
Discrete Applied Mathematics 10 (1985) 155-164

North-Holland

155

ANALYSIS OF A LINEAR PROGRAMMING HEURISTIC FOR

SCHEDULING UNRELATED PARALLEL MACHINES

C.N. POTTS

University of Keele, K&e, Staffordshire ST5 5BG, U.K.

Received 15 January 1984

Each of n jobs is to be processed without interruption on one of m unrelated parallel machines.

The objective is to minimize the maximum completion time. A heuristic method is presented, the

first stage of which uses linear programming to form a partial schedule leaving at most m - 1 jobs

unscheduled: the second stage schedules these m- 1 jobs using an enumerative method. For

m 2 3, it is shown that the heuristic has a (best possible) worst-case performance ratio of 2 and

has a computational requirement which is polynomial in n although it is exponential in tn. For

m= 2, it is shown that the heuristic has a (best possible) worst-case performance ratio of

(1 +11x)/2 and requires linear time. A modified version of the heuristic is presented for m=2

which is shown to hake a (best possible) worst-case performance ratio of 3/2 while still requiring

linear time.

1. Introduction

The problem that is considered in this paper of scheduling jobs on unrelated

parallel machines may be stated as follows. Each of n jobs (numbered 1, . . . , n) is

to be processed without interruption on one of m machines (numbered 1, . . . , m). At

any time, each machine can process at most one job. Job j (j= 1, . . . , n) becomes

available for processing at time zero and requires a positive processing time pii if

it is scheduled on machine i (i= 1, . . . , m). The objective is to schedule the jobs so

that the maximum completion time is minimized.

When p,] =pj (i= 1, m; j= 1, n), where the processing requirement pJ of

job j is the same for each machine, then the machines are identical. When P;j =

pi/q, (i= 1 , ..., m;j=l , . . . , n), where pJ is the processing requirement of job j and

4; is the speed of machine i, then the machines are uniform. Because in our general

problem the matrix of processing times has arbitrary positive entries, the machines

are unrelated. Karp [9] shows that for the case of two identical machines the problem

is NP-hard which indicates that the existence of a polynomial bounded algorithm
to solve the problem is highly unlikely. Consequently, for parallel machine scheduling

problems of this type, most researchers have studied heuristic methods which

provide an approximate solution. Suppose that Cz,, denotes the minimum value of

the maximum completion time, while Cg,, denotes the value of the maximum com-

pletion time when the jobs are scheduled using a certain heuristic H. If, whatever

the problem data, CH m,,/C,&, 5 Q for a specified constant Q, where Q is as small as

0166-218X/85/$3.30 :i= 1985, Elsevier Science Publishers B.V. (North-Holland)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82811283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 C.N. Potts

possible, then Q is called the worst-case performance ratio of H. A survey and

discussion of the worst-case analysis of heuristics are given by Fisher [3] and Garey

et al. [4].

Horowitz and Sahni [7] present algorithms A, that require O(n(n’/~)“~‘) time for

which C,$,/C* maxi 1 +E. Several heuristics are analyzed by Ibarra and Kim [8], the

most promising of which is the earliest completion time heuristic ECT which

requires O(mn2) time. In heuristic ECT, at each stage an unscheduled job is chosen

so that when it is scheduled on the machine which can complete it earliest, its com-

pletion time is as smali as possible. This chosen job is then scheduled on that

machine that can complete it earliest and the process is repeated until a complete

schedule is obtained. Ibarra and Kim show that CE$;,‘/C&, 5 m and construct an

example for which C’.L‘T/C* nldX map can be arbitrarily close to 2. Davis and Jaffe [2]

limit the worst-case performance ratio of ECT by constructing an example for which

C~~~/C&, = 1 + log, m when m is a power of 2. For the special case m = 2, Ibarra

and Kim present a heuristic that has a worst-case performance ratio of (1 + 1/5)/2

and which requires O(n log n) time. Davis and Jaffe propose several heuristics each

of which is shown to have a worst-case performance ratio of O(fi). Their strongest

result shows that the worst-case performance ratio of one of the heuristics is

bounded above by 3fi/2 + 2 + 1/(2fi).

In Section 2 of this paper we present a heuristic, the first stage of which uses linear

programming to form a partial schedule leaving at most m - 1 jobs unscheduled; the

second stage schedules these m - 1 jobs using an enumerative method. It is shown

that this heuristic has a worst-case performance ratio of 2 when m ~3. Section 3 pro-

vides an analysis of the heuristic for the case m = 2 and shows that it has a worst-case

performance ratio of (1 +1/5)/2 which, through a minor modification to the

heuristic, can be reduced to 3/2. Some concluding remarks are given in Section 4.

2. The linear programming heuristic

It is clear that if a given schedule is modified by reordering the jobs on any of

the machines, then the maximum completion time is unaltered. Thus, our scheduling

problem reduces to one of assigning jobs to machines.

A formulation of the problem is presented which uses zero-one variables xi,

(i=l,..., m; j=l,..., n), where

i

1 x = if job j is assigned to machine i,
lJ 0 otherwise.

and the variable C,,, which represents the maximum completion time. We refer to

the xii as assignment variables. The problem can be written as

minimize C,,, ,

Analysis of a linear programming heuristic 157

subject to i p,-xi, 5 C,,, (i= l,...,m), (1)
,=I

,g, Xi] = 1 (j= 1 1n). (2)

xij E {Of l} (i=l,..., m; j=l,..., n). (3)

Constraints (1) ensure that C,,,,, is at least as large as the total processing time on

any machine, while constraints (2) and (3) ensure that each job is processed on

exactly one machine. Let C&, denote the value of an optimal solution.

Consider the linear programming relaxation in which constraints (3) are removed

andreplacedbyxij>O(i=l ,..., m;j=l,..., n). (The restriction X;j I 1 (i = 1, . . . , m;
j=l 3 n) follows from (2).) The effect of relaxing the integrality conditions in this

way is to allow the processing of a job to be shared amongst the machines. In

contrast to the corresponding preemptive scheduling problem, however, several

machines may simultaneously process the same job. A partial schedule is obtained

from the solution of the linear programming relaxation by assigning job j to

machine i whenever xi1 = 1 (i= 1, m; j= 1, n). Any jobs not appearing in this

partial schedule are called fractional jobs due to the non-integrality of the corres-

ponding assignment variables. If we are fortunate, the solution of the linear pro-

gramming relaxation and of the original problem are identical in which case the

partial schedule is a complete optimal schedule and there are no fractional jobs. The

following analysis gives, however, an upper bound on the number of fractional

jobs.

The linear programming problem has m+n constraints in addition to the non-

negativity conditions. Therefore, there exists an optimal basic solution having m + n
basic variables which may take positive values while the other non-basic variables

take the value zero. The simplex method always generates a basic solution of this

form. However, should an alternative linear programming algorithm be applied to

yield an optimal solution in which more than m + n variables take positive values,

then a polynomial time procedure (for example see Hadley [6]) can be applied to

transform the solution into an optimal basic solution. In an optimal basic solution,

we have C,,, > 0 which implies that C,,, is a basic variable. It follows that at most

m + n - 1 of the assignment variables are basic. (It can be shown that each constraint

(1) is satisfied as an equality which implies that exactly m + n - 1 of the assignment

variables are basic.) Since no pair of constraints (2) contains the same variable, it

is possible to select a set B of n basic assignment variables corresponding to these

constraints such that each constraint (2) contains exactly one basic variable from

this set. There are at most a further m - 1 basic assignment variables. Let B’ denote

the set of these further basic assignment variables. When n 2 m - 1, at most m - 1

of the constraints (2) contain a basic variable from B’ in addition to a basic variable

from B, while at least n-m + 1 of them contain one basic variable from B and no

basic variable from B’. In those constraints containing exactly one basic variable,

the basic variable takes the value one since the other non-basic variables each take

158 C.N. Potts

the value zero. Thus, for n 2 m - 1, at least n - m + 1 variables take the value one

and consequently at least n -m + 1 jobs appear in the partial schedule, leaving at

most m - 1 jobs unscheduled.

A complete description of the algorithm is presented next. The linear program-

ming relaxation is solved first and, if necessary, the solution is then transformed

into an optimal basic solution. A partial schedule is formed from those assignment

variables which take the value one. (For the case n I m - 1, the partial schedule may

be empty.) A complete schedule is produced by appending the fractional jobs to the

partial schedule. All possible assignments of fractional jobs to machines are con-

sidered and one which gives a complete schedule having the smallest maximum com-

pletion time is chosen. This heuristic which consists of linear programming and

enumeration is referred to as heuristic LPE.

We now discuss the computational complexity of heuristic LPE. The linear pro-

gramming problem involving mn+ 1 variables and m+n constraints can be poly-

nomially solved by Khachian’s algorithm [lo]. Any transformation of the solution

to a basic solution also requires polynomial time. Since there are at most m - 1 frac-

tional jobs which need to be assigned to machines using complete enumeration, a

maximum of mm-’ schedules are generated and compared in the second stage of

the heuristic. Thus, for fixed m the number of computational steps required by the

heuristic is polynomial, although for arbitrary m an exponential number of steps are

required.

The worst-case performance ratio of our heuristic is derived next. In this section

the case mz3 is considered, while in the next section we analyze the case m =2.

Theorem 1. Ck:F/C* max I 2 nnd, for m 2 3, this bound is the best possible.

Proof. Let C Lp max denote the value of an optimal solution of the linear programming

relaxation and let CE,, denote the maximum completion time of an optimal

schedule of the fractional jobs when considered in isolation. Since the linear pro-

gramming relaxation provides a lower bound, we have

C&t 2 C:, . (4)

Also, an optimal schedule of the fractional jobs provides a lower bound on the

maximum completion time of a full schedule. Therefore,

c;,, 2 c;,, . (5)

One possible schedule that could be generated by heuristic LPE is to append the

optimal schedule of the fractional jobs considered in isolation to the partial schedule

obtained from the solution of the linear programming relaxation. The schedule

actually selected by heuristic LPE is at least as good since the fractional jobs are

assigned to give a maximum completion time which is as small as possible. Thus,

Analysis of a linear programming heuristic 159

It follows from (4), (5) and (6) that C~~~/C,&,r2.

To show that this bound is the best possible we consider an example in which there

are m uniform machines. There are m jobs and Pij =pj/qi (i, j = 1,. m), where

qi=m-1, qi=l for i=2,..., m, pl=(m-1)p and pj=p for j=2,...,m for any

positive p. An optimal schedule is obtained by assigning job j to machine j for

j=l 7 m giving C$,, =p. A solution (not unique) of the linear programming

relaxation is xii=O, xi,=1 (j=2 ,..., m), x;,=l/(m-1) (i=2 ,..., m) and X;j=O

(i, j = 2 , . . . , m). The partial schedule assigns jobs 2, m to machine 1 and job 1 is

the fractional job. Enumeration shows that job 1 is scheduled on machine 1 to give

c ;E = 2p. Therefore, Ci:E/C&, = 2 as required. 0

It should be noted that although the bound on C~~~/C&,, given in Theorem 1

is valid for m = 2, it is not in this case the best possible. For the example presented

in the proof, when m = 2 the enumeration procedure is not required since there are

no fractional jobs.

For practical purposes the linear programming problem would be solved by the

simplex method rather than Khachian’s algorithm. Because of its simple structure,

the number of simplex iterations required to solve the problem is unlikely to be

large. In the second stage of the heuristic, the complete enumeration procedure can

be replaced by a branch and bound algorithm. Such use of a bounding procedure

to limit the search reduces computational requirements for many problems. A

branch and bound algorithm has the further advantage that, if desired, computation

can be terminated before optimality is reached. Since an optimal solution is often

generated at an early stage of a branch and bound algorithm while the remaining

computation verifies optimality, early termination of the algorithm does not neces-

sarily detract from its performance although the guarantee of Theorem 1 becomes

invalid.

An alternative heuristic LPH can be designed by scheduling them - 1 or fewer frac-

tional jobs using some heuristic H instead of by complete enumeration. Then, using

the same arguments as in the proof of Theorem 1, we deduce that C,r$F/C&,<

1 + c,“,,/c;,, . Ideally, heuristic H should be capable of scheduling m - 1 jobs in

polynomial time and, for (m - l)-job scheduling problems, have a low worst-case

performance ratio. Unfortunately, in terms of worst-case performance ratios, there

is no apparent advantage in incorporating the heuristics of Ibarra and Kim [8] or

of Davis and Jaffe [2] into LPH rather than using them alone. Further research is

required to find a suitable heuristic H for use in LPH.

In spite of its extra computational requirements, the worst-case performance ratio

of heuristic LPE, which is independent of m, makes it, for many applications, more

attractive than the heuristics of Ibarra and Kim [8] and of Davis and Jaffe [2]. The

exponential computational requirement of O(n(n*/c)“-‘) time for the approxima-

tion scheme of Horowitz and Sahni [7] deems it to be more restrictive for larger

values of n than heuristic LPE. We conclude that there are situations in which

heuristic LPE would be used in preference to these other heuristic methods.

160 C.N. Ports

3. Analysis of heuristic LPE for m=2

All the results and the discussion in this section are confined to the problem of

scheduling two unrelated machines. We commence the analysis of heuristic LPE by

describing the efficient method of Gonzalez et al. [5] for solving the linear program-

ming relaxation. The following notation is adopted. For any set of jobs S, let p,(S)

denote the total processing time on machine i (i= 1,2) of the jobs of S.

The first step in solving the linear programming problem is to compute the ratio

p,J/pz,, for each jobj. It is assumed that all ratios are distinct; if for jobj, and job

.iz, where _i, <.i,, a tie occurs, then the ratio for job j, is considered to be smaller.

Then, job k is found together with the corresponding sets S,, = {j 1 p,J/pzj <

P,~Px) and SD = 1.i / P,j/P2/ > P,~PM) such that P,(S,k) +fP,k 2 P2(&) and

PI (S,,) < P2ts2k) +P2k. Job k is called the dividing job. Gonzalez et al. [5] show

that the linear programming problem is solved by setting

c,,~ = (PlkP2(S2k) +t2kP,(Slk) +PlkPZk)/(P,k +P2kh

x,; = 1, x2/ = 0 for jES,k,

x, j = 0, x2, = 1 for j E SZk,

Xlk = (PZ(S2k)+tPZk-P,(S,k))/(P,k+PZk),

X2k = (P,(s,k) +Plk -P2(S2k))/(P,k +PZk).

Thus, for the special case in which p,(S,k) +p,k ‘p2(Szk), there is no fractional job

and the partial schedule in which the jobs of S,k U {k} are assigned to machine 1

and the jobs of Szk are assigned to machine 2 is a complete optimal schedule. On

the other hand, when p1 (S,,) + p,k >p2(SZk), job k is a fractional job and the partial

schedule assigns the jobs of S& to machine i (i = 1,2): the complete schedule obtained

by assigning job k to machine 1 and that obtained by assigning it to machine 2 are

compared thereby giving a complete schedule with maximum completion time

We show next that the dividing job k and consequently the sets S,k and S2, can

be found in linear time. All the ratios ~,~/p~~ can be computed in O(n) time and

job I is found together with sets S,, and SzI such that IS,,1 = 1S2,1 or IS,,1 = /S2,1 - 1.

This can be implemented in O(n) time using a median finding routine [l, 131. If

p,(S,/) +p,, =p2(S2,), then I is the dividing job and we proceed no further. On the

other hand, if p,(S,,) +p,, >p2(S2,), the search for the dividing job is restricted to

the jobs of S,, U {/} with the jobs of S2, forming a subset of S2, and if p,(S,,) +p,/<

p2(S2,), the search for the dividing job is restricted to the jobs of S2, with the jobs

of S,, U {/} forming a subset of S,,. In either case, the search for the dividing job

k is restricted to a subset of jobs which contains one half of the original jobs. Re-

applying the procedure requires one half of the computational steps required by the

first application and restricts the search to a subset of jobs containing one quarter

Analysis of a linear programming heuristic 161

of the original jobs. After O(log n) applications of the procedure that are carried

out over sets which contain n, n/2, n/4, . . . jobs, job k is found in O(n) time.

We proceed by deriving the worst-case performance ratio of heuristic LPE.

Theorem 2. For m = 2, ChIF/C* max I (1 + 1/5)/2 and this bound is the best possible.

Proof. As before, let C,!$, denote the value of the solution of the linear program-

ming relaxation obtained using the procedure described above. The corresponding

partial schedule of jobs is completed on machine 1 at time P,(S,~)= C,,$.-p,,x,,
and is completed on machine 2 at time pl(&) = C,,$, -p2kxZk. Since x,k +xzk = 1,

we have
c LPE = C,L,!,+min{p,,(l -x,k),p2kx,k}. max (7)

Clearly, the total processing time of job k on machine 2 as required in the solution

of the linear programming problem cannot exceed C,,&. Therefore,

P2k(l -X,k) 5 (%x.

Substituting in (7) yields

c g’,,“s C,KX+min(p,,(l -x,k),x,kc~~,/(l-x,k)).

Assume without loss of generality that p,ks&k. Thenp,kI C’&, and, as in Section

2, C,,& 5 C&,, . Hence,

c ~~~/C~,,~1+min{l-X,k,X,k/(l-X,k)}.

For o%x,ki 1, 1 -x,k is a decreasing function and x,/;/(1 -x,k) is an increasing

function. Thus the minimization term takes its maximum value when 1 -x,k =

x,,/(1 -x,k). This occurs when x,k = (3 -l/3)/2 to give

c;:;/c;,, I (1 + 1/5)/2,

as required.

We again consider an example with uniform machines to show that this bound

is the best possible. There are 2 jobs with p,, =(-I +1/5)p/2, ~,~=p, p2, =p and

pz2 = (1 + fl)p/2 for any positive p. The optimal schedule assigns job 1 to machine

2 and assigns job 2 to machine 1 to give C,*,,= p. The heuristic chooses k = 2 with

S,,={l} and &k=@. Thus, CyaF=(1+1/5)p/2 to give C~~~/C~,,=(l+1/5)/2. 0

For two machines our heuristic is similar to the one of Ibarra and Kim [S] and

has the same worst-case performance ratio. However, the Ibarra and Kim heuristic

does require the jobs to be ordered according to the ratios p,j/pzJ. Thus, its com-

putational complexity is O(n log n) which makes it less attractive than our method

which can be implemented in O(n) time.

An obvious way in which the worst-case performance ratio might be improved is

to first apply the heuristic as described above and, assuming that job k is a fractional

job, to then reapply it to the modified problem which has the added constraint that

162 C.N. Potts

job k is assigned to the machine on which it has the smaller processing time. Assume

that the machines are renumbered, if necessary, so that prk<&k. To force job k to

be assigned to machine 1, we set p2k = M, where A4 is sufficiently large to ensure

that the ratio for job k is smaller than all other ratios. Then, heuristic LPE is re-

applied to yield a dividing job k’ with corresponding sets St,, and S,,,. The better

of the schedules generated by the two applications of heuristic LPE is selected.

Although two applications of heuristic LPE are necessary, this modified heuristic,

which we denote by LPE’, still requires O(n) time.

The worst-case performance ratio of heuristic LPE’ is derived next.

Theorem 3. C,!$F’ /C&,, 5 3/2 and this bound is the best possible.

Proof. Consider first the case in which there exists an optimal schedule in which

job k is assigned to machine 2. Since the schedule generated by heuristic LPE’ is at

least as good as the one generated by heuristic LPE, we have, as in the proof of

Theorem 2, that

Recall that the machines are renumbered so that ptklpIk. Because there exists

an optimal schedule in which job k is assigned to machine 2, it follows that

C&txrP2kzP,k. Also C&, 2 C$,. Therefore,

C ~~‘/C~,,Il+min{l-Xlk,Xlk}.

It is clear that the minimization term takes its maximum value when X’rk = f/2 to

give CKF’ /C&, I 3/2 as required for this first case.

We now consider the alternative case in which there exists an optimal schedule

in which job k is assigned to machine 1. For the second application of heuristic LPE

let job k’ be the dividing job and let Cg; denote the value of the solution of the

second linear programming problem. For the special case in which k’= k, it is clear

that the second application of heuristic LPE assigns job k to machine 1 and assigns

all other jobs to machine 2 to give a schedule with a maximum completion time of

ptk. Since pth_(&k, this schedule is optimal. Consequently, we may assume hence-

forth that k#k’. It follows from the description of heuristic LPE’ that

C k:F’ 5 min { Ck& +P,k(l -x,k), ci&+P2kx,k,

C ;t;+tPlk’(l -Xlk’), Cr%;+P2k’Xlk’}- (8)

We have C&, L Ck:X and, because in this case forcing job k to be sequenced on

machine 1 does not affect the maximum completion time, C,&, L CFai. Suppose

first that there exists an optimal schedule in which job k’ is also assigned to machine

1. Since job k and job k’ are both assigned to machine 1 in an optimal schedule,

it follows that

(9)

Analysis of a linear programming heuristic

We have from (8) that

163

The right hand side takes its maximum value when xik =xtkZ = 0. Using (9) it follows

that

CZ’~min{G,,+p,,, 2G,,-pr,}.

The minimization takes its maximum value when prk = (1/2)C&, to yield

C ~~‘/C&,,<3/2. We finally analyze the case in which there exists an optimal

schedule in which job k is assigned to machine 1 and job k’ is assigned to machine

2. In the second application of heuristic LPE we observe that k’eSlk since the

second dividing job is always chosen from the set SrkU {k}. Thus, prk’/pzk’<

prk/&k which implies that prk’<p2k’. From (8) we have

c LPE’/C&,X 5 1 + min{l -Xrk,,Xrk’}. max

The minimization takes its maximum value whenxlkS= l/2 to give Cg,“iC&,~3/2.

Thus, we have established that C~~‘/C,&,<3/2 in all cases.

The following example with three jobs demonstrates that the bound is the best

possible. The processing times are p II =~/2, pr2=pV P~x=P/~, ~21 =P, P~I=P and
p23=p/2 for any positive p. The optimal schedule assigns job 1 and job 3 to

machine 1 and assigns job 2 to machine 2 to give C&,=p. The first application of

heuristic LPE gives k=2 with sik= (1) and &k= 13) with CzF= 3p/2. After

setting pZ2 = A4, for large A4, the second application of heuristic LPE gives k’= 1

with S,,,= 12) and &‘= {3}. For both assignments of job 1, a schedule with a

maximum completion time of 3~12 results. Thus, C(;p,~‘/C~,,= 3/2 as required. 0

Further attempts to improve the heuristic are also possible. For example, a third

schedule could be generated by setting p]k to be large and resetting p2k to its origi-

nal value and reapplying heuristic LPE, thereafter selecting the best of the three

schedules generated. Further schedules could also be generated by adjusting the

processing times of both job k and job k’ before reapplying heuristic LPE. Many

variations on this theme are possible. Unfortunately, the worst-case analysis of these

further modifications does not appear so straightforward.

4. Concluding remarks

The linear programming heuristic has a computational requirement that is poly-

nomial in n although it is exponential in m. When m 2 3, it has a worst-case perfor-

mance ratio of 2 which represents a substantial improvement on the heuristic

methods of Ibarra and Kim [8] and Davis and Jaffe [2] which both have worst-case

164 C.N. Potts

performance ratios that are functions of m. Unfortunately, the method does not

appear to generalize satisfactorily to problems in which jobs have release dates or

deadlines, or to problems in which there are precedence constraints on the jobs. For

these more general problems, there are too many constraints and consequently too

many basic variables in the linear programming relaxation to guarantee that a suffi-

ciently large number of jobs can be assigned to machines in the partial schedule.

When applied to two machines, the heuristic can be modified to give a worst-case

performance ratio of 3/2 while requiring linear time. This represents an improve-

ment on the previous most effective heuristic of Ibarra and Kim [S] which requires

O(n log n) time and has a worst-case performance ratio of (1-t fi)/2. The idea that

is used in Section 3 of applying a heuristic to a problem after which the problem

is modified and the heuristic reapplied is a useful technique for obtaining a modified

heuristic with a superior worst-case performance. The technique has been success-

fully applied to problems in which jobs have release dates and are either sequenced

on a single machine [ll] or have to pass through a two-machine flow-shop [12].

Acknowledgement

The author is grateful to B.J. Lageweg and J.K. Lenstra for useful discussions

about the implementation of the heuristic for the case m = 2.

References

[I] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest and R.E. Tarjan, Time bounds for selection, J. Com-

put. System Sci. 7 (1973) 448-461.

[2] E. Davis and J.M. Jaffe, Algorithms for scheduling tasks on unrelated processors, J. Assoc. Com-
put. Mach. 2X (1981) 721-736.

[3] M.L. Fisher, Worst-case analysis of heuristic algorithms, Management Sci. 26 (1980) 1-17.

[4] M.R. Carey, R.L. Graham and D.S. Johnson, Performance guarantees for scheduling algorithms,

Oper. Res. 26 (1978) 3-21.

(51 T. Gowalez, E.L. Lawler and S. Sahni, Optimal preemptive scheduling of two unrelated parallel

processors in linear time, J. Assoc. Comput. Mach., to appear.

[6] G. Hadley, Linear Programming (Addison-Wesley, Reading, MA, 1962).

[7] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling nonidentical pro-

cessors, _I. Assoc. Comput. Mach. 23 (1976) 317-327.

[8] O.H. lbarra and C.E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical

processors, J. Assoc. Comput. Mach. 24 (1977) 280-289.

[9] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,

Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.

[IO] L.C. Khachian, A polynomial time algorithm in linear programming, Soviet Math. Dokl. 20 (1979)

191-194.

[l l] C.N. Potts, Analysis of a heuristic for one machine sequencing with release dates and delivery times,

Oper. Res. 28 (1980) 1436-1441.

[I21 C.N. Potts, Analysis of heuristics for two-machine flow-shop sequencing subject to release dates,

Report BW 150, Mathematisch Centrum, Amsterdam, 1981.

[13] A. Schonhage, M. Paterson and M. Pippenger, Finding the median, J. Comput. Systems Sci. 13

(1976) 189-199.

