Decidability for Left-Linear Growing Term Rewriting Systems

Takashi Nagaya
Kanrikogaku Kenkyusho, Ltd., Nishiazabu Minato-ku 3-3-1, Tokyo 106-0031, Japan
E-mail: nagaya@kthree.co.jp

and

Yoshihito Toyama
Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
E-mail: toyama@nue.riece.tohoku.ac.jp

Published online August 20, 2002

A term rewriting system is called growing if each variable occurring on both the left-hand side and the right-hand side of a rewrite rule occurs at depth zero or one in the left-hand side. Jacquemard showed that the reachability and the sequentiality of linear (i.e., left-right-linear) growing term rewriting systems are decidable. In this paper we show that Jacquemard’s result can be extended to left-linear growing rewriting systems that may have right-nonlinear rewrite rules. This implies that the reachability and the joinability of some class of right-linear term rewriting systems are decidable, which improves the results for right-ground term rewriting systems by Oyamaguchi. Our result extends the class of left-linear term rewriting systems having a decidable call-by-need normalizing strategy. Moreover, we prove that the termination property is decidable for almost orthogonal growing term rewriting systems.

Key Words: growing term rewriting system; reachability; sequentiality; joinability.

1. INTRODUCTION

The original idea of growing term rewriting systems (TRSs) was introduced by Jacquemard [15] for giving a better sufficient condition for sequential rewriting systems. A term rewriting system is called growing if each variable occurring on both the left-hand side and the right-hand side of a rewrite rule occurs at depth zero or one in the left-hand side. Jacquemard [15] proved the preservation of recognizability by linear growing term rewriting systems. By using this result, he showed that the reachability and the sequentiality of linear (i.e., left-right-linear) growing term rewriting systems are decidable. Jacquemard’s result is a generalization of the decidable properties for linear shallow rewriting systems by Comon [2], in which each variable occurring on both the left-hand side and the right-hand side of a rewrite rule occurs at depth zero or one (this definition differs from the original one in Comon [2] but is essentially the same [7, 15]).

Similar decidable properties for monadic rewriting systems have been shown in [4, 10, 11, 16, 22]. Salomaa [22] showed that right-linear monadic rewriting systems preserve recognizability. A term rewriting system is called monadic if each left-hand side is a term of height at least one and each right-hand side is a term of height at most one. Coquidé et al. [4] proved the preservation of recognizability by linear semimonadic rewriting systems, in which each left-hand side is a term of height at least one and each variable in the right-hand side occurs at depth zero or one. Since a term rewriting system R is linear growing if the inverse system R^{-1} is linear semimonadic, the preservation of recognizability by Jacquemard [15] is a slight generalization of that by Coquidé et al. [4].

In this paper we extend Jacquemard’s result to left-linear growing term rewriting systems that may have right-nonlinear rewrite rules. The key idea in our proof is to construct deterministic tree automata

1A preliminary version of this paper was presented at the 10th International Conference on Rewriting Techniques and Applications, Trento, July 1999. This work was partially supported by Grants 10139214 and 10680346 from Ministry of Education, Science and Culture of Japan.
instead of the nondeterministic ones in Jacquemard [15]. The deterministic behavior of tree automata allows us to remove the right-linear restriction from growing term rewriting systems. This implies that the reachability and the joinability of a term rewriting system R are decidable if the inverse system R^{-1} is left-linear growing. This result extends the result by Oyamaguchi [20] that the reachability and the joinability of right-ground term rewriting systems are decidable.

Our result gives a better approximation of term rewriting systems, which extends the class of orthogonal term rewriting systems having a decidable call-by-need strategy [2, 7, 15]. Moreover, we prove that termination for almost orthogonal growing term rewriting systems is decidable. Our proof uses Gramlich’s theorem [12] that a weakly innermost normalizing TRS R is terminating if every critical pair of R is a trivial overlay. Thus the decidability of termination is proven by showing that the set of all ground terms having normal forms by innermost reduction is recognized by a tree automaton for left-linear growing term rewriting systems.

This paper is organized as follows. Section 2 gives the definitions of term rewriting systems and tree automata. In Section 3, we show the recognizability concerning left-linear growing term rewriting systems. Using this result, Section 4 shows that the reachability and the joinability of right-linear term rewriting systems are decidable if their inverses are growing. In Section 5, we extend the class of orthogonal term rewriting systems having a decidable call-by-need strategy. Section 6 proves that termination for almost orthogonal growing term rewriting systems is decidable.

2. PRELIMINARIES

2.1. Term Rewriting Systems

We mainly follow the notation of [1, 6, 17]. Let F be a finite set of function symbols denoted by $f, g, h, \ldots,$ and let V be a countably infinite set of variables denoted by $x, y, z, \ldots,$ where $F \cap V = \emptyset$. The set of all terms built from F and V is denoted by $T(F, V)$. The set of variables occurring in a term t is denoted by $V(t)$. Terms not containing variables are called ground terms. The set of all ground terms built from F is denoted by $T(F)$. A term t is linear if every variable in t occurs only once in t. Identity of terms s and t is denoted by $s \equiv t$.

If p is a position in t then $t|_p$ denotes the subterm of t at p. A subterm s of t is proper if $s \not\equiv t$. We write $s \subset t$ to indicate that s is a proper subterm of t. $t[s]_p$ denotes the term obtained from t by replacing the subterm $t|_p$ with s. If t has an occurrence of some variable then we write $x \in t$.

A substitution σ is a mapping from V into $T(F, V)$. Substitutions are extended into homomorphisms from $T(F, V)$ into $T(F, V)$. We write σt instead of $\sigma(t)$. A term s is an instance of a term t if there exists a substitution σ such that $s \equiv \sigma t$.

A TRS R is a finite set of rewrite rules. A rewrite rule is a pair (l, r) of terms. (We do not assume the variable restriction that $l \not\in V$ and any variable in r also occurs in l.) We write $l \rightarrow r$ for (l, r). An instance of the left-hand side of a rewrite rule is a redex. The rewrite rules of a TRS R define a reduction relation \rightarrow_R on $T(F, V)$ as follows: $t \rightarrow_R s$ iff there exist a rewrite rule $l \rightarrow r \in R$, a position p in t, and a substitution σ such that $t|_p \equiv l\sigma$ and $s \equiv t[r\sigma]|_p$.

The transitive-reflexive closure of \rightarrow_R is denoted by \rightarrow^*_R. The inverse relation of \rightarrow_R is denoted by \leftarrow_R. A normal form is a term without redexes. We say that t has a normal form if $t \rightarrow_R^* s$ for some normal form s. The set of all normal forms is denoted by NF_R. A TRS R is terminating (strongly normalizing) if there exists no infinite reduction sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$. A TRS R is weakly normalizing if every term has a normal form.

A rewrite rule $l \rightarrow r$ is ground (linear) if l and r are ground (linear). A rewrite rule $l \rightarrow r$ is left-linear (right-linear) if l (r) is linear. A TRS R is ground (linear, left-linear, right-linear) if every rewrite rule in R is ground (linear, left-linear, right-linear).

For a TRS R, we define the inverse of R by $R^{-1} = \{ r \rightarrow l \mid l \rightarrow r \in R \}$. R^{-1} is also a TRS since we assume no restrictions on variables of rewrite rules.

Let $l \rightarrow r$ and $l′ \rightarrow r′$ be two rules of R. We assume that they are renamed to have no common variables. Suppose that p is a position of l such that $l|_p \not\in V$ and p are unifiable with a most general unifier σ. Then the pair $\langle[l[r'], p\sigma, r\sigma] \rangle$ is called a critical pair of R. If $l \rightarrow r$ and $l′ \rightarrow r′$ are the same rule, then we do not consider the case $p = \varepsilon$. A critical pair $\langle[l[r'], p\sigma, r\sigma] \rangle$ with $p = \varepsilon$ is an overlay.
A critical pair \((t, s)\) is trivial if \(t \equiv s\). An orthogonal TRS is a left-liner TRS without critical pairs and whose rewrite rules satisfy the additional restriction that (i) the left-hand side is not a variable and (ii) variables occurring in the right-hand side occur also in the left-hand side. A left-linear TRS is almost orthogonal if all its critical pairs are trivial overlays and it satisfies the additional restriction on variables.

Note. In this paper, we regard pairs of terms as rewrite rules without the usual restrictions on variables, except for (almost) orthogonal TRSs. Hence the left-hand side of a rewrite rule may be a variable and the right-hand side of a rewrite rule may have a variable not occurring in the left-hand side. This is convenient for introducing the inverse of and approximations of TRSs later. Moreover, we consider rewriting on ground terms only. Replacing every variable in terms with a fresh constant, rewriting on nonground terms can be simulated by that on ground terms. Thus this restriction entails no loss of generality and would simplify matters.

2.2. \(\Omega\)-Terms

Let \(\mathcal{R}\) be a TRS. We add a new constant \(\Omega\) to \(\mathcal{F}\). Elements of \(T(\mathcal{F} \cup \{\Omega\}, \mathcal{V})\) are called \(\Omega\)-terms. We say that an \(\Omega\)-term \(t\) is a normal form if \(t\) contains neither redexes nor \(\Omega\)'s. Thus the set of all normal forms is denoted by \(\text{NF}_{\mathcal{R}} \subseteq T(\mathcal{F}, \mathcal{V})\), which coincides with the set of normal forms of \(\mathcal{R}\) on \(T(\mathcal{F}, \mathcal{V})\). \(t_{\Omega}\) denotes the \(\Omega\)-term obtained from \(t\) by replacing all variables in \(t\) with \(\Omega\). The prefix ordering \(\leq\) on \(T(\mathcal{F} \cup \{\Omega\}, \mathcal{V})\) is defined as follows:

- (i) \(\Omega \leq t\) for all \(t \in T(\mathcal{F} \cup \{\Omega\}, \mathcal{V})\),
- (ii) \(f(s_1, \ldots, s_n) \leq f(t_1, \ldots, t_n)\) if \(s_i \leq t_i\) for any \(1 \leq i \leq n\),
- (iii) \(x \leq x\) for all \(x \in \mathcal{V}\).

Two \(\Omega\)-terms \(t\) and \(s\) are compatible, written \(t \uparrow s\), if there exists an \(\Omega\)-term \(r\) such that \(t \leq r\) and \(s \leq r\). In this case the least upper bound of \(t\) and \(s\) is denoted by \(t \sqcup s\).

2.3. Tree Automata

A tree automaton is a tuple \(\mathcal{A} = (\mathcal{F}, \mathcal{Q}, \mathcal{Q}^f, \Delta)\) where \(\mathcal{F}\) is a finite set of function symbols, \(\mathcal{Q}\) is a finite set of states, \(\mathcal{Q}^f \subseteq \mathcal{Q}\) is a set of final states, and \(\Delta\) is a set of ground rewrite rules of the form \(f(q_1, \ldots, q_n) \rightarrow q\) or \(q \rightarrow q'\) where \(f \in \mathcal{F}\), \(q_1, \ldots, q_n, q, q' \in \mathcal{Q}\). The latter rules are called \(\epsilon\)-rules. We use \(\rightarrow_A\) for the reduction relation \(\rightarrow\) on \(T(\mathcal{F} \cup \mathcal{Q})\). A term \(t \in T(\mathcal{F})\) is accepted by \(\mathcal{A}\) if \(t \rightarrow_A q\) for some \(q \in \mathcal{Q}^f\). The tree language \(L(\mathcal{A})\) recognized by \(\mathcal{A}\) is the set of all terms accepted by \(\mathcal{A}\). A set \(L\) is recognizable if there exists a tree automaton \(\mathcal{A}\) such that \(L = L(\mathcal{A})\). A tree automaton \(\mathcal{A}\) is deterministic if there are neither \(\epsilon\)-rules nor different rules with the same left-hand side. A tree automaton \(\mathcal{A}\) is complete if there is at least one rule \(f(q_1, \ldots, q_n) \rightarrow q\) in \(\Delta\) for all \(f \in \mathcal{F}\) and \(q_1, \ldots, q_n \in \mathcal{Q}\).

The following properties of tree automata are well known [3, 8].

Lemma 2.1. The class of recognizable tree languages is closed under union, intersection, and complementation.

Lemma 2.2. The emptiness problem for tree automata is decidable.

3. LEFT-LINEAR GROWING TRSS

The definition of growing was given by Jacquemard in [15]. He showed that if \(\mathcal{R}\) is a linear growing TRS then the set \(\{t \in T(\mathcal{F}) \mid \exists s \in L, t \rightarrow_\mathcal{R} s\}\) is recognizable for every recognizable tree language \(L\). In this section we improve this result by replacing linear growing (i.e., left-right-linear) with left-linear growing.

In the following definition, unlike Jacquemard, we do not assume the linearity for growing TRSs.

Definition 3.1. A rewrite rule \(l \rightarrow r\) is growing if all variables in \(V(l) \cap V(r)\) occur at depth 0 or 1 in \(l\). A TRS \(\mathcal{R}\) is growing if every rewrite rule in \(\mathcal{R}\) is growing.
Then \(R \) method cannot guarantee lim behavior of left-linear growing TRSs. A naive construction method is to transform an induced nonde-

EXAMPLE 3.1. Let

\[
R = \begin{cases} f(f(x, y), z) \rightarrow f(z, g(z)) \\ g(x) \rightarrow f(g(y), z). \end{cases}
\]

Then \(R \) is growing. But the following \(R' \) is not growing.

\[
R' = \begin{cases} f(f(x, y), z) \rightarrow f(x, g(z)) \\ g(x) \rightarrow f(g(y), z). \end{cases}
\]

Let \(R \) be a binary relation on a set \(A \) and let \(B \subseteq A \). Then we define \(R(B) \) as \(\{ y \in A \mid \exists x \in B \ (x, y) \in R \} \). Now, we are ready to prove our main result that if \(R \) is a left-linear growing TRS then the set \((\text{left}_R(L)) = \{ t \in T(F) \mid \exists s \in L \ t \rightarrow_R s \} \) is recognizable for every recognizable tree language \(L \).

Let \(R \) be a left-linear growing TRS and let \(L \) be a tree language recognized by \(A_L = (F, Q_L, Q_L', \Delta_L) \). We now construct a tree automaton recognizing \((\text{left}_R(L)) \) from \(R \) and \(A_L \). Let \(L = \{ l \in T(F, V) \mid l \notin V, f(\ldots, l, \ldots) \rightarrow r \in R \} \). Then every term in \(L \) is linear because of the left-linearity of \(R \). Since the set of all ground instances of a linear term is recognizable [3, 8], we have an automaton \(A_l = (F, Q_l, Q_l', \Delta_l) \) with \(L(A_l) = \{ \sigma : \sigma \in V \rightarrow T(F) \} \) for each \(l \in L \). Without loss of generality, we assume \(Q_a \cap Q_b = \phi \) for any \(a, b \in \{ L \} \cup \{ a \neq b \} \). The tree automaton \(A_\cap = (F, Q_\cap, Q_\cap', \Delta_\cap) \) is defined by \(Q_\cap = \bigcup_{l \in L} Q_l \cup Q_L \), \(Q_\cap' = Q_L' \), and \(\Delta_\cap = \bigcup_{l \in L} \Delta_l \cup \Delta_L \).

Starting from \(A_0 = A_\cup \), Jacquemard’s method in [15] constructs nondeterministic tree automata \(A_0, A_1, A_2, \ldots \), which can define a nondeterministic tree automaton \(A_k \) as \(A_k \) since the number of states is bounded. Then the obtained \(A_k \) accepts \((\text{left}_R(L)) \) [15]. However, this method requires essentially not only the left-linearity but also the right-linearity and does not work for left-linear growing TRSs. Since the right-hand sides of rewrite rules of left-linear growing TRSs may have multiple occurrences of variables, a subterm in a redex can be duplicated through rewriting. However the nondeterministic tree automaton \(A_k \) does not guarantee to reduce the same duplicated subterm to the same state. Thus it cannot trace rewriting by non-right-linear rewrite rules.

The above observation naturally leads us to deterministic tree automata construction for tracing the behavior of left-linear growing TRSs. A naive construction method is to transform an induced nonde-

Let \(A_0 = (F, Q, Q^f, \Delta_0) \) where \(Q = 2^Q \), \(Q^f = \{ A \in Q \mid A \cap Q^f_\cap \neq \phi \} \), and \(\Delta_0 \) contains the following rules:

\[
f(A_1, \ldots, A_n) \rightarrow A
\]

if \(A = \{ q \in Q_\cap \mid \exists q_1 \in A_1, \ldots, q_n \in A_n f(q_1, \ldots, q_n) \rightarrow_{A_\cap} q \} \).

For \(0 \leq i \), \(A_{i+1} = (F, Q, Q^f, \Delta_{i+1}) \) is obtained from \(A_i = (F, Q, Q^f, \Delta_i) \) as follows:

If there exist \(f(A_1, \ldots, A_n) \rightarrow A \in \Delta_i, l \rightarrow r \in R \) and \(A' \in Q \) satisfying the following Condition 1 or 2:

Condition 1.

1. \(l \equiv f(l_1, \ldots, l_n) \),
2. for each \(1 \leq j \leq n, l_j \notin V \) implies \(A_j \cap Q^f_j \neq \phi \),
3. there exists a substitution \(\theta : V \rightarrow Q \) such that
 \begin{enumerate}
 \item \(r \theta \rightarrow_{A_\cap} A' \),
 \item for each \(x \in r \), if \(x \equiv l_j \) for some \(j \) then \(x \theta = A_j \), otherwise \(t \rightarrow_{A_\cap} x \theta \) for some \(t \in T(F) \),
 \end{enumerate}

(\text{Example 3.1}) Let
4. \(A \subset A \cup A' \) (i.e., \(A \cup A' \) properly includes \(A \)).

Condition 2.

1'. \(l \in \mathcal{V} \),

2'. there exists a substitution \(\theta : \mathcal{V} \to Q \) such that

 \((a') \quad r \theta \xrightarrow{*} A A' \),

 \((b') \quad \text{for each } x \in r, \text{if } x \equiv l \text{ then } x \theta = A, \text{ otherwise } t \xrightarrow{*} A x \theta \text{ for some } t \in T(F) \),

3'. \(A \subset A \cup A' \) (i.e., \(A \cup A' \) properly includes \(A \)),

then \(\Delta_{i+1} = (\Delta_i \setminus \{f(A_1, \ldots, A_n) \to A) \} \cup \{f(A_1, \ldots, A_n) \to A \cup A' \} \).

From (4) of Condition 1 and (3') of Condition 2, it is clear that the process of construction eventually stops with the resulting automaton \(A_k = (F, Q, Q^f, \Delta_k) \) when no rule is modified by replacing the right-hand side \(A \) with \(A \cup A' \) such that \(A \subset A \cup A' \subseteq Q \). Note that \(A_0, A_1, \ldots, A_k \) are deterministic and complete.

Example 3.2. Let \(F = \{a, b, f, g\} \) and consider the left-linear growing TRS

\[
\mathcal{R} = \begin{cases}
 f(x) \to g(x, x) \\
 a \to b.
\end{cases}
\]

Let \(L = \{g(a, b)\} \) and \(A_L = (F, Q_L, Q_L^f, \Delta_L) \) where \(Q_L = \{q_a, q_b, q_f\} \), \(Q_L^f = \{q_f\} \) and \(\Delta_L = \{a \to q_a, b \to q_b, g(q_a, q_b) \to q_f\} \). Then \(f((q_a, q_b)) \to \phi \in \Delta_0 \), \(f(x) \to g(x, x) \in \mathcal{R} \) and \(\{q_f\} \in Q \) satisfy Condition 1 because we have \(g((q_a, q_b), (q_a, q_b)) \to A_0 \{q_f\} \). Thus we can first replace the right-hand side of \(f((q_a, q_b)) \to \phi \) with \(\{q_f\} \). Next the right-hand side of \(a \to \{q_a\} \) can be replaced with \(\{q_a, q_b\} \). Consequently, we obtain \(\Delta_1 = \Delta_2 \). The term \(f(a) \) in \((\mathcal{L} \setminus \mathcal{R})(L) \) is accepted by \(A_k \) because \(f(a) \to A_k f((q_a, q_b)) \to A_k \{q_f\} \in Q^f \).

Example 3.3. Let \(F = \{f, g, a, b\} \) and consider the left-linear growing TRS

\[
\mathcal{R} = \begin{cases}
 f(g(x), y) \to y \\
 g(x) \to f(x, x) \\
 a \to g(a).
\end{cases}
\]

Let \(L = \{a\} \) and \(A_L = (F, \{q_a\}, \{q_a\}, \{a \to q_a\}) \). Then \(L = \{g(x)\} \) and we assume that the automaton \(A_{g(x)} = (F, Q_{g(x)}, Q_{g(x)}^f, \Delta_{g(x)}) \) is defined by \(Q_{g(x)} = \{q_s, q_{g(x)}\} \), \(Q_{g(x)}^f = \{q_{g(x)}\} \) and \(\Delta_{g(x)} = \{a \to q_s, b \to q_s, f(q_s, q_s) \to q_s, g(q_s) \to q_s, g(q_s) \to g(q_{g(x)})\} \). We have the automaton \(A_0 = (F, Q_0, Q_0^f, \Delta_0) \) where \(Q_0 = 2^{\{q_a, q_{g(x)}\}} \), \(Q_0^f = \{\{q_a\}, \{q_s, q_{g(x)}\}, \{q_a, q_s\}, \{q_a, q_s, q_{g(x)}\}\} \), and \(\Delta_0 \) is the following set of rules:

\[
\Delta_0 = \begin{cases}
 a \to \{q_a, q_s\} \\
 b \to \{q_s\} \\
 f(A_1, A_2) \to \{q_s\} & \text{if } q_s \in A_1 \text{ and } q_s \in A_2 \\
 f(A_1, A_2) \to \phi & \text{if } q_s \not\in A_1 \text{ or } q_s \not\in A_2 \\
 g(A) \to \{q_s, q_{g(x)}\} & \text{if } q_s \in A \\
 g(A) \to \phi & \text{if } q_s \not\in A.
\end{cases}
\]

We can see that \(f((q_{g(x)}), \{q_{g(x)}\}) \to \phi \in \Delta_0 \), \(f(g(x), y) \to y \in \mathcal{R} \), and \(\{q_{g(x)}\} \in Q_0 \) satisfy Condition 1. Thus we first replace the right-hand side of the rule \(f((q_{g(x)}), \{q_{g(x)}\}) \to \phi \in \Delta_0 \) with \(\{q_{g(x)}\} \). Then the right-hand side of the rule \(g((q_{g(x)}) \to \phi \in \Delta_1 \) can be replaced with \(\{q_{g(x)}\} \) because we have
$f((q_{\delta(x)}), (q_{\delta(s)})) \rightarrow A_k (q_{\delta(s)})$. Consequently, Δ_k includes the following new rules:

\[
\begin{aligned}
&\quad a \rightarrow \{q_a, q_x, q_{\delta(s)}\} \\
&f(A_1, A_2) \rightarrow A_2 \quad \text{if } A_1 \in \{\{q_{\delta(s)}\}, \{q_a, q_{\delta(s)}\}\} \quad \text{and} \\
&f(A_1, A_2) \rightarrow A_2 \quad \text{if } A_1 \in \{\{q_s, q_{\delta(s)}\}, \{q_a, q_s, q_{\delta(s)}\}\} \quad \text{and} \\
g(\{q_{\delta(s)}\}) \rightarrow \{q_{\delta(s)}\} \\
g(\{q_a, q_{\delta(s)}\}) \rightarrow \{q_a, q_{\delta(s)}\} \\
g(\{q_a, q_s, q_{\delta(s)}\}) \rightarrow \{q_a, q_s, q_{\delta(s)}\}.
\end{aligned}
\]

Consider two terms $f(g(b), g(a)) \in (\epsilon_\mathcal{R})(L)$ and $f(g(a), g(b)) \notin (\epsilon_\mathcal{R})(L)$. We have

\[
\begin{aligned}
f(g(b), g(a)) \xrightarrow{\ast} &\ A_k f(g((q_{\delta(s)}), g(\{q_a, q_s, q_{\delta(s)}\}))) \\
\xrightarrow{\ast} &\ A_k f(\{q_s, q_{\delta(s)}\}, \{q_a, q_s, q_{\delta(s)}\}) \\
\rightarrow &\ A_k \{q_a, q_s, q_{\delta(s)}\} \in Q'_k.
\end{aligned}
\]

Hence $f(g(b), g(a))$ is accepted by A_k. The term $f(g(a), g(b))$ is not accepted by A_k because

\[
\begin{aligned}
f(g(a), g(b)) \xrightarrow{\ast} &\ A_k f(g(\{q_a, q_s, q_{\delta(s)}\}), g((q_{\delta(s)}))) \\
\xrightarrow{\ast} &\ A_k f(\{q_a, q_s, q_{\delta(s)}\}, \{q_s, q_{\delta(s)}\}) \\
\rightarrow &\ A_k \{q_s, q_{\delta(s)}\} \notin Q'_k.
\end{aligned}
\]

Remark. Jacquemard’s construction in [15] does not necessarily generate a tree automaton A such that $L(A) = (\epsilon_\mathcal{R})(L)$ for a non-right-linear TRS \mathcal{R}. Consider again the left-linear non-right-linear growing TRS \mathcal{R} of Example 3.2:

\[
\mathcal{R} = \begin{cases}
\ f(x) \rightarrow g(x, x) \\
\ a \rightarrow b.
\end{cases}
\]

Let $L = \{g(a, b)\}$ and $A_L = (\mathcal{F}, Q_L, Q'_L, \Delta_L)$ where $Q_L = \{q_a, q_b, q_f\}$, $Q'_L = \{q_f\}$, and $\Delta_L = \{a \rightarrow q_a, b \rightarrow q_b, g(q_a, q_b) \rightarrow q_f\}$. We add only the rule $a \rightarrow q_b$ to Δ_L at Jacquemard’s construction process and hence we obtain the nondeterministic tree automaton $A = (\mathcal{F}, Q_L, Q'_L, \Delta_L \cup \{a \rightarrow q_b\})$. Note that the rule $f(q_a) \rightarrow q_f$ is not added to Δ_L because we do not have $g(q_a, q_b) \rightarrow A q_f$. Although we have $f(a) \xrightarrow{\ast} \mathcal{R} g(a, b) \in L$, $f(a)$ is not accepted by A. In order to accept $f(a)$ the automaton A needs to keep in state the information that a can be reduced to both of q_a and q_b, but it is lost through nondeterministic behavior of A.

In the following we prove that $L(A_k) = (\epsilon_\mathcal{R})(L)$. We write $t \xrightarrow{\ast} \mathcal{R} \xrightarrow{\ast} A q$ if $t \xrightarrow{\ast} \mathcal{R} s \xrightarrow{\ast} A q$ for some $s \in T(\mathcal{F})$.

Lemma 3.1. Let $t \in T(\mathcal{F}, \mathcal{V}), \theta : \mathcal{V} \rightarrow Q$ and $\sigma : \mathcal{V} \rightarrow T(\mathcal{F})$ such that $x\sigma \xrightarrow{\ast} \mathcal{R} \xrightarrow{\ast} A q$ for any $x \in t$ and $q' \in x\theta$. For each $0 \leq i \leq k$, if $t \theta, A \in Q$ then $x\sigma \xrightarrow{\ast} \mathcal{R} \xrightarrow{\ast} A q$ for any $q \in A$.

Note. In the above claim the condition “$x\sigma \xrightarrow{\ast} \mathcal{R} \xrightarrow{\ast} A q$ for any $x \in t$ and $q' \in x\theta$” cannot be replaced with a simpler form “$x\sigma \xrightarrow{\ast} \mathcal{R} \xrightarrow{\ast} A q$ for any $x \in t$,” because the first condition means
There exist steps using this rule in the reduction induction hypothesis on \(s_j \).

Base Step. We use induction on the structure of \(t \). The case \(t \equiv x \) is trivial. Let \(t \equiv f(t_1, \ldots, t_n) \).

Assume \(t\theta \equiv f(t_1, \ldots, t_n)\theta \xrightarrow{*_{\mathcal{A}_0}} f(A_1, \ldots, A_n) \rightarrow_{\mathcal{A}_0} A \). Let \(q \in \bar{A} \). Then by the definition of \(\Delta_0 \) there exist \(q_1 \in A_1, \ldots, q_n \in A_n \) such that \(f(q_1, \ldots, q_n) \xrightarrow{*_{\mathcal{A}_0}} q \). By induction hypothesis, for each \(1 \leq j \leq n \) there exists \(s_j \) such that \(t_j\sigma \xrightarrow{*_{\mathcal{R}}} s_j \xrightarrow{*_{\mathcal{A}_0}} q_j \). Thus we have \(t\sigma \equiv f(t_1\sigma, \ldots, t_n\sigma) \xrightarrow{*_{\mathcal{R}}} f(s_1, \ldots, s_n) \xrightarrow{*_{\mathcal{A}_0}} q \).

Induction Step. Let \(f(A_1, \ldots, A_n) \rightarrow A' \in \Delta_1 \setminus \Delta_{i-1} \). We use induction on the number \(m \) of reduction steps using this rule in the reduction \(t\theta \xrightarrow{*_{\mathcal{A}_0}} A \). If \(m = 0 \) then \(t\theta \xrightarrow{*_{\mathcal{A}_0}} A \). Thus it follows from induction hypothesis on \(i \) that \(t\sigma \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(q \in A \). Let \(m > 0 \). Suppose

\[
t\theta \equiv t\theta[f(t_1, \ldots, t_n)\theta \xrightarrow{*_{\mathcal{A}_0}} t\theta[f(A_1, \ldots, A_n) \rightarrow_{\mathcal{A}_0} t\theta[A'] \xrightarrow{*_{\mathcal{A}_0}} A].
\]

Let \(\bar{t} \equiv t[z] \) where \(z \notin t \). We define \(\bar{\theta} : V \rightarrow Q \) and \(\bar{\sigma} : V \rightarrow T(\mathcal{F}) \) as follows: if \(x \equiv z \) then \(x\bar{\theta} = A' \) and \(x\bar{\sigma} \equiv f(t_1, \ldots, t_n)\sigma \), otherwise \(x\bar{\theta} = x\theta \) and \(x\bar{\sigma} \equiv x\sigma \). Clearly \(\bar{t}\bar{\theta} \equiv t\theta[A'] \) and \(\bar{t}\bar{\sigma} \equiv t\sigma \). We will show the following claim:

\(x\bar{\sigma} \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(x \in \bar{t} \) and \(q \in x\bar{\theta} \).

Then by applying induction hypothesis on \(m \) to \(\bar{t}\bar{\theta} \equiv t\theta[A'] \) and \(\bar{t}\bar{\sigma} \equiv t\sigma \), we can obtain \(\bar{t}\bar{\bar{\sigma}} \equiv t\sigma \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(q \in A \). Thus the lemma holds.

Proof of the Claim. Let \(x \in \bar{t} \). If \(x \notin z \) then it follows from the assumption of the lemma that \(x\bar{\sigma} \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(q \in x\bar{\theta} \). We consider the case \(x \equiv z \). Assume that \(f(A_1, \ldots, A_n) \rightarrow A'_1 \in \Delta_{i-1}, l \rightarrow_r e \in \mathcal{R} \) and \(A'_2 \in Q \) satisfy Condition 1 or 2 and \(A' = A'_1 \cup A'_2 \). Since \(f(t_1, \ldots, t_n)\theta \xrightarrow{*_{\mathcal{A}_0}} f(A_1, \ldots, A_n) \rightarrow_{\Delta_{i-1}} A'_1 \), it follows from induction hypothesis on \(i \) that

\[
f(t_1, \ldots, t_n)\sigma \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \quad \text{for any } q \in A'_1.
\]

We distinguish two cases.

Case 1. Condition 1 is satisfied. Let \(l \equiv f(l_1, \ldots, l_n) \). By applying induction hypothesis on \(i \) to \(t_j\theta \xrightarrow{*_{\mathcal{A}_0}} A_j \) for \(1 \leq j \leq n \), we obtain \(t_j\sigma \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(q \in A_j \). For each \(1 \leq j \leq n \), let \(s_j \) be a term such that if \(l_j \in V \) then \(s_j \equiv t_j\sigma \); otherwise \(t_j\sigma \xrightarrow{*_{\mathcal{R}}} s_j \xrightarrow{*_{\mathcal{A}_0}} q \in Q'_i \). From the disjointness of the sets of states, \(s_j \xrightarrow{*_{\mathcal{A}_0}} q \in Q'_i \) implies \(s_j \xrightarrow{*_{\mathcal{A}_0}} q \in Q'_i \). Hence \(f(s_1, \ldots, s_n) \) is an instance of \(l \) by the linearity of \(l \). Let \(\theta' : V \rightarrow Q' \) be a substitution defined by 3 of Condition 1. Let \(\sigma' : V \rightarrow T(\mathcal{F}) \) be a substitution such that for any \(y \in r \) if \(y \equiv l \) for some \(j \) then \(y\sigma' \equiv s_j \), otherwise \(y\sigma' \xrightarrow{*_{\mathcal{A}_0}} A'_1 \). Then from the growiness of \(\mathcal{R} \) we have the reduction \(f(s_1, \ldots, s_n) \rightarrow_{\Delta_{i-1}} y\sigma' \). Furthermore, we can see \(y\sigma' \xrightarrow{*_{\mathcal{A}_0}} A'_1 \) for any \(y \in r \). Therefore, by induction hypothesis on \(i \), \(y\sigma' \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(y \in r \) and \(q \in y\bar{\theta}' \). Applying induction hypothesis on \(i \) to \(r\theta' \xrightarrow{*_{\mathcal{A}_0}} A'_2 \), it is obtained that \(r\sigma' \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(q \in A'_2 \). Thus, since \(f(t_1, \ldots, t_n)\sigma \xrightarrow{*_{\mathcal{R}}} r\sigma' \), we have

\[
f(t_1, \ldots, t_n)\sigma \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \quad \text{for any } q \in A'_2.
\]

Because \(z\bar{\theta} = A' = A'_1 \cup A'_2 \) and \(z\bar{\sigma} \equiv f(t_1, \ldots, t_n)\sigma \), it follows from (1) and (2) that \(z\bar{\sigma} \xrightarrow{*_{\mathcal{R}}} \cdot \xrightarrow{*_{\mathcal{A}_0}} q \) for any \(q \in z\bar{\theta} \). Therefore the claim holds.

Case 2. Condition 2 is satisfied. Let \(\theta' : V \rightarrow Q \) be a substitution defined by 2' of Condition 2. Let \(\sigma' : V \rightarrow T(\mathcal{F}) \) be a substitution such that for any \(y \in r \) if \(y \equiv l \) then \(y\sigma' \equiv f(t_1, \ldots, t_n)\sigma \), otherwise
Therefore, it follows from (1) and (3) that $\tilde{z} \cdot \bar{r} \cdot A_1 q$ for any $q \in \tilde{z} \cdot \bar{r}$.</p>

Lemma 3.2. $L(A_k) \subseteq (\epsilon \cdot \bar{r})(L)$.

Proof. Let $t \in L(A_k)$, i.e., $t \cdot \bar{r} \cdot A$ for some $A \in Q^f$. By the definition of Q^f, A has a final state q of A. From Lemma 3.1, there exists $s \in \mathcal{T}(F)$ such that $t \cdot \bar{r} \cdot A_1 q$. By the disjointness of the sets of states, we have $s \cdot \bar{r} \cdot A_1 q \in Q^f$. Thus $t \in (\epsilon \cdot \bar{r})(L)$. □

Lemma 3.3. Let $t \in \mathcal{T}(F, V)$. Then $t \cdot \bar{r} : \mathcal{V} \rightarrow Q$ with $x \cdot \bar{r} : x \cdot \bar{r}$ for any $x \in L$. If $t \cdot \bar{r} \cdot A_1 A'$ for some $A' \in Q$ with $A \subseteq A'$.

Proof. We prove the lemma by induction on i.

Base Step. We use the induction on the structure of t. The case $t \equiv x$ is trivial. Let $t \equiv f(t_1, \ldots, t_n)$. Then we assume $t \equiv f(t_1, \ldots, t_n) \cdot \bar{r} : A_f(A_1, \ldots, A_n) \rightarrow \cdot \bar{r} : A$. By induction hypothesis, for each $1 \leq j \leq n$ there exists $A_j \in Q$ such that $t_j \cdot \bar{r} : \cdot \bar{r} : A_j$ and $A_j \subseteq A_j$. By the definition of A_0, A_0 has a rule $f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A'$ with $A \subseteq A'$. Then by the construction of A_k, A_k has a rule $f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A'$ with $A \subseteq A'$. Thus we obtain $f(t_1, \ldots, t_n) \cdot \bar{r} : A_f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A''$ and $A \subseteq A''$.

Induction Step. We use the induction on the structure of t. The case $t \equiv x$ is trivial. Let $t \equiv f(t_1, \ldots, t_n)$. Assume $f(t_1, \ldots, t_n) \cdot \bar{r} : A_f(A_1, \ldots, A_n) \rightarrow \cdot \bar{r} : A$. By induction hypothesis on the structure of t, for each $1 \leq j \leq n$ there exists $A_j' \in Q$ such that $t_j \cdot \bar{r} : \cdot \bar{r} : A_j'$ and $A_j \subseteq A_j'$. Since A_k is deterministic and complete, there exists exactly one $A' \in Q$ such that $f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A'$. We show $A \subseteq A'$. If $f(A_1, \ldots, A_n) \rightarrow \cdot \bar{r} : A \in \Delta_i$ then from induction hypothesis on i it follows that $A \subseteq A'$. Otherwise, we assume that $f(A_1, \ldots, A_n) \rightarrow \cdot \bar{r} : A \in \Delta_i$. We obtain $f(t_1, \ldots, t_n) \cdot \bar{r} : A_f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A''$ and $A \subseteq A''$.

Case 1. Condition 1 is satisfied. Let $t \equiv f(t_1, \ldots, t_3)$ and let $\theta_1 : \mathcal{V} \rightarrow Q$ be a substitution defined by (3) of Condition 1. Then let t_2 be a substitution from \mathcal{V} to Q such that for every $x \in r$ if $x \equiv l$ then $x \cdot \bar{r} : x \cdot \bar{r} \cdot A'$, otherwise $t \cdot \bar{r} : A'$, and $t \rightarrow_k A$ for some $t \in \mathcal{T}(F)$ with $t \rightarrow_k x \cdot \bar{r}$. Using induction hypothesis on i, we can show that $x \cdot \bar{r} : x \cdot \bar{r} \cdot A'$ for any $x \in r$. Applying induction hypothesis on i to $t \rightarrow_k A$, B_2, we obtain $t \rightarrow_k A$ B_2 for some $B_2 \in Q$ with $B_2 \subseteq B_2$. Therefore $f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A' \subseteq \Delta_i$, $l \rightarrow r \in \mathcal{R}$ and $B_2 \in Q$ satisfy (1), (2), and (3) of Condition 1. By the construction of A_k, they must not satisfy (4) of Condition 1. Thus we have $A' = A' \cup B_2$. Hence $A = B_1 \cup B_2 \subseteq A' \cup B_2 = A'$.

Case 2. Condition 2 is satisfied. Let $\theta_1 : \mathcal{V} \rightarrow Q$ be a substitution defined by (2) of Condition 2. Then let $t_2 : \mathcal{V} \rightarrow Q$ be a substitution such that for every $x \in r$ if $x \equiv l$ then $x \cdot \bar{r} : A'$, otherwise $t \rightarrow_k A'$, and $t \rightarrow_k A$ for some $t \in \mathcal{T}(F)$ with $t \rightarrow_k x \cdot \bar{r}$. Using induction hypothesis on i, we can show that $x \cdot \bar{r} : x \cdot \bar{r} \cdot A'$ for every $y \in r$. Applying induction hypothesis on i to $t \rightarrow_k A$, B_2, we obtain $t \rightarrow_k A$ B_2 for some $B_2 \in Q$ with $B_2 \subseteq B_2$. Thus $f(A_1', \ldots, A_n') \rightarrow \cdot \bar{r} : A' \subseteq \Delta_i$, $l \rightarrow r \in \mathcal{R}$ and $B_2 \in Q$ satisfy (1) and (2) of Condition 2. By the construction of A_k, they must not satisfy (3) of Condition 2, i.e., $A' = A' \cup B_2$. Hence $A = B_1 \cup B_2 \subseteq A' \cup B_2 = A'$.

Lemma 3.4. Let $t \in \mathcal{T}(F)$ and $t \rightarrow_k A$. If $t \rightarrow_k q \in Q$, then $q \in A$.

Proof. Since A_0 is complete, there exists $A' \in Q$ such that $t \rightarrow_k A'$. By induction of the structure of t, we can show that $A' \in \mathcal{L}$. Thus, if $t \rightarrow_k q \in Q$, then $q \in A'$. Because A_k is deterministic, we get $A' \subseteq A$ by Lemma 3.3. Hence $q \in A$. □

Lemma 3.5. $L(A_k) \subseteq (\epsilon \cdot \bar{r})(L)$.
Proof. Assume that \(t \xrightarrow{\to_R} s \) for some \(s \in L \). We show that \(t \in L(\mathcal{A}_k) \) by induction on the length \(m \) of this reduction. If \(m = 0 \) then \(t \in L \). Thus \(t \xrightarrow{A_k} q \) for some \(q \in Q^L \). Since \(\mathcal{A}_k \) is complete, there exists \(A \in Q \) such that \(t \xrightarrow{A_k} A \). According to Lemma 3.4, \(q \in A \) and therefore \(A \in Q^L \). Hence \(t \in L(\mathcal{A}_k) \). Let \(m > 0 \). Then we assume that

\[
 t \equiv t[l\sigma]_p \rightarrow_R t[r\sigma]_p \xrightarrow{\to_R} s \in L
\]

with \(l \rightarrow r \in \mathcal{R} \). By induction hypothesis, \(t[r\sigma]_p \) is accepted by \(\mathcal{A}_k \). Since \(\mathcal{A}_k \) is deterministic, there exists \(\theta : \mathcal{V} \rightarrow Q \) such that

\[
 t[r\sigma]_p \xrightarrow{\mathcal{A}_k} t[r\theta]_p \xrightarrow{\to_A} t[A]_p \rightarrow_{\mathcal{A}_k} B \in Q^L,
\]

where \(A \in Q \). By completeness of \(\mathcal{A}_k \), we assume that

\[
 t \equiv t[f(t_1, \ldots, t_n)]_p \rightarrow_{\mathcal{A}_k} t[f(A_1, \ldots, A_n)]_p \rightarrow_{\mathcal{A}_k} t[A']_p \rightarrow_{\mathcal{A}_k} B' \in Q,
\]

where \(f(A_1, \ldots, A_n) \rightarrow A' \in \Delta_k \) and \(n \geq 0 \). We consider the following two cases.

Case 1. \(l \equiv f(t_1, \ldots, t_n) \). If \(l_j \notin \mathcal{V} \) then \(t_j \) is accepted by \(\mathcal{A}_j \) and thus \(A_j \) has \(q \in Q^L \) by Lemma 3.4. Because \(\mathcal{A}_k \) is deterministic, for any \(x \in r, x \equiv l \), implies \(x\theta \equiv A_j \). Therefore \(f(A_1, \ldots, A_n) \rightarrow A' \in \Delta_k, l \rightarrow r \in \mathcal{R} \), and \(A \in Q \) fulfill (1), (2), and (3) of Condition 1. By the construction of \(\mathcal{A}_k \), they must not satisfy (4) of Condition 1. Thus \(A \subseteq A' \). Since Lemma 3.3 yields \(B \subseteq B' \), we obtain \(B' \in Q^L \). Therefore \(t \in L(\mathcal{A}_k) \).

Case 2. \(l \equiv x \) for some \(x \in \mathcal{V} \). Because \(\mathcal{A}_k \) is deterministic, if \(x \in r \) then \(x\theta \equiv A' \). Therefore \(f(A_1, \ldots, A_n) \rightarrow A' \in \Delta_k, l \rightarrow r \in \mathcal{R} \), and \(A \in Q \) fulfill (1') and (2') of Condition 2. By the construction of \(\mathcal{A}_k \), they must not satisfy (3') of Condition 2 and thus \(A \subseteq A' \). According to Lemma 3.3, \(B \subseteq B' \) and therefore \(B' \in Q^L \). Hence \(t \in L(\mathcal{A}_k) \).

Thus we obtain the following theorem.

Theorem 3.1. Let \(R \) be a left-linear growing TRS and let \(L \) be a recognizable tree language. Then the set \((\xrightarrow{\to_R})(L) \) is recognized by a tree automaton.

Proof. From Lemmas 3.2 and 3.5, we have \(L(\mathcal{A}_k) = (\xrightarrow{\to_R})(L) \).

Remark. The recognizability of \((\xrightarrow{\to_R})(L) \) was shown for right-linear monadic rewriting systems by Salomaa [22] and for linear semimonadic rewriting systems by Coquidé et al. [4]. If a TRS \(R \) is right-linear monadic or linear semimonadic, then \(\mathcal{R}^{-1} \) is obviously left-linear growing and \((\xrightarrow{\to_R})(L) = (\xrightarrow{\to_R^{-1}})(L) \). Thus Theorem 3.1 extends both results. Gilleron and Tison [10] conjectured the recognizability of \((\xrightarrow{\to_R})(L) \) for a right-linear semimonadic rewriting system \(R \). Our result gives a positive answer for their conjecture as \(\mathcal{R}^{-1} \) is again left-linear growing. Gyenizse and Vágvölgyi [11] proved the recognizability for linear generalized semimonadic rewriting systems, and Kitaoka et al. [16] extended this result to finite overlapping term rewriting systems. These results are incomparable to our result.2

If \(R \) is left-linear TRS then the set \(NF_R \) of normal forms is a recognizable set [3, 8]. From Theorem 3.1 the set \((\xrightarrow{\to_R})(NF_R) \) is recognizable for a left-linear growing \(R \). Thus the following corollary holds.

Corollary 3.1. The weakly normalizing property of left-linear growing TRSs is decidable.

Proof. A left-linear growing TRS \(R \) is weakly normalizing iff the complement of \((\xrightarrow{\to_R})(NF_R) \) is empty. From Lemmas 2.1 and 2.2, the claim follows.

2 Takai et al. recently extended the result by Kitaoka et al. to the class of right-linear finite path overlapping term rewriting systems, which includes the class of left-linear growing term rewriting systems: See [25].
4. REACHABILITY AND JOINABILITY

The reachability problem for \mathcal{R} is the problem of deciding whether $t \rightarrow^* \mathcal{R} s$ for given two terms t and s. It is well known that this problem is undecidable for general TRSs. Oyamaguchi [20] has shown that this problem is decidable for right-ground TRSs. Decidability for linear growing TRSs was shown by Jacquemard [15]. Since a singleton set of a term is recognizable, we can extend these results by using Theorem 3.1.

Theorem 4.1. The reachability problem for left-linear growing TRSs is decidable.

Proof. Let t and s be two terms. Then $t \rightarrow^* \mathcal{R} s$ iff $(\xrightarrow{\mathcal{R}})(s) \cap \{t\} \neq \emptyset$. By Theorem 3.1, $(\xrightarrow{\mathcal{R}})(s)$ is recognizable as s is recognizable. Thus from Lemmas 2.1 and 2.2 the theorem follows. $lacksquare$

It is clear that $t \rightarrow^* \mathcal{R} s$ iff $s \xrightarrow{\mathcal{R}^{-1}} t$. By Theorem 4.1, we obtain the following theorem.

Theorem 4.2. Let \mathcal{R} be a TRS such that \mathcal{R}^{-1} is left-linear growing. The reachability problem for \mathcal{R} is decidable.

If \mathcal{R} is right-ground TRS then \mathcal{R}^{-1} is left-linear growing. Thus, the above theorem is a generalization of Oyamaguchi’s result.

Gyenizse and Vágvolgyi [11] showed that the joinability and the local confluence property are decidable for term rewriting systems preserving recognizable. Following Gyenizse and Vágvolgyi, we next prove that the joinability and the local confluence property are decidable for term rewriting systems the inverse of which is left-linear growing.

The joinability problem for a TRS \mathcal{R} is the problem of deciding given finite number of terms t_1, \ldots, t_n, whether there exists a term s such that $t_i \rightarrow^* s$ for any $1 \leq i \leq n$. Oyamaguchi [20] has shown that this problem is decidable for right-ground TRSs. This result is extended as follows.

Theorem 4.3. Let \mathcal{R} be a TRS such that \mathcal{R}^{-1} is left-linear and growing. The joinability problem for \mathcal{R} is decidable.

Proof. Let t_1, \ldots, t_n be terms. Then t_1, \ldots, t_n are joinable iff

$$(\xrightarrow{\mathcal{R}})(\{t_1\}) \cap \cdots \cap (\xrightarrow{\mathcal{R}})(\{t_n\}) \neq \emptyset.$$

By Theorem 3.1, $(\xrightarrow{\mathcal{R}})(\{t_i\}) = (\xrightarrow{\mathcal{R}^{-1}})(\{t_i\})$ is recognizable for any $1 \leq i \leq n$. Thus from Lemmas 2.1 and 2.2 the theorem follows. $lacksquare$

A TRS \mathcal{R} is locally confluent if $t \rightarrow^* \mathcal{R} t'$ and $t \rightarrow^* \mathcal{R} t''$ imply $t' \xrightarrow{\mathcal{R}} s$ and $t'' \xrightarrow{\mathcal{R}} s$ for some s. It is well known that \mathcal{R} is locally confluent iff every critical pair of \mathcal{R} is joinable [1]. Applying Theorem 4.3, we have the following corollary.

Corollary 4.1. Let \mathcal{R} be a TRS such that \mathcal{R}^{-1} is left-linear and growing. Then it is decidable whether \mathcal{R} is locally confluent.

5. DECIDABLE APPROXIMATIONS

Huet and Lévy [14] investigated normalizing one-step reduction strategies for orthogonal TRSs. A redex position p in a term t is *needed* if in every reduction sequence from t to a normal form a redex at some descendant of p is contracted. We also say that the redex at position p is *needed*. A reduction $t \rightarrow^* \mathcal{R} s$ by applying a rule at position p is *needed* (or call-by-need) if p is needed. Huet and Lévy [14] showed that the needed reduction is a normalizing reduction strategy for orthogonal TRSs; i.e., repeated contraction of needed redexes eventually results in a normal form if it exists. Unfortunately, needed redexes are undecidable in general. Thus, in order to obtain a decidable class of orthogonal (or left-linear) TRSs having the decidable needed reduction strategy, several decidable approximations of TRSs were introduced in the literature [2, 7, 9, 14, 15, 18, 19, 21, 24].

The first idea of decidable approximations was proposed by Huet and Lévy [14] as the *strongly sequential* approximation of orthogonal TRSs, which is obtained by replacing the right-hand side of
every rewrite rule with a fresh variable not occurring in the left-hand side. Oyamaguchi [21] gave a better approximation, the NV-sequential approximation, which is obtained by replacing all variables in the right-hand side of every rewrite rule with distinct fresh variables. Comon [2] showed that the linear shallow approximation is decidable, and Jacquemard [15] introduced the linear growing approximation which is finer than other ones. Here the linear shallow approximation (resp. the linear growing approximation) is obtained by replacing the variables in the right-hand side which do not satisfy the condition of linear shallowness (resp. linear growingness) with distinct fresh variables. We now give a better decidable approximation of TRSs than all of them, based on the recognizability result of Section 3.

A TRS R' is an approximation of a TRS R if $\rightarrow_{R'} \subseteq \rightarrow_{R}$. An approximation mapping τ is a mapping from TRSs to TRSs such that $\tau(R)$ is an approximation of R for every TRS R.

Definition 5.1. Let $R = \{ l_i \rightarrow r_i \mid 1 \leq i \leq n \}$ be a left-linear TRS. The left-linear growing approximation of R is a left-linear growing TRS $\{ l_i' \rightarrow r_i \mid 1 \leq i \leq n \}$ where for any $1 \leq i \leq n$, l_i' is obtained from l_i by replacing the variables which do not satisfy the condition of left-linear growingness with distinct fresh variables.

Definition 5.2. An approximation mapping τ is left-linear growing (resp. strongly sequential, NV-sequential, linear shallow, linear growing) if $\tau(R)$ is a left-linear growing (resp. strongly sequential, NV-sequential, linear shallow, linear growing) approximation of R for every TRS R.

If R is a left-linear growing TRS then the left-linear growing approximation of R is R itself. If τ is a left-linear growing mapping then $\text{NF}_R = \text{NF}_{\tau(R)}$ for every left-linear TRS R.

Note. In the left-linear growing approximation we replace the variables in the left-hand side instead of those in the right-hand side not satisfying the left-linear growingness. This modification can give a slight better approximation because of keeping nonlinear variables in the right-hand side. For example, the left-linear growing approximation of the rewrite rule $f(g(x), y) \rightarrow f(x, f(y, x))$ is $f(g(z), y) \rightarrow f(x, f(y, x))$ or $f(g(x), y) \rightarrow f(z, f(y, z))$ after a variable renaming, but if the variables in the right-hand side are replaced instead then we have a worse approximation $f(g(x), y) \rightarrow f(z, f(y, z'))$.

Example 5.1. Let

$$R = \{ f(g(x), y) \rightarrow f(x, f(y, x)) \mid g(x) \rightarrow f(x, x) \}.$$

Then, the strongly sequential approximation of R is

$$R_{st} = \{ f(g(x), y) \rightarrow z \mid g(x) \rightarrow z, \}$$

the NV-sequential approximation of R is

$$R_{nv} = \{ f(g(x), y) \rightarrow f(z, f(z', z'')) \mid g(x) \rightarrow f(z, z'), \}$$

the linear shallow approximation of R is

$$R_{sh} = \{ f(g(x), y) \rightarrow f(z, f(z', z'')) \mid g(x) \rightarrow f(x, z), \}$$

the linear growing approximation of R is

$$R_{lg} = \{ f(g(x), y) \rightarrow f(z, f(y, z')) \mid g(x) \rightarrow f(x, z), \}.$$
and the left-linear growing approximation of \mathcal{R} (after a variable renaming) is

$$\mathcal{R}_{llg} = \left\{ f(g(x), y) \mapsto f(z, f(y, z)) \right\} \cup \left\{ g(x) \mapsto f(x, x) \right\}.$$

It is clear that $\overset{*}{\mathcal{R}} \subseteq \overset{*}{\mathcal{R}_{llg}} \subseteq \overset{*}{\mathcal{R}_{sh}} \subseteq \overset{*}{\mathcal{R}_{lg}} \subseteq \overset{*}{\mathcal{R}_{nv}} \subseteq \overset{*}{\mathcal{R}_{st}}$. Hence the left-linear growing approximation is better than others.

Durand and Middeldorp [7] presented a simpler framework for decidable approximations of TRSs without notions of index and sequentiality. The following notions and results originate from [7]. The redex at a position p in $t \in T(\mathcal{F})$ is \mathcal{R}-needed if there exists no $s \in NF_{\mathcal{R}}$ such that $t[\Omega]^p \rightarrow^*_{\mathcal{R}} s$. Note that a normal form s does not contain Ω's. Then the following proposition gives an easy alternative definition of neededness without the notion of descendent.

Proposition 5.1 [7]. Let \mathcal{R} be an orthogonal TRS. Then a redex is needed if it is \mathcal{R}-needed.

Let τ be an approximation mapping. The redex at a position p in $t \in T(\mathcal{F})$ is $\tau(\mathcal{R})$-needed if there exists no $s \in NF_{\mathcal{R}}$ such that $t[\Omega]^p \rightarrow^*_{\tau(\mathcal{R})} s$. From the definitions and the above proposition it immediately follows that every $\tau(\mathcal{R})$-needed redex is needed if \mathcal{R} is an orthogonal TRS. Thus $\tau(\mathcal{R})$-needed reduction strategy gives a needed reduction strategy, i.e., a normalizing reduction strategy for \mathcal{R} [7].

The class C_τ of TRSs is defined as follows: $\mathcal{R} \in C_\tau$ iff every term not in normal form has a $\tau(\mathcal{R})$-needed redex. Let st, nv, sh, lg, llg be a strongly sequential approximation map, a NV-sequential approximation map, a linear shallow approximation map, a linear growing approximation map, and a left-linear growing approximation map, respectively. Then it was shown [7, 15] that $C_{st} \subseteq C_{nv} \subseteq C_{sh} \subseteq C_{lg}$.

The following sufficient condition was given by Durand and Middeldorp [7] for proving uniformly the decidability of $\tau(\mathcal{R})$-neededness and membership of C_τ for various approximation maps τ.

Theorem 5.1 [7]. Let \mathcal{R} be a left-linear TRS. Let τ be an approximation mapping. If the set $\{ t \in T(\mathcal{F} \cup \{ \Omega \}) \mid \exists s \in NF_{\mathcal{R}} \ t \rightarrow^*_{\tau(\mathcal{R})} s \}$ is recognizable then

1. it is decidable whether a redex in a term is $\tau(\mathcal{R})$-needed,
2. it is decidable whether $\mathcal{R} \in C_\tau$.

Let \mathcal{R} be an orthogonal TRS and $\mathcal{R} \in C_\tau$. Then since every $\tau(\mathcal{R})$-needed redex is needed for orthogonal TRSs, the above theorem guarantees that $\tau(\mathcal{R})$-needed reduction strategy works as a decidable normalizing reduction strategy for \mathcal{R}.

Corollary 5.1 [2, 7, 14, 15, 21]. Let \mathcal{R} be a left-linear TRS and τ in $\{ st, nv, sh, lg \}$.

1. It is decidable whether a redex in a term is $\tau(\mathcal{R})$-needed.
2. It is decidable whether $\mathcal{R} \in C_\tau$.

The set $NF_{\mathcal{R}}$ is recognizable if \mathcal{R} is left-linear. Hence we have the following decidability result from Theorems 3.1 and 5.1.

Theorem 5.2. Let \mathcal{R} be a left-linear TRS. Let llg be a left-linear growing approximation mapping.

1. It is decidable whether a redex in a term is $llg(\mathcal{R})$-needed.
2. It is decidable whether $\mathcal{R} \in C_{llg}$.

Let \mathcal{R} be an orthogonal TRS. From Proposition 5.1 it follows that if $\tau(\mathcal{R}) = \mathcal{R}$ then $\tau(\mathcal{R})$-neededness coincides with neededness [7]. It was also shown by Huet and Lévy [14] that every term not in normal form has a needed redex. Thus we have the following corollary.

Corollary 5.2. Let \mathcal{R} be an orthogonal growing TRS. Then the neededness is decidable and we have $\mathcal{R} \in C_{llg}$ for every left-linear growing approximation mapping llg.
The following theorem shows that left-linear growing approximations extend the class of orthogonal TRSs having a decidable needed reduction strategy.

Theorem 5.3. Let llg be a left-linear growing approximation mapping and let lg be a linear growing approximation mapping. Then $C_{lg} \subset C_{llg}$ even if these classes are restricted to orthogonal TRSs.

Proof. For every TRS \mathcal{R}, $lg(\mathcal{R})$-neededness implies $llg(\mathcal{R})$-neededness because we have $\rightarrow_{llg(\mathcal{R})} \subset \rightarrow_{lg(\mathcal{R})}$. Thus $C_{lg} \subseteq C_{llg}$. Let $\mathcal{R} = \{ g(x) \rightarrow f(x, x, x) \} \cup \mathcal{R}'$ where $\mathcal{R}' = \{ f(a, b, x) \rightarrow a, f(b, x, a) \rightarrow a, f(x, a, b) \rightarrow b \}$. From Corollary 5.2 we have $\mathcal{R} \in C_{llg}$. We will show that $\mathcal{R} \notin C_{lg}$. If $lg(\mathcal{R}) = \{ g(x) \rightarrow f(y, z, x) \} \cup \mathcal{R}'$ then $g(b) \rightarrow_{lg(\mathcal{R})} a$ and $g(b) \rightarrow_{lg(\mathcal{R})} b$. Therefore, the term $f(g(b), g(b), g(b))$ does not have $lg(\mathcal{R})$-needed redexes. Similarly, we can show that $f(g(a), g(a), g(a))$ does not have $llg(\mathcal{R})$-needed redexes for other linear growing approximations of \mathcal{R}. Hence $\mathcal{R} \notin C_{llg}$.

6. TERMINATION OF ALMOST ORTHOGONAL GROWING TRS

Termination is decidable for ground TRSs [13], right-ground TRSs [5], and right-linear monadic ground TRSs [23]. In this section, we show that termination of almost orthogonal growing TRSs is decidable. If a TRS \mathcal{R} contains a rewrite rule which does not satisfy the variable restriction then \mathcal{R} is not terminating. Thus we may assume that \mathcal{R} satisfies the variable restriction. We first explain the theorem of Gramlich [12], which is used in our proof.

A reduction $t \rightarrow_{\mathcal{R}} s$ by applying a rule at position p is innermost if every proper subterm of $t|_p$ is a normal form. The innermost reduction is denoted by \rightarrow_I. We say that a term t is weakly innermost normalizing if $t \rightarrow_I s$ for some normal form s. A TRS \mathcal{R} is weakly innermost normalizing if every term t is weakly innermost normalizing.

Theorem 6.1 [12]. Let \mathcal{R} be a TRS such that every critical pair of \mathcal{R} is a trivial overlay.

(a) \mathcal{R} is terminating iff \mathcal{R} is weakly innermost normalizing.

(b) For any term t, t is terminating iff t is weakly innermost normalizing.

According to Theorem 6.1, if we can prove the decidability of weakly innermost normalizing then termination is decidable. We show that the set of all ground terms being weakly innermost normalizing is recognizable. From here on we assume that \mathcal{R} is a left-linear growing TRS.

We must construct a tree automaton which recognizes the set of all ground terms being weakly innermost normalizing. We start with the deterministic and complete tree automaton \mathcal{A}_{NF} by Comon [2] which accepts ground normal forms. The set $S_{\mathcal{R}}$ is defined as follows: $S_{\mathcal{R}} = \{ t \in T_\mathcal{R} \mid t \subseteq llg(\mathcal{R}), l \rightarrow r \in \mathcal{R} \}$. $S_{\mathcal{R}}$ is the smallest set such that $S_{\mathcal{R}} \subseteq S_{\mathcal{R}}$ and if $t, s \in S_{\mathcal{R}}$ and $t \uparrow s$ then $t \uparrow s \in S_{\mathcal{R}}$. $\mathcal{A}_{NF} = (F, Q_{NF}, Q_{NF}^f, \Delta_{NF})$ is defined by $Q_{NF} = \{ q_{\mathcal{R}} \mid t \in S_{\mathcal{R}}$ and t does not contain redexes $\} \cup \{ q_{\mathcal{R}} \mid q_{\mathcal{R}} \}$. $Q_{NF}^f = Q_{NF} \setminus \{ q_{\mathcal{R}} \}$, and Δ_{NF} consists of the following rules:

- $f(q_1, \ldots, q_n) \rightarrow q_t$ if $f(t_1, \ldots, t_n)$ is not a redex and t is maximal Ω-term w.r.t. \leq such that $t \leq f(t_1, \ldots, t_n)$ and $q_t \in Q_{NF}^f$.
- $f(q_1, \ldots, q_n) \rightarrow q_{\mathcal{R}}$ if $f(t_1, \ldots, t_n)$ is a redex.
- $f(q_1, \ldots, q_n) \rightarrow q_{\mathcal{R}}$ if $q_{\mathcal{R}} \in \{ q_1, \ldots, q_n \}$.

The following lemma shows that \mathcal{A}_{NF} recognizes the set of ground normal forms.

Lemma 6.1 [2]. Let $t \in T(F)$.

(i) \mathcal{A}_{NF} is deterministic and complete.

(ii) If $t \rightarrow_{\mathcal{A}_{NF}} q_\mathcal{R} \in Q_{NF}^f$ then t is a normal form, $s \leq t$ and $u \leq s$ for any $q_u \in Q_{NF}^f$ with $u \leq t$.

(iii) If $t \rightarrow_{\mathcal{A}_{NF}} q_{\mathcal{R}}$ then t is not a normal form.

We inductively construct tree automata $\mathcal{A}_0, \mathcal{A}_1, \ldots$ as follows. Let $\mathcal{A}_0 = (F, Q, Q_{NF}^f, \Delta_0) = (F, Q_{NF}^f, Q_{NF}^f, \Delta_{NF}) = \mathcal{A}_{NF}$. For $0 \leq i$, $\mathcal{A}_{i+1} = (F, Q, Q_{NF}^f, \Delta_{i+1})$ is obtained from $\mathcal{A}_i = (F, Q, Q_{NF}^f, \Delta_i)$ as
follows:

If there exist $q_1 \in Q^f$, \ldots, $q_n \in Q^f$, $f(l_1, \ldots, l_n) \rightarrow r \in R$ and $q \in Q$ such that

1. $f(t_1, \ldots, t_n) \Delta_1 \leq f(t_1, \ldots, t_n)$,

2. there exists a substitution $\theta : \mathcal{V} \rightarrow Q$ such that $r \theta \rightarrow^*_{A_k} q$ and $x \equiv l_j$ implies $x \theta = q_j$ for every $x \in r$ and $1 \leq j \leq n$,

3. $f(q_1, \ldots, q_n) \rightarrow q \notin \Delta_i$,

then $\Delta_{i+1} = \Delta_i \cup \{f(q_1, \ldots, q_n) \rightarrow q\}$.

Since the set of states is fixed, the number of new rules is bounded. Thus, the process of construction eventually stops with the resulting automaton $A_k = (F, Q, Q^f, \Delta_k)$ when there is no new rule to add. Note that A_1, \ldots, A_k are nondeterministic. In the following we prove that

$L(A_k) = \{t \in T(F) \mid t$ is weakly innermost normalizing$\}$.

Lemma 6.2. Let $t \in T(F)$. For any $0 \leq i \leq k$, if $t \rightarrow_t^* A_k q \in Q$ then $t \rightarrow_t^* s \rightarrow_s^+ A_{k+1} q$ for some $s \in T(F)$.

Proof. We prove the lemma by induction on i. **Base step.** Trivial. **Induction step.** Assume that $q_i \in Q^f, \ldots, q_n \in Q^f, f(l_1, \ldots, l_n) \rightarrow r \in R$ and $q \in Q$ satisfy the conditions of construction and Δ_i is obtained by adding the rule $f(q_i, \ldots, q_n) \rightarrow q_1$ to Δ_{i-1}. We use induction on the number m of applications of the rule $f(q_i, \ldots, q_n) \rightarrow q_1$ in the reduction $t \rightarrow_t^* A_k q$. If $m = 0$ then $t \rightarrow_t^* A_{k-1} q$. Thus it follows from induction hypothesis on i that $t \rightarrow_t^* s \rightarrow_s^* A_{k+1} q$ for some $s \in T(F)$. Let $m > 0$. Suppose that

$t \equiv t[f(l_1, \ldots, l_n)]_p \rightarrow_t^* A_{i-1}, t[f(q_1, \ldots, q_n)]_p \rightarrow_t^* A_i l[q_1]_p \rightarrow_t^* A_i q$.

For every $1 \leq j \leq n$, we obtain $u_j \in T(F)$ such that $t_j \rightarrow_t^* u_j \rightarrow_{A_{k+1}} q_j$ by applying induction hypothesis on i to $t_j \rightarrow_t^* A_{k-1} q_j$. According to Lemma 6.1 (ii), $f(s_1, \ldots, s_n) \leq f(u_1, \ldots, u_n)$ and u_1, \ldots, u_n are normal forms. Because we have $f(l_1, \ldots, l_n) \leq f(s_1, \ldots, s_n)$ by the condition (1), we obtain the following reduction sequence:

$f(l_1, \ldots, l_n) \rightarrow_t^* f(u_1, \ldots, u_n) \equiv f(l_1, \ldots, l_n) \sigma \rightarrow_t r \sigma$.

Let θ be a substitution which is satisfied in the condition (2) of construction. Then from the growingness of R we have $r \theta \rightarrow_{A_{k+1}} r \theta$ and hence $r \sigma \rightarrow_{A_{k+1}} q$. Applying induction hypothesis on m to $t[r \sigma]_p \rightarrow_{A_{k+1}} t[q_1]_p \rightarrow_{A_i} q$, we obtain $s \in T(F)$ such that $t[r \sigma]_p \rightarrow_t^* s \rightarrow_s^* A_{k+1} q$. Thus we have $t \rightarrow_t^* s \rightarrow_s^* A_{k+1} q$ since $t \rightarrow_t r \sigma$.

Lemma 6.3. $L(A_k) \subseteq \{t \in T(F) \mid t$ is weakly innermost normalizing$\}$.

Proof. From Lemmas 6.1 and 6.2.

Lemma 6.4. Let $t \in T(F)$ be a normal form. Then there exists exactly one $q \in Q$ such that $t \rightarrow_t^* A_k q$. Furthermore, q is the state q_t in Q^f such that $s \leq t$ and $u \leq s$ for any $q_u \in Q^f$ with $u \leq t$.

Proof. By Lemma 6.2, $t \rightarrow_t^* A_k q$ iff $t \rightarrow_t^* A_{k+1} q$. Thus, from Lemma 6.1 the claim follows.

Lemma 6.5. $L(A_k) \supseteq \{t \in T(F) \mid t$ is weakly innermost normalizing$\}$.

Proof. Assume that $t \rightarrow_t^* s$ for some normal form s. We show that $t \in L(A_k)$ by induction on the length m of this reduction. Let $m = 0$. Then t is a normal form and hence $t \in L(A_{k+1}) \subseteq L(A_k)$. Let $m > 0$. We assume that

$t \equiv t[f(l_1, \ldots, l_n)\sigma]_p \rightarrow_t r \sigma \rightarrow_t s$.
normalizing is recognized by a tree automaton. It is decidable whether every ground term is weakly innermost normalizing. From Lemmas 2.1, 2.2, and 6.6, it is left-linear term rewriting system is in EXPTIME. Huet and Lévy orthogonal term rewriting systems having a decidable call-by-need strategy, of which is left-linear growing, of this result have been presented: shown that left-linear growing term rewriting systems preserve the recognizability. Several applications systems, linear semimonadic rewriting systems, and right-linear monadic rewriting system. We have shallow term rewriting systems, linear growing term rewriting systems, right-linear monadic rewriting system. We have introduced the notion of left-linear growing term rewrite systems, which (or the inverse of which) is a generalization of well-known term rewriting systems: ground term rewriting systems, linear shallow term rewriting systems, linear growing term rewriting systems, right-linear monadic rewriting systems, and right-linear semimonadic rewriting system. We have shown that left-linear growing term rewriting systems preserve the recognizability. Several applications of this result have been presented:

1. The decidability for the reachability and the joinability of a term rewriting system the inverse of which is left-linear growing.
2. A better decidable approximation of term rewriting systems, which extends the class of orthogonal term rewriting systems having a decidable call-by-need strategy,
3. The decidability for termination of almost orthogonal growing term rewriting systems.

We now raise some open problems.

1. Considering complexity issues: Comon [2] showed that deciding strong sequentiality of any left-linear term rewriting system is in EXPTIME. Huet and Lévy [14] showed that finding strongly sequential needed redex is in linear time of the size of term. Oyamaguchi [21] showed that finding NV-sequential needed redex is in polynomial time of the size of the system and of the term. It is still open whether finding left-linear growing needed redex is in polynomial time.
2. The decidability for termination of arbitrary left-linear growing term rewriting systems without almost orthogonality: We believe that this conjecture is positive, though we have never proven it. In the proof presented in Section 6, almost orthogonality is essential because it guarantees the equivalence of termination and weakly innermost normalizing, which is the point for applying tree automaton techniques. Thus different proof techniques seem necessary.
ACKNOWLEDGMENT

We thank the anonymous referees for their useful comments, which improved the presentation of our results.

REFERENCES