryza sativa, (GenBank Accession num-

ber AB012107) and Brassica sp. (GenBank Accession num-

ber U66307) are known to code for salt-sensitive MIPS

proteins.

Although there are earlier reports of glycine-betaine, proline,

triethylamine N-oxide (TMAO), trehalose, potassium gluta-

mate and glycerol [31] acting as compatible solutes in E. coli,

the role of inositol as osmoprotectant in this bacterium, inher-

ently lacking an MIPS protein, was yet to be ascertained. In

order to assess this, E. coli BL21 (DE3) cells were transformed

with the empty vector pT7-7, vector constructs containing

either OsINO1 or the PcINO1 gene. Three independent groups

of transformed cell lines were used for experimentation.

Growth of such cells under IPTG induction was measured

on solid LB media with increasing NaCl in absence of exter-

nally supplied inositol. The transformed cells grew almost to

the same extent at 100 mM NaCl although with increasing

NaCl in the growth media, a steady inhibition of growth was

observed in case of OsINO1 and empty pT7-7 vector trans-

formed cells with very little growth inhibition for PcINO1

transformed cells after 24 h of incubation (Fig. 1A). Such

growth pattern and survival of cells under conditions of

increasing salinity were quantitated by tracking cell growth

using plating and colony counts (Fig. 1B). As apparent, be-

tween 200 and 400 mM NaCl the PcINO1 transformed cells

show better survival in comparison to the other two cell types.

Although extent of growth or survivality was reduced even in

case of PcINO1 transformed cells at 400 mM NaCl (about

40%), in case of OsINO1 and empty vector transformants, vir-

tually no growth was observed at this salt concentration

(Fig. 1A and B).

Expression of the OsINO1 and the PcINO1 genes in the

transformed cells grown either in absence of NaCl or in pres-

ence 400 mM NaCl was analysed by SDS–PAGE (Fig. 1C)

and confirmed by corresponding Western blot analysis using

polyclonal anti-OsMIPS antibody (Fig. 1D) indicating uni-

form expression of the transgene(s) in all the transformants.

The MIPS proteins isolated from the OsINO1 and PcINO1

transformed E. coli cells retained their characteristic in vitro

salt-sensitivity and salt-tolerance character, respectively

(Fig. 1E).

Functional introgression of the OsINO1 and the PcINO1

resulted in cellular production of inositol in the transformed

E. coli (Fig. 1F). In absence of salt, both the OsINO1 and

PcINO1 transformed cells produced almost equal amount

of free inositol. However, in presence of increasing NaCl,

progressive decrease in the inositol content was noted in
OsINO1 transformed cells while the PcINO1 transformed

cells continued production of equal or about 75% of inositol

when compared with the system without NaCl and 3–5 times

more than the OsINO1 transformed system. Some amount

of inositol, albeit low, was detected in the empty vector

transformed cells, presumably resulting from cellular trans-

port.

Because the above experiments suggest a possible osmopro-

tective role of inositol, attempts were made to evaluate the

growth on solid LB media of untransformed E. coli cells under

high salt condition in presence and absence of externally sup-

plied inositol. Preliminary experiments suggested lack of any

effect of added inositol (100 mM) on normal growth of

untransformed E. coli BL21(DE3) cells under the experimental

conditions (Fig. 1G, lanes a and b). Untransformed E. coli

BL21(DE3) cells plated on media containing 400 mM NaCl

alone failed to show any growth after 16 h of incubation at

37 �C (Fig. 1G, lane c). In contrast, a gradual increase in the

protection of salt induced growth inhibition was observed

when cells were grown in media containing 400 mM NaCl

and 10–100 mM inositol, highest protection being observed

in 80–100 mM inositol (Fig. 1G, lanes d–i).

In a similar fashion, S. pombe cells, transformed with OsI-

NO1 and PcINO1 along with empty vector constructs were al-

lowed to grow on EMM plates with increasing NaCl

concentration. Three independent groups of transformed cell

lines were used for experimentation. When transformed S.

pombe cells were exposed to saline environment, PcINO1

transformed cells continue to grow over a range of increasing

NaCl concentration and upto 400–500 mM NaCl, albeit to a

lesser extent, whereas OsINO1 transformed or empty vector

transformed cells failed to overcome such adversity as assessed

visually (Fig. 2A) or as measured in terms of viable cell count

(Fig. 2B). Functional expression of the different gene products

were analyzed through SDS–PAGE and immunodetection

(Fig. 2C and D), showing uniform expression of the MIPS pro-

tein. The OsINO1 and PcINO1 gene products from the respec-

tive transformed cells exhibit the expected salt-sensitivity and

salt-tolerance respectively in their functional MIPS activity in

presence of NaCl (Fig. 2E). Further, the growth of the different

cell types correlates well with the pattern of intracellular inosi-

tol production (Fig. 2F). The cells were grown in presence of

2 lM inositol that accounts for the negligible inositol found

in the pREP1 transformed cells. As in the case of E. coli, sur-

vival of the untransformed S. pombe cells under saline environ-

ment by inositol is also documented (Fig. 2G). Thus,

admittedly salt tolerant character of PcINO1 gene/gene prod-

uct enhances the chances of survival of salt-stressed cell even

in this unicellular eukaryote.

Inositol has been shown to accumulate in higher plants

which supposedly act as an osmolyte in addition to its’ other

metabolic roles [32]. Although all plants harbor the INO1

gene, the MIPS coded by most of them are known to be salt

sensitive and thus whenever salt creates an osmotic imbalance

within the cell this protective osmolyte cannot be synthesized

in sufficient amounts. It was thought worthwhile to investigate

as to whether upon introgression, PcINO1 retains its salt-tol-

erant property and confers increased degree of salt-tolerance

to the crop plants similar to tobacco plants demonstrated ear-

lier [14]. To determine this, the PcINO1 gene was cloned in a

suitable plant expression vector and introgressed in indica rice,

Oryza sativa (variety Pusa Basmati 1) and Brassica juncea



Fig. 2. (A) Growth of OsINO1-(I), PcINO1-(II) and pREP1-(III) transformed S. pombe in solid media in presence of increasing NaCl concentration.
(B) Bar graph showing the number of viable cells forming colonies in presence of different NaCl concentration. Cell survivality is expressed in colony
forming units (Cfu)/ml; pREP1 transformed S. pombe cells (grey bar); OsINO1 transformed S. pombe cells (white bar) and PcINO1 transformed S.
pombe cells (black bar). (C and D) 10% SDS–PAGE (C) and corresponding Western blot analysis using anti Os-MIPS antibody (D) of total cellular
protein extract from S. pombe cells transformed with PcINO1 (lane 2), OsINO1 (lane 3) and pREP1 (lane 4). Lane M – MW markers; lane 1- partially
purified OsINO1 protein. (E) Enzyme activity assay of purified MIPS isolated from OsINO1 (d) and PcINO1 (j) transformed S. pombe cells in
presence of NaCl. Error bars indicate standard deviation from three independent determinations. (F) Free myo-inositol content in lmole/gm of fresh
weight of the transformed S. pombe cell both under salt stressed and unstressed condition. Grey bar represents pREP1 transformed cells; White bar
represents OsINO1 transformed cells and black bar represents PcINO1 transformed cells. Error bars indicate standard deviation from three
independent estimations. (G) Bar graph showing the growth pattern of S. pombe PR109 in solid EMM media in presence of increasing NaCl
concentration supplemented with different amount of inositol. Cell survivality is expressed in colony forming units (Cfu)/ml of S. pombe cells aided
with 20 lM (grey bar), 50 lM (white bar) and 75 lM (black bar) inositol. In all cases, three independently transformed OsINO1, PcINO1 and pREP1
transformed Schizosaccharomyces pombe PR109 cell lines grown in EMM media supplemented with 2 lM inositol at 30 �C were used.
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(variety B85) as detailed in Section 2.5 along with OsINO1 as a

positive control. Independent T0 PcINO1 and OsINO1 trans-

formants and untransformed control Oryza and Brassica

plants were monitored for their growth in increasing NaCl

concentrations (Fig. 3A and 4A). The transformed plants were

checked for introgression of OsINO1, PcINO1 and hpt gene(s)

by PCR amplification (Figs. 3B–D and 4B–D) and the intro-

gression of the PcINO1 gene was also confirmed by southern

hybridization (Figs. 3E and 4E). MIPS proteins purified from

the control, OsINO1 and PcINO1 transformed Oryza and

Brassica plants showed the characteristic salt-sensitivity and

-tolerance when assayed in vitro (Figs. 3F and 4F) adducing
further evidence of functional introgression of the correspond-

ing gene(s).

Increase in NaCl concentration causes pronounced growth

inhibition and chlorophyll loss in control and OsINO1 trans-

formed plants whilst PcINO1 transformed plants showed con-

tinued, albeit less vigorous, growth upto 200 mM NaCl at least

for 21 days (Fig. 3A) as also evident in the analysis of the fresh

weight of shoot (Fig. 3G) and root (Fig. 3H). Although no

plants could survive a stress of 300 mM NaCl for 21 days, only

the PcINO1 transformed plants could recover to normal

growth after 10 days of 300 mM NaCl stress when put back

to a salt-free medium (data not shown). In case of Brassica



Fig. 3. (A) (1–6) Growth pattern of untransformed control (1), OsINO 1 transformed line R20 (2), and PcINO 1 transformed line P3 (3) grown in
hormone free Murashige and Skoog medium with increasing NaCl concentration (0, 50, 100, 200, 250 and 300 mM NaCl) for 21 days. Enlarged view
of untransformed control , OsINO1 transformed and PcINO1 transformed plants grown in 200 and 250 mM NaCl are shown in 4–6, respectively.
(B)–(D) Representative PCR analysis of untransformed control (lane 1), OsINO1 (lane 2, line R5) and PcINO1-transformed (lane 3, line P3) Oryza
plants with OsINO1 gene specific primers (B); with 430 bp PcINO1 specific primers (C) and with hpt specific primers (D). m represents DNA marker.
(E) Southern blot hybridization of OsINO1 and PcINO1 transgenic lines with the genomic DNA digested with EcoRI using PcINO1 specific 430 bp
region as the probe. Lane 1: positive control, lane 2: OsINO1 transformed plant (line R5) and lanes 3–8: six PcINO1 transformed lines (P3, P8,
P9,P10,P12 and P20). (F) Activity of MIPS protein purified from untransformed control (m), OsINO 1 (d) (R9, R19 and R20 lines) and PcINO 1 (j)
(P3, P20 and P22 lines) transformed Pusa Basmati 1 in increasing NaCl concentration. The error bars show average deviation of the MIPS specific
activity values from different lines. (G and H) Fresh weight of shoot (gm) (G) and fresh weight of root (gm) (H) of untransformed control (grey),
OsINO 1 (8 T0 lines – R5, R6, R7, R9 R12, R16, R19 and R20) (white) and PcINO1 (7 T0 lines – P3, P8, P9, P10, P12, P20 and P22) (black)
transformed lines grown in MS medium in presence of 0, 50, 100, 200, 250 and 300 mM NaCl for 21 days. The average values of different independent
lines are plotted. The error bars represent average deviation of values of independent control and transformed lines. (I) Photosynthetic efficiency or
vitality index of untransformed control (grey), OsINO 1 (white) and PcINO1 (black) transformed plants grown in presence of increasing NaCl
concentration for 21 days measured by JIP test formulae from chlorophyll ‘a’ fluorescence. Average photosynthetic efficiency values of individual
transgenic plants (7 T0 PcINO1 transformed lines P3, P8, P9, P10, P12, P20 and P22 and 8 T0 OsINO1 transformed lines R5, R6, R7, R9, R12, R16,
R19 and R20) from each different transgenic lines were plotted. The error bars show the average deviation of photosynthetic efficiencies. (J) Shoot
myo-inositol content in lmole/gm fresh weight of untransformed control (grey), OsINO1 (white, lines R5, R6, R7, R9, R12, R16) and PcINO1
(black, lines P3, P8, P9, P10, P12, P20) transformed Oryza grown in increasing NaCl concentration assayed by GLC. The error bars represent
average deviation of values of independent control and transformed lines.
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also, the salt induced chlorophyll loss and decreased root

growth is clearly visible in control and OsINO1 transformed

plants at 200 mM (the effect being more pronounced at

300 mM NaCl). On the contrary, PcINO1 transformed plants

showed much better growth under similar condition (Fig. 4A).

Such growth pattern is also illustrated by the shoot (Fig. 4G)
Fig. 4. A. Growth of untransformed control (uppermost panel), OsINO1 tr
panel , line Pb4) B. juncea in different NaCl concentrations (mM). (B)–(D) Re
1), OsINO1 (lane 2, line Rb2) and PcINO1 transformed (lane 3, line Pb4) B. ju
PcINO1 specific primers (D). m1 represents 500 bp ladder and m2 represents
with the genomic DNA digested with EcoRI; lane 1: positive control , l
transformed lines (Pb2,Pb4, Pb9 ,Pb11, and Pb19) using PcINO1 specific 430
enzyme activity of cytosolic MIPS isolated from control (m), OsINO 1 (d) a
three different independent transgenic lines (Pb2,Pb4, Pb11, Rb2, Rb15 and
weight of shoot (G) and fresh weight of root (H) of untransformed control (G
,white bar) and PcINO1(6 T0 lines- Pb2,Pb4, Pb9, Pb11,Pb19, and Pb21, black
days. The error bars represent average deviation of values of independent con
measured in terms of performance index [PI(abs)] of Control (grey bar) and
Rb15, Rb19, and Rb25) and PcINO1 (black bar, Pb2,Pb4, Pb9, Pb11,Pb
photosynthetic efficiencies. (J) Shoot myo-inositol content expressed as lmo
bar, lines Rb2, Rb6, Rb12, Rb15, Rb19 and Rb25) and PcINO1 (black bar
different NaCl concentrations, analysed through GLC. The error bars repre
and root fresh weight (Fig. 4H) in different concentrations of

NaCl. The PcINO1 transformed plants also recover to a nor-

mal growth from 300 mM NaCl stress for 10 days in contrast

to the other two types (data not shown). At 400 mM NaCl,

PcINO1 transformed plants although remained greener than

the other two, showed stunted growth and in due course, died.
ansformed (middle panel, line Rb2), and PcINO1 transformed (lower
presentative figure of PCR analysis of the untransformed control (lane
ncea: with OsINO1 primers (B), with hptII specific primers (C) and with
100 bp ladder. (E) Southern blot hybridisation of the transgenic lines

ane 2: OsINO1 transformed line (Rb2) and lanes 3–7: five PcINO1
bp region as the probe. (F) Effect of increasing NaCl concentration on

nd PINO 1 (j) transformed B. juncea. The figure shows the average of
Rb19) and the bars show deviation from the mean. (G and H) Fresh
rey bar), OsINO 1 (6 T0 lines-Rb2, Rb6, Rb12, Rb15, Rb19 and Rb25
bar) transformed B. juncea in different concentrations of NaCl after 10

trol and transformed lines. (I) Average photosynthetic efficiency values
6 individual transgenic plants of OsINO1 (white bar, Rb2, Rb6, Rb12,
19 and Pb21) plants. The error bars show the average deviation of
le/g of fresh weight of control (grey bar), OsINO1 transformed (white
, lines Pb2, Pb4, Pb9, Pb11, Pb19 and Pb21) transformed B. juncea in
sent the mean deviation.
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These observations validate the fact that the PcINO1 trans-

formed crop plants do show a better survival under salinity

stress. Although cytoplasmic NaCl concentrations higher than

100 mM are unlikely to occur, the salt-tolerance property of

the Pc-MIPS may be of relevance under conditions of higher

salt accumulation.

It is known that photosynthesis and the electron transport

system are adversely affected under stress [33,34]. Hence to

assess the role of increased inositol production in PcINO1

transformed plants on amelioration of salt-effects on photo-

synthesis, photosynthetic efficiency of the plants grown in

increasing salt were measured as performance index (PI

abs) at equal absorption scale from ‘chlorophyll a’ fluores-

cence of PS II using JIP test formulae [28]. At 200 and

250 mM NaCl, PcINO1 transformed rice plants show more

than �2–3-fold higher photosynthetic efficiency over the

other two (Fig. 3 I). Brassica plants also show an appreciable

�2–4-fold better photosynthetic performance for PcINO1

transformants at 100, 200 or 300 mM NaCl than the other

two (Fig. 4 I). These results indicate a substantial protection

of photosystems especially PSII in PcINO1 transgenic plants

and the presumptive role of myo-inositol in protecting the

chloroplast functions from oxidative damage resulting in bet-

ter growth performance of PcINO1 transformed plants under

saline conditions.

Analysis of the total myo-inositol content of the transformed

systems and the untransformed control plants under NaCl

growth (Fig. 3J and 4J) point towards a probable correlation

between the photosynthetic efficiency and the cyclitol con-

tent.PcINO1 transformed rice and Brassica plants produced

comparable amount of inositol at non-saline conditions. A sig-

nificant reduction to 40% for control and 65% for OsINO1

plants at 100 mM NaCl and a drastic reduction to 10% for

control and 25% for OsINO1 plants in 200 mM was observed

in rice. Under similar conditions PcINO1 transformed rice

plants produced almost 95% and 80% of inositol as compared

to no salt conditions. In Brassica, however, it was observed

that in lower concentrations of NaCl i.e. 100 mM, the control

plants could maintain upto 66% of the total myo-inositol con-

tent and the OsINO1 transformed plants were competent to

maintain 85% of the inositol pool. In comparison to these,

the PcINO1 transformed plants were observed to have rather

an increased amount of total inositol level in 100 mM NaCl

concentration to 135% in contrast to the same under non-sal-

ine conditions. The correlation between increased level of myo-

inositol and salt tolerance of the PcINO1 transformed plants

makes it evident that like E. coli and S. pombe, the increased

cellular level of inositol due to its unabated synthesis is primar-

ily responsible for the protection of the system against salinity

stress.
4. Conclusion

The experimental evidence presented herein confirm that

the unique salt tolerant MIPS coding gene, PcINO1, confers

salt tolerance to various levels to a prokaryote, an eukaryote

and also to higher plants. The results suggest that unabated

production of inositol by the PcINO1 gene indeed is respon-

sible for survival of the NaCl stressed cells. The present work

demonstrates that PcINO1 can singly perform a function

commonly known to be regulated by a number of genes.
No single gene has so far been shown to confer salt tolerance

with the exception of AtNHX1 [11] and to such diverse bio-

logical systems with the limited exception of glycine betaine

overproduction [5,35] or the mangrove allene oxide cyclase

[36] and a serine-rich protein from Porteresia coarctata [37]

affecting salt tolerance to prokaryotes and eukaryotes. Inosi-

tol or the intermediates of inositol biosynthesis, being innoc-

uous chemicals, are not toxic to the cell either and

overaccumulation is not detrimental to cellular functions.

An evolutionary conserved pathway having the central

metabolite glucose-6-phosphate as substrate for the reaction

[12], metabolic engineering of inositol biosynthesis is unique

among the osmolyte-accumulating pathways, and thus the

present findings point towards the enormous prospect of rais-

ing salt tolerant organisms from diversified taxa by the intro-

gression of the PcINO1 gene.
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