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tus (T1DM) patients with nephropathy (DN+) are insulin-resistant, we aimed to
identify (new) potential molecular sites involved in the alterations of glucose metabolism in these patients.
We examined the expression of glycolytic enzymes in cultured fibroblasts from T1DM(DN+) patients as
compared to those from T1DM patients without nephropathy (DN−) and from controls. Pyruvate kinase (PK)
activity was also determined. Human skin fibroblasts were grown in normal glucose (6 mM). RNAs and
proteins were analyzed, respectively, using cRNA microarray and two-dimensional electrophoresis followed
by identification with mass spectrometry. PK activity was measured using a spectrophotometric assay. As
compared to controls, increases in the gene expression of hexokinase, phosphoglucomutase, phospho-
fructokinase, aldolase and triosephosphate isomerase were found in T1DM(DN+) patients, but not in T1DM
(DN−) patients. In T1DM(DN+) patients, the protein analysis showed an altered expression of three glycolytic
enzymes: triosophosphate isomerase, enolase and PK. In addition, PK activity in fibroblasts from T1DM(DN+)
patients was lower than that in T1DM(DN−) and in controls. In conclusion, this study reports novel
alterations of enzymes involved in glucose metabolism that may be associated with the pathophysiology of
insulin resistance and of renal damage in T1DM(DN+) patients.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Diabetic nephropathy (DN) is a chronic complication of T1DM,
affecting about 30% of all diabetics over their lifetime [1]. DN carries a
heavy burden for both the affected patients and the health system,
and it is a potentially life-threatening condition. Therefore, both the
early detection of DN and of risk factors are necessary for preventive
and therapeutic strategies.

The onset and development of DN are thought to be genetically-
determined [1]. The detection of phenotypic markers associated with
a predisposition to disease could be accomplished by comparing
patients with long standing diabetes (i.e. N10 years from diagnosis)
who have developed DN with diabetic patients who did not develop
DN after a similar disease duration, despite a comparable exposure to
environmental risk factors.

T1DM(DN+) patients are typically more insulin-resistant than
either T1DM(DN−) patients or non-diabetic control subjects [2].
Although the mechanism(s) leading to insulin resistance in these
ca e Sperimentale, Università di
8211749; fax: +39 0498754179.
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subjects is not completely understood, it is generally believed that it is
related to proteinuria and/or the impairment of renal function [3].
Insulin resistance reveals disturbances of intracellular glucose meta-
bolism which can shift the effect of insulin from physiological to
pathological signalling pathways [4,5]. Therefore, knowledge of
intracellular steps of glucose metabolism, that are altered in patients
with chronic complications, can shed a new light on the pathogenesis
of diabetic complications and/or on associated metabolic defects.

Detection of differentially-expressed enzymatic proteins in cells,
tissues, or biological fluids, (derived from patients with and without
established DN and from healthy controls) can highlight specific
markers and/or biochemical steps associated with DN.

Ideally, the cells to be studied would be those isolated from renal
tissues, such as glomerular cells, mesangial or tubular cells, and
podocytes; however, these cells are difficult to collect from living
human subjects. Instead, cultured skin fibroblasts have proven to be a
useful alternative tool for the investigation of a number of putative
pathophysiological mechanisms of disease [6]. Moreover, fibroblasts
are involved in the pathogenesis of renal sclerosis [7], and are
responsive to insulin [8]. Phenotypes found to be associated with DN
in cultured human fibroblasts include increased DNA synthesis,
increased activity of Na+/H+ antiport, greater PKC activity, and lower
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Ca-pump-mediated Ca2+ efflux [5,9]. Each of these factors could
potentiate cell growth. Also, these differences persist after several cell
passages in cultured media with normal glucose concentrations,
suggesting that they are intrinsically connected to a constitutive
genetic predisposition and not to the diabetic milieu itself.

The profiling of thewhole transcriptome of human fibroblasts from
normal controls, as well as T1DM(DN+) and (DN−) patients, can allow
for the identification of gene(s) related to DN. In addition, it is
desirable to complement the mRNA data with data on protein
expression, since transcriptional and translational data do not always
correlate [10,11].

Such a comparative study has yet to be conducted in cells from
T1DM patients with and without established nephropathy.

We have therefore compared the proteomic and transcriptomic
profiles of glycolytic enzymes from long-term T1DM(DN+) and (DN−)
subjects, aiming to detect new markers of the impaired glucose
disposal usually found in T1DM(DN+) patients [2].

2. Materials and methods

2.1. Chemicals and reagents

Methanol, acetic acid, TRIS, glycerol and glycine were from Carlo
Erba (Rodano, MI, Italy). Dithiothreitol (DTT), Pharmalyte pH 3–10 and
4–7 and Immobilised pH gradient (IPG) strips, were purchased from
Amersham Biosciences (Uppsala, Sweden). Acrylamide and ammo-
nium persulfate were from Eurobio (Courtaboeuf Cedex, France). All
other chemicals and enzymes were from Sigma (St. Louis, MO, USA).

2.2. Subjects

Five long-term T1DM(DN+) patients (2 men and 3 women; age:
35.6±3.8 years) with a urinary albumin excretion rate (AER) of
N200 μg/min, five T1DM(DN−) patients (2 men and 3 women; age:
39.4±5 years) (AER: b20 μg/min) and five healthy control
volunteers (2 men and 3 women; age: 37±4.6 years) without a
family history of hypertension or diabetes, were recruited. All
subjects were of Caucasian origin with comparable BMI (22.9±1.2
in controls, 24.1±0.4 in T1DM(DN−), 22.2±1.2 in T1DM(DN+)) mean
bloodpressure (93.3±10 in controls, 95.2±2.7 inT1DM(DN−), 99.1±6.8
inT1DM(DN+)). Disease duration (22.8±3.2 inT1DM(DN−), 21.8±4.5 in
T1DM(DN+)) and HbA1c (9.3±0.8 in T1DM(DN−); 10.5±1.3 in T1DM
(DN+)) were comparable between the two groups of diabetic patients.

Two of the five microalbuminuric patients had some degree of
renal insufficiency (creatinine concentrations of 588 and 860 μmol/L),
however none of the nephropathic patients were in a condition of end
stage renal disease.

All drugs were suspended the day before the study. The aims of the
study were explained in detail, and each subject signed an informed
consent. The protocol was approved by the Ethics Committee of the
Medical Faculty at the University of Padova, Italy, and was performed
according to the Helsinki Declaration (1983 revision).

2.3. Skin fibroblast cultures

Skin biopsies were taken by excision under local anaesthesia from
the anterior surface of the forearm, and thefibroblastswere cultured in
normal glucose (6 mmol/L) as described previously [5]. The growth
medium was changed with quiescent medium (serum-free) 24 h
before the protein extraction. Cells were used between the 7th and the
8th passage.

2.4. Sample preparation

The quiescent mediumwas aspirated and fibroblasts were washed
with PBS. Subsequently, cells were lysed in a buffer containing 8 M
urea, 4% 3-3-cholamidopropyldimethylammonio-1-propanesulflo-
nate (CHAPS), 2% IPG buffer pH 3–10 (or pH 4–7) and a cocktail of
protease inhibitors. The samples were freeze–thawed, sonicated,
concentrated, and desalted by ultrafiltration (Centricon YM-3, Milli-
pore Corporation, Bedford, USA). Protein concentration was deter-
mined by Bradford assay [12].

2.5. Two-color microarray-based gene expression

Total RNA was isolated from fibroblasts using a combination of
Trizol (Invitrogen Discovery Sciences, Madison, USA) and RNeasy
Mini (Qiagen, Milan, Italy) kits. For the microarray assay the RNA
quality must be optimal, and the integrity of RNA was systematically
checked with use of the lab-on-chip technology in an Agilent
Bioanalyzer 2100 with the RNA6000 Nano Assay (Agilent Technol-
ogies, Palo Alto, CA). Furthermore the purity was determined by
spectrophotometric readings at 260/280/230 nm. cRNA was synthe-
sized from 500 ng of total RNA using the Low RNA Input Linear
Amplification Kit and the Two-Color RNA Spike-In (Agilent Tech-
nologies), according to the manufacturer's instructions, as described
previously [13]. RNA from five healthy control volunteers was
collected and used to generate a pool of control RNA. The control
and the sample pools were labelled using Cyanine 3 (cy3) and
Cyanine 5 (cy5) respectively. In order to control for gene specific dye
biases and for dye intensity differences, replicates were included in
the experimental design.

The Labelled/Amplified cRNA was purified using the Qiagen's
RNeasy mini spin columns. The purified cRNA was read at the
spectrophotometer to measure cy3 RNA and cy5 RNA concentrations
(pmol/μL), absorbance ratios (260 nm/280 nm), and cRNA concentra-
tion (ng/μL).

The samples were hybridized on an oligomicroarray chip (Whole
Human GenomeMicroarray Kit, 4×44K, G4112FAgilent Technologies),
which contains about 44,000 60-mer in situ synthesized sequences
that comprise the whole human genome. Hybridization was
performed only if the yield was N750 ng and the specific activity
was N8.0 pmol cy3 or cy5 per μg cRNA, using the Gene Expression
Hybridization Kit (Agilent Technologies). The chip was incubated in a
rotor oven at 65 °C for 17 h.

2.6. Chip scanning and data analysis

The chip was scanned using a dual-laser Microarray Scanner
System (Agilent Technologies). After generating the microarray scan
images, images were extracted using the Feature Extraction 9.1
software (Agilent Technologies) and data from different microarray
experiments were compared using Rosetta Resolver (Rosetta Biosoft-
ware, Seattle, WA) [13].

2.7. Two-dimensional electrophoresis (2-DE)

2-DE was performed as previously described [14]. Briefly, the
extracted proteins were diluted in a rehydration buffer consisting of 8
M urea, 2% CHAPS, 0.5% IPG buffer, 1% DTT to a final volume of 450 μL.
Isoelectric focusing was carried out on 24 cm IPG strips (pH range 3–
10 and 4–7) using the Ettan™ IPGphor Isoelectric focusing Unit
(Amersham) for 38 kVh. Second-dimension SDS-PAGE was performed
in 12% acrylamide gels (26×20 cm) using the Ettan DALT six Large
Vertical Electrophoresis System (Amersham). The protein samples
obtained from each subject (both the patients' and the control group)
were run in duplicate (technical replicates).

The 2-DE gels were stained with 0.1% Coomassie Brilliant Blue
G250, and scanned on a scanner with 16 bit dynamic range and
300 dpi resolution (Epson Expression 1680 Pro, Seiko Corporation,
Japan). Image analysis was done using the Proteomweaver® software
(Bio-Rad, Hercules, CA, USA).



Table 1
Gene expression analysis

Gene
name

Gene description Accession no. IDDM(DN−)
vs N

IDDM(DN+)
vs N

Fold
change

p
value

Fold
change

p
value

HK1 Hexokinase 1, nuclear
gene encoding
mitochondrial protein,
transcript variant 5

NM_033500 1.44 0.000 1.00 1.000

HK1 Hexokinase 1,
nuclear gene encoding
mitochondrial protein,
transcript variant 3

NM_033497 1.00 1.000 1.51 0.000

HK2 Hexokinase 2 NM_000189 1.06 0.556 2.04 0.002
HK3 Hexokinase 3

(white cell), nuclear
gene encoding
mitochondrial protein

NM_002115 1.00 1.000 1.00 1.000

PGM1 Phosphoglucomutase 1 NM_002633 1.42 0.000 2.08 0.000
PGM3 Phosphoglucomutase 3 NM_015599 1.15 0.066 1.45 0.005
GPI Glucose phosphate

isomerase
NM_000175 −1.27 0.025 1.37 0.000

PFKP Phosphofructokinase,
platelet

NM_002627 1.07 0.365 1.75 0.000

PFKM Phosphofructokinase,
muscle

NM_000289 −1.20 0.013 −1.20 0.025

PFKL Phosphofructokinase,
liver, transcript
variant 1

NM_001002021 −1.28 0.014 2.10 0.000

FBP2 Fructose-1,6-
bisphosphatase 2

NM_003837 1.00 1.000 1.00 1.000

FBP1 Fructose-1,6-
bisphosphatase 1

NM_000507 1.00 1.000 1.00 1.000

ALDOA Aldolase A,
fructose-bisphosphate,
transcript variant 1

NM_000034 1.06 0.438 2.61 0.000

ALDOA Aldolase A,
fructose-bisphosphate,
transcript variant 2

NM_184041 −1.58 0.000 1.63 0.002

ALDOC Aldolase C,
fructose-bisphosphate

NM_005165 −1.00 0.989 1.17 0.112

ALDOB Aldolase B,
fructose-bisphosphate

NM_000035 1.00 1.000 1.00 1.000

TPI1 Triosephosphate
isomerase 1

NM_000365 1.12 0.084 2.64 0.000

GAPDH Glyceraldehyde-3-
phosphate
dehydrogenase

NM_002046 1.45 0.011 1.76 0.010

Genes are listed in the same order of the glycolytic pathway. The expression level of
genes is reported as fold change vs controls. Significant results are written in bold.

Table 2
Proteins involved in glycolysis isolated from cell cultures of fibroblasts from normal subject

Spot no. Protein name Gene name Sw

A14 X Alpha-enolase ENO1 P0
A22 X Alpha-enolase ENO1 P0
A88 Alpha-enolase ENO1 P0
13 Alpha-enolase ENO1 P0
27 X Alpha-enolase ENO1 P0
83 Fructose-bisphosphate aldolase A ALDOA P0
4 Glyceraldehyde-3-Phosphate Dehydrogenase GAPDH Q5
A89 Phosphoglycerate kinase 1 PGK1 P0
A98 X Pyruvate kinase, isozymes M1/M2 PKM2 P1
26 X Pyruvate kinase, isozymes M1/M2 PKM2 P1
35 X Pyruvate kinase, isozymes M1/M2 PKM2 P1
60 Pyruvate kinase, isozymes M1/M2 PKM2 P1
61 Pyruvate kinase, isozymes M1/M2 PKM2 P1
66 Pyruvate kinase, isozymes M1/M2 PKM2 P1
A82 Pyruvate kinase, isozymes M1/M2 PKM2 P1
36 X Triosephosphate Isomerase TPI1 P6
57 Triosephosphate Isomerase TPI1 P6

The gene names and the accession numbers are referred to the human session of the SwissPro
proteins significantly altered among groups. Mascot score, p value, % of sequence coverage
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2.8. MS analysis

Spots of interest were manually excised and digestionwith trypsin
was performed in gel. Gel plugs were washed with acetonitrile for
10 min, dried under vacuum and reswollen using 10 μL of sequencing
grade modified trypsin (Promega, Madison, WI, USA) (12.5 ng/μL in
100mMammoniumbicarbonate). Digestionwas carried out overnight
at 37 °C. After digestion, the peptides were extracted by 3 changes of
50% acetonitrile/0.1% formic acid (20 min between changes), dried
under vacuum, resuspended with 10 μL of 0.1% formic acid and
desalted using C18 ZipTip (Millipore, Billerica, MA). The digested
proteins were analyzed by MALDI-TOF (Time of Flight) MS using a
M@ldi-HT (Waters, Manchester, UK). Typically, 200 shots were
collected from each spot in data-dependent mode. The analyses were
conducted using α-cyano-4-hydroxycinnamic acid (2.5 mg/mL in
acetonitrile/0.1% formic acid 50/50) asmatrix,mixing equal volumes of
sample and matrix and spotting 1 μL of the mixture on a standard 96-
well stainless steel MALDI target plate. The spectra were analyzed
usingMascot engine search (Matrix Science, London, UK) and PIUMS®
(www.hh.se/staff/bioinf). The search was performed against the
human session of the IPI database (http://www.ebi.ac.uk/IPI/, version
v3.22). Enzyme specificity was set to trypsinwith one missed cleavage
using a mass tolerance window of 50 ppm, carbamidomethylcysteine
as fixed modification and oxidation of methionine as variable
modification. The proteins were considered correctly identified both
when the software yielded the same identification with a p value
b0.05, and when the coverage of the sequence was at least 30%.

2.9. Pyruvate kinase activity

At confluence, the fibroblast cell cultures were shifted to quiescent
medium for 24 h, then the medium was removed and cell monolayer
washed with PBS. Cells were collected using 250 μL of 100 mM
triethanolamine, 0.5mMEDTA/Na+ buffer (pH7.6), supplementedwith
protease inhibitors and lysed by sonication. After centrifugation at
14,000 ×g for 15 min (4 °C), the surpernatant was used for protein
determination [12] and enzyme assay. Pyruvate kinase (PK, EC.2.7.1.40)
activity was estimated by a modification of the spectrometric method
developed byGutmannand Bernt [15]. PK activitywasmeasured as the
change in absorption of NADH at 340 nm (25 °C) due to the coupled
conversion of pyruvate to lactate catalyzed by lactate dehydrogenase
(EC.1.1.1.27; LDH). The reaction solution contained 97.5 mM triethano-
lamine pH 7.5, 13 mM MgSO4, 74 mM KCl, 185 μM NADH, 1 mM PEP,
2.5 U/mL LDH, and 3 mM ADP. The enzymatic assays were repeated in
s and diabetic patients and identified by MS

issProt Accession no. Mascot Score p value % Coverage Matched
peptides

6733 110 6.8e−7 33 11
6733 131 5.4e−9 39 13
6733 136 1.7e−9 65 16
6733 147 1.4e−10 39 13
6733 122 4.3e−8 39 14
4075 297 1.4e−25 75 25
D0F4 115 2.1e−7 43 9
0558 116 1.7e−7 43 14
4618-2 135 2.1e−9 45 21
4618-2 121 5.4e−8 30 12
4618-2 126 1.7e−8 31 15
4618-2 247 1.4e−20 42 23
4618-2 108 1.1e−6 30 12
4618-2 180 6.8e−14 34 17
4618-2 99 8.7e−6 30 14
0174 180 6.8e−14 75 14
0174 177 1.4e−13 72 17

t/TrEMBL database (http://www.expasy.org/). Proteins labelled with an X correspond to
and number of matched peptides are also reported.

mailto:M@ldi-HT
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triplicate for each subject, and the mean was used in the statistical
analysis.

2.10. Statistical analysis

Cluster analysis was performed to determine similarities (or
differences) among the arrays and/or sequences. A cut-off value of 2-
fold was used to identify both over- and under-expressed genes.
Differentially abundant protein spots and PK activity among groups
were analysed using one-way ANOVA and the post hoc Bonferroni
testing (Statistica, StatSoft Italia srl). A p value less than 0.05 was
considered statistically significant. Results were expressed as mean
and standard error.

3. Results

3.1. Microarray analysis

The transcriptomic analysis of glycolytic enzymes did not showany
significant difference betweenT1DM(DN−) group and control subjects.
In T1DM(DN+) patients, compared to control subjects, we found an
over-expression of hexokinase 2 (HK2), phosphoglucomutase 1
(PGM1), phosphofructokinase (PFKL, transcript variant 1), aldolase A
(ALDOA, transcript variant 1) and triosephosphate isomerase-1 (TPI-1)
(Table 1).

3.2. 2-DE analysis

We identified a total of 17 spots belonging to proteins involved in
glycolysis (Table 2). This group accounted for 12.5% of all the proteins
isolated and characterized by our group in cultured skin fibroblasts
from both T1DM patients and normal subjects [15]. Because of the
alternative splicing of mRNA transcripts and/or post-translational
modifications, some of these spots likely represent different isoforms
of the same protein. In all, six unique proteins were identified
(according to Human Protein Reference Database, www.hpdr.org)
(Table 2). As shown in Fig. 1, significant differences were detected
among the three groups of subjects in the abundance of 7 spots,
corresponding to 3 unique proteins (alpha-enolase, triosephosphate I
isomerase, and pyruvate kinase).

3.3. Pyruvate kinase activity

For the three glycolytic enzyme–proteins, whose expressions
were altered in the diabetic groups, an enzymatic activity assay
could be performed only for PK, because the reagents to measure
either alpha-enolase or TPI activity were not available. A significant
reduction (by≈40%, pb0.01) in PK activity was detected in fibroblasts
from T1DM(DN+) patients relative to the fibroblasts from the two
other groups (Fig. 2).

4. Discussion

Type 1 diabetic patients with DN exhibit peripheral insulin
resistance to glucose utilization [3], and the pathogenesis of DN has
been linked to an altered intracellular glucose metabolism [16].
Nevertheless, the site(s) and the mechanism(s) of insulin resistance
in T1DM(DN+) patients is poorly understood. In this study, we
examined the expression of glycolytic enzymes both at the
transcriptome and at the proteome level in cultured skin fibroblasts
from T1DM(DN+) and (DN−) patients, as well as in matched control
Fig. 1. Quantitative analysis of protein changes in skin fibroblasts from control subjects
and diabetic patients. (A) Volume density analysis graphs: the data (means±SEM) are
expressed as fold changes vs. controls (⁎pb0.05; ⁎⁎pb0.01); B) 2-DE gel images of
selected spots.

http://www.hpdr.org


Fig. 2. Pyruvate kinase activity in cultured skin fibroblasts from T1DM patients with and
without DN and normal control subjects. Data (means±SEM) are expressed as fold
changes vs. controls (⁎⁎pb0.01).
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subjects. Additionally, we measured cell pyruvate kinase activity
under the same conditions.

Based on the transcriptome data in fibroblasts from T1DM(DN+)
patients, we found an over-expression of several enzymes involved in
the glycolytic cascade (HK2, PGM1, PFKL, ALDOA, and TPI-1) (Table 1).
At theproteomic level,weobserved alterations in the expression of TPI,
PK and alpha-enolase (Fig. 1). A reduction in PK activity was also
observed in fibroblasts from diabetic patients with DN (Fig. 2). While
these datamay indicate novel sites for insulin resistance inT1DM(DN+)
patients, their interpretation is complex as there was little correlation
between the transcriptomic and the proteomic profiles. Thus, it
appears that transcriptional control has little effect on the quantitative
changes of these proteins in the studied groups, and that the
expression of glycolytic proteins is instead regulated at a post-
transcriptional level.

Classic sites of insulin resistance in the glycolytic cascade have
been identified at the level of glucose transport, phosphorylation and
glycogen synthesis [17,18], glyceraldehyde-3-phosphate dehydrogen-
ase (GA3PDH) [19], the pentose cycle [19], the hexosamine pathway
[20], the pyruvate dehydrogenase complex [21], and glucose oxidation
[22]. The final reaction of glycolysis is catalyzed by the tightly
regulated enzyme pyruvate kinase, which converts phosphoenolpyr-
uvate (PEP) to pyruvate. In this highly exergonic reaction, the high-
energy phosphate of PEP is conserved as ATP. Here we discuss the
glycolytic sites which were altered in the diabetic patients with
nephropathy.

4.1. Pyruvate kinase (EC 2.7.1.40)

From the literature, there is conflicting data on PK in diabetes. PK
activity and mRNA expression were found to be decreased both in
adipose tissue [23] and in cultured pancreatic islets [24] of T1DM
patients, as well as in animal models of insulin-deficient diabetes
[25]. However, PK activities that were only slightly increased [26] or
virtually unchanged [27] were also reported. These observations are
particularly important since it is well established that insulin activates
PK [28].

In fibroblasts from diabetic patients, we observed increases in
the expression of the #A98 isoform (in both diabetic groups) and of
the #26 isoform (only in the T1DM(DN−) group) of PK compared to
controls, whereas the #35 isoform expression was specifically
decreased in fibroblasts from T1DM(DN+) patients. An overall
decrease in PK activity in fibroblasts from T1DM(DN+) patients
was observed. Since the assay of enzymatic activity cannot
distinguish between the activities of each individual isoform, we
cannot determine whether the decreased expression of the #35
isoform, an altered structure of the other two isoforms, or both
factors working concomitantly, were responsible for the overall
decrease of PK activity. Nevertheless, our data suggest a shift in the
enzyme isoforms, a hypothesis supported also by the invariant PK
mRNA expression among groups (Table 1). Further studies of PK
structure, with specific regard to possible post-translational mod-
ifications, will hopefully clarify these points. Insulin stimulates the
expression of the M-PK gene in 3T3-L1 adipocytes, through both PI3
and MAP kinases [29]. In insulin-resistant conditions, insulin action
on the PI3K intracellular signalling pathway is impaired [30],
whereas signalling through the extracellular signal-regulated kinase
MAPK pathway is unaffected [31]. Thus, from our data, it could be
argued that PK activity is predominantly activated through the PI3K
pathway, and that a reduction in PK activity in T1DM(DN+) patients
could be responsible for insulin resistance at a distal site along the
glycolytic cascade.

4.2. Triosephosphate I isomerase (EC 5.3.1.1)

We did not find any correlation between the RNA expression
and the protein level of TPI among groups. In fact, as reported in
Table 1 and Fig. 1, the TPI gene expression in fibroblasts from T1DM
(DN+) patients was increased, while the protein abundance was
similar to that of controls. On the contrary, in fibroblasts from
T1DM(DN−) patients, TPI gene expression was similar to that of
controls, while the protein abundance (spot #36) was increased
with respect to that of the other groups. In the T1DM(DN+) subjects
there was an increase in TPI gene expression which did not
correlate with an increase in the protein level, probably due to
post-transcriptional processing. These data further indicate that
transcriptional control might have little effect on the abundance
changes of this protein.

TPI catalyses the interconversion of di-hydroxyacetone phos-
phate to D-glyceraldehyde 3-phosphate (GAP). GAP is then further
oxidized to 1,3 diphosphoglycerate by GAP-dehydrogenase
(GAPDH). Du et al. [32] reported that GAPDH activity is reduced
in T1DM, both in humans and in animal models, as well as in cells
exposed to high glucose. Decreased GAPDH activity leads to
increased glycolytic intermediates upstream of this enzymatic
step [33], which subsequently leads to activation of two other
pathways which are altered in diabetes (i.e. the advanced
glycosylation end-product pathway and the PKC pathway). Under
normal conditions, even if the concentration of GAP is lower than
that of its isomer di-hydroxyacetone phosphate (b10% vs. N90%
respectively) [34], a decrease in GAP oxidation could increase its
concentration, and this may allosterically activate TPI and enhance
GAP disposal through an alternative pathway. Our data indirectly
suggest that in DN, thereis a lesser activation of the TPI and thus a
possible decrease in the interconversion of di-hydroxyacetone
phosphate to GAP.

4.3. Alpha-enolase (EC 4.2.1.11)

A decreased expression of two isoforms of alpha-enolase (#A22,
#A14) was detected in the diabetic subjects with renal complica-
tions (Fig. 2). Alpha-enolase (an enolase isoenzyme), is a key protein
that catalyzes the conversion of 2-phosphoglycerate to phosphoe-
nolpyruvate and plays a crucial role in the regulation of glycolysis,
as well as in other processes such as growth control, hypoxia
tolerance, and allergic responses [35]. In aged monkeys, the
expression of alpha-enolase in the heart and of other proteins
involved in energy metabolism was decreased, suggesting an age-
related mechanism within this tissue [36]. Furthermore, in systemic
autoimmune diseases, autoantibodies specific for alpha-enolase are
detected more frequently in patients with active renal involvement
[37,38]. These antibodies recognize the membrane-associated form
and/or interfere with the receptor function of this enzyme, thus
inhibiting the binding of plasminogen activator (PA). To our
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knowledge, there has been no report on the prevalence of alpha-
enolase autoantibodies in type 1 diabetes, which is also considered
an autoimmune disease. It could be interesting to study this
important issue in more depth. One of the critical responses to
vascular injury is the activation of the PA system, including both
tissue-type and urinary-type plasminogen activator, which converts
PA to plasmin. Plasmin, in turn, degrades fibrin and several
extracellular matrix proteins. Fibrin deposition is an important
factor in the development of vascular disorders such as athero-
sclerosis, and the accumulation of extracellular matrix proteins is a
hallmark of renal fibrosis and of the resultant albuminuria. PA
inhibition, possibly due to an alteration of enolase binding (in turn
due to either altered expression or post-translational modification of
this enzyme) could lead to an accumulation of extracellular matrix
proteins, as is commonly observed in DN.

The expression of the #27 alpha-enolase isoform was increased in
the diabetic groups compared to normal subjects (Fig. 2). Conversely,
the abundance of the two isoforms #A22 and #A14 was decreased
only in fibroblasts from T1DM(DN+) patients.

The likelihood of post-translational modifications of this enzyme
is supported by the finding that enolase gene expression is not
significantly different among groups (Table 1). Our data are the first
to show an association between alpha-enolase isoform alterations
and DN.

Since the fibroblasts were studied under euglycemic conditions
after standard repeated passages, any effect of the differential ambient
glucose concentrations and of other conditioning factors (like drugs,
inflammatory conditions, etc) between the diabetic and control
subjects has been excluded.

However, the effects of previous long-term hyperglycemia, result-
ing in persistent changes in PK activity in the diabetic subjects, cannot
strictly be ruled out. Since the long-term metabolic control in the two
groups of T1DM patients was similar, as indicated by the HbA1c level
(see Materials and methods), the differences observed between the
two diabetic groups cannot be attributed to differences in the previous
glucose levels.

In conclusion, we have reported altered expression and activity of
some glycolytic enzymes in cultured skin fibroblasts from T1DM(DN+)
patients. These novel alterations could be responsible for the insulin
resistance found in these conditions and be associated with the
pathogenesis of diabetic nephropathy.
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