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Abstract

We introduce notions of finiteness obstruction, Euler characteristic, L2-Euler characteristic, and Möbius
inversion for wide classes of categories. The finiteness obstruction of a category Γ of type (FPR) is a
class in the projective class group K0(RΓ ); the functorial Euler characteristic and functorial L2-Euler
characteristic are respectively its RΓ -rank and L2-rank. We also extend the second author’s K-theoretic
Möbius inversion from finite categories to quasi-finite categories. Our main example is the proper orbit
category, for which these invariants are established notions in the geometry and topology of classifying
spaces for proper group actions. Baez and Dolan’s groupoid cardinality and Leinster’s Euler characteristic
are special cases of the L2-Euler characteristic. Some of Leinster’s results on Möbius–Rota inversion are
special cases of the K-theoretic Möbius inversion.
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0. Introduction and statement of results

The Euler characteristic is one of the earliest and most elementary homotopy invariants.
Though purely combinatorially defined for finite simplicial complexes as the alternating sum of
the numbers of simplices in each dimension, the Euler characteristic has remarkable connections
to geometry. For example, for closed connected orientable surfaces M , the Euler characteristic
determines the genus: g = 1 − 1

2χ(M). For such M , if χ(M) is negative, then M admits a hy-
perbolic metric. More substantially, the celebrated Gauss–Bonnet Theorem computes the Euler
characteristic in terms of curvature. A further example of geometry in the Euler characteristic is
provided by the Hopf–Singer conjecture.

Of course, Euler characteristics are not only defined for finite simplicial complexes or man-
ifolds, but also for a great variety of objects, such as equivariant spaces, orbifolds, or finite
posets. Baez and Dolan considered in [2] an Euler characteristic (groupoid cardinality) for finite
groupoids and certain infinite ones, such as the groupoid of finite sets. Leinster and Berger–
Leinster have considered Euler characteristics not just of finite posets and groupoids, but more
generally of finite categories in [13] and [7]. If a finite category admits both a weighting and
coweighting, then it admits an Euler characteristic in the sense of Leinster.

In the present paper, we define Euler characteristics for wide classes of categories, pro-
vide a unified conceptual framework in terms of finiteness obstructions and projective class
groups, and extract geometric and algebraic information from our invariants in certain cases.
This obstruction-theoretic framework works well for both finite and infinite categories. Our main
example is the proper orbit category of a group G. In this case, our invariants are established
geometric invariants of the classifying space for proper G-actions. We also extend the sec-
ond author’s K-theoretic Möbius inversion from finite EI-categories to quasi-finite EI-categories
(a category Γ is said to be EI if each endomorphism in Γ is an isomorphism). The K-theoretic
Möbius inversion does not require the categories in question to be skeletal, unlike the Möbius
inversion of Leinster [13]. Several of the results of [13] are special cases.

Our point of departure is the theory of projective modules over a category and the associated
projective class group. Let Γ be a small category, and R an associative commutative ring with
identity. An RΓ -module is a functor from Γ op to the abelian category of left R-modules. If Γ

is a group G viewed as a one-object category, then an RΓ -module is nothing more than a right
RG-module. The category MOD-RΓ of RΓ -modules is an abelian category, and therefore we
automatically have the notions of projective RΓ -module, chain complexes of RΓ -modules, and
resolutions of RΓ -modules. The finiteness obstruction, whenever it exists, lives in the projective
class group K0(RΓ ), which is the free abelian group on the isomorphism classes of finitely gen-
erated projective RΓ -modules modulo short exact sequences. We say that Γ is of type (FPR)
if the constant RΓ -module R :Γ op → R-MOD admits a resolution by finitely generated pro-
jective RΓ -modules in which only finitely many of the RΓ -modules are non-zero. If Γ is of
type (FPR), the finiteness obstruction o(Γ ;R) ∈ K0(RΓ ) is the alternating sum of the classes
of modules appearing in a finite projective resolution of R. For example, if Γ is a finite group
of order invertible in R, then R is itself a projective RΓ -module, R provides us with a finite
projective resolution of R, and [R] is the finiteness obstruction o(Γ ;R). Further examples of
categories of type (FPR) are provided by any finite EI-category such that |aut(x)| is invertible
in R for each object x, and any category Γ which admits a finite Γ -CW -model for EΓ . The
basics of RΓ -modules and finiteness obstructions are discussed in Sections 1 and 2.

To obtain the Euler characteristic and the L2-Euler characteristic from the finiteness obstruc-
tion, we use Lück’s Splitting of K0 [15, Theorem 10.34 on page 196], and two notions of rank
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for RΓ -modules: the RΓ -rank rkRΓ and the L2-rank rk(2)
Γ . In the case that every endomorphism

in Γ is an isomorphism, that is, Γ is an EI-category, Lück constructed in [15] the natural splitting
isomorphism

S :K0(RΓ ) → SplitK0(RΓ ) :=
⊕

x∈iso(Γ )

K0
(
R aut(x)

)
and its natural inverse E, called extension. In Section 3 we recall the splitting (S,E), and prove
that S remains a left inverse to E in the more general case of directly finite Γ . Let Sx denote the x-
component of S and let U(Γ ) denote the free abelian group on the isomorphism classes of objects
of Γ . The RΓ -rank of a finitely generated RΓ -module M is the element rkRΓ M ∈ U(Γ ) which
is rkR(SxM ⊗R aut(x) R) at x ∈ iso(Γ ). This induces a homomorphism rkRΓ :K0(RΓ ) → U(Γ ).
If Γ is of type (FPR), we define the functorial Euler characteristic χf (Γ ;R) to be the image of
the finiteness obstruction o(Γ ;R) under rkRΓ . The sum of the components of χf (Γ ;R) is called
the Euler characteristic of Γ , denoted by χ(Γ ;R). Indeed, if R is Noetherian, and Γ is directly
finite in addition to type (FPR), then χ(Γ ;R) coincides with the topological Euler characteristic
χ(BΓ ;R). For example, if Γ is a finite group, then χf (Γ ;Q) is 1, and so is the rational Euler
characteristic. In Section 4 we treat the topological Euler characteristic χ(BΓ ;R), the RΓ -rank
rkRΓ , the functorial Euler characteristic χf (Γ ;R), and the Euler characteristic χ(Γ ;R).

To obtain the L2-Euler characteristic from the finiteness obstruction using the splitting functor
Sx and the L2-rank rk(2)

Γ , we need some elementary theory of finite von Neumann algebras.
For a group G, the group von Neumann algebra of G is the algebra of G-equivariant bounded
operators �2(G) → �2(G), which we denote by N (G). If G is a finite group, N (G) is simply
the group ring CG. The von Neumann dimension for N (G)-modules is the unique function
dimN (G) satisfying Hattori–Stallings rank, additivity, cofinality, and continuity as recalled in
Theorem 5.2. In the case of a finite group G, the von Neumann dimension of a CG-module
is the complex dimension divided by |G|. The L2-rank of a finitely generated CΓ -module M

is the element rk(2)
Γ M ∈ U(Γ ) ⊗Z R which is dimN (aut(x))(SxM ⊗C aut(x) N (aut(x))) at x ∈

iso(Γ ). This induces a homomorphism rk(2)
Γ :K0(RΓ ) → U(Γ ) ⊗Z R. If Γ is of type (FPC),

the functorial L2-Euler characteristic χ
(2)
f (Γ ) is the image of the finiteness obstruction o(Γ ;C)

under rk(2)
Γ . The L2-Euler characteristic χ(2)(Γ ) is the sum of the components of χ

(2)
f (Γ ).

For example, if Γ is a finite groupoid of type (FPC), its functorial L2-Euler characteristic has
at x the value 1/|aut(x)|, and the L2-Euler characteristic is the sum of these. This agrees with
the groupoid cardinality of Baez and Dolan [2] and also Leinster’s Euler characteristic in the
case of finite groupoids. If Γ is directly finite and of type (FFZ), and R is Noetherian, then
χ(BΓ ;R) = χ(Γ ;R) = χ(2)(Γ ). In Section 5 we review the necessary prerequisites from the
theory of finite von Neumann algebras, and introduce the L2-rank rk(2)

Γ , the functorial L2-Euler

characteristic χ
(2)
f (Γ ), and the L2-Euler characteristic χ(2)(Γ ). These are defined for categories

of type (L2), a slightly weaker requirement than type (FPC).
The invariants we introduce in this paper have many desirable properties. The finiteness ob-

struction, functorial Euler characteristic, Euler characteristic, functorial L2-Euler characteristic,
and L2-Euler characteristic are all invariant under equivalence of categories and are compatible
with finite products, finite coproducts, and homotopy colimits (see Fiore, Lück and Sauer [12]
for the compatibility with homotopy colimits). Moreover, the L2-Euler characteristic is compat-
ible with isofibrations and coverings between finite groupoids (see Section 5.5). The L2-Euler
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characteristic coincides with the classical L2-Euler characteristic in the case of a group, for fi-
nite groups this is χ(2)(G) = 1

|G| . Another advantage of the L2-Euler characteristic is that it is
closely related to the geometry and topology of the classifying space for proper G-actions, a topic
to which we return in Section 8.

After this treatment of finiteness obstructions and various Euler characteristics, we turn
in Section 6 to our next main result: the generalization of the second author’s K-theoretic
Möbius inversion to quasi-finite EI-categories. We introduce the restriction-inclusion splitting
Res :K0(RΓ ) � SplitK0(RΓ ) : I in Section 6.1. The K-theoretic Möbius inversion

μ : SplitK0(RΓ ) � SplitK0(RΓ ) :ω

compares the splitting (Res, I ) with the splitting (S,E) in Theorem 6.22. See Section 6.2 for
the definition of (μ,ω) in terms of chains in Γ and hom-sets of Γ . A computationally useful
byproduct of the comparison via Möbius inversion is the equation

S
(
o(Γ ;R)

)= μ
((

o
(
âut(x);R))

x∈iso(Γ )

)
for Γ of type (FPR). For example, this enables us to compute in Theorem 6.23 the finiteness
obstruction and Euler characteristics of a finite EI-category in terms of chains. The K-theoretic
Möbius inversion is also compatible with the L2-rank rk(2)

Γ and the pair (μ(2),ω(2)) as in Sec-
tion 6.3. All of these splittings and homomorphisms are illustrated explicitly for G-H -bisets in
Section 6.4. The rest of Section 6 compares and contrasts the invariants for Γ and Γ op, which
can generally be quite different. Important special cases are Möbius–Rota inversion for a finite
partially ordered set (Example 6.24), Leinster’s Möbius inversion for a finite skeletal category
with trivial endomorphisms (Example 6.25), and rational Möbius inversion for a finite, skeletal,
free EI-category (Example 6.33).

In Section 7 we recall the groupoid cardinality of Baez and Dolan [2] and the Euler char-
acteristic of Leinster [13] and make comparisons. The groupoid cardinality coincides with the
L2-Euler characteristic for finite groupoids. Leinster’s Euler characteristic coincides with the L2-
Euler characteristic for finite, free, skeletal EI-categories. Here “free” is not meant in the usual
category-theoretic sense, but rather in the sense of group actions. We say that a category Γ is
free if the left aut(y)-action on mor(x, y) is free for every two objects x, y ∈ ob(Γ ). If Γ is not
free, then χ(2)(Γ ) could very well be different from Leinster’s Euler characteristic of Γ (see
Remark 7.4). Our invariants are more sensitive than Leinster’s Euler characterstic. For example,
Leinster’s Euler characteristic for finite categories only depends on the set of objects ob(Γ ) and
the orders |morΓ (x, y)|. As such, it cannot distinguish between the group Z/2Z and the two-
element monoid consisting of the identity and an idempotent. The finiteness obstruction and the
L2-Euler characteristic can distinguish these. Leinster’s Euler characteristic cannot distinguish
between Γ and Γ op, while the functorial Euler characteristic, the functorial L2-Euler characteris-
tic, and the L2-Euler characteristic can. In Section 7 we also explain how to construct weightings
in the sense of Leinster from finite free resolutions of the constant RΓ -module R as well as
from finite Γ -CW -models for the classifying Γ -space. Several of the weightings in Leinster’s
article [13] arise in this way.

As mentioned at the outset, Euler characteristics of spaces and manifolds contain geometric
information, such as genus, curvature, or evidence of a hyperbolic metric. Similarly, the Euler
characteristics of certain categories contain geometric and algebraic information. The topic of
Section 8 is our main example: the proper orbit category of a group G, denoted by Or(G).
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Its objects are the homogeneous sets G/H for finite subgroups H of G, and its morphisms are
the G-equivariant maps between such homogeneous sets. The invariants of the category Or(G)

are closely related to the equivariant invariants of a model EG for the classifying space for
proper G-actions. Namely, if the model EG is a finitely dominated G-CW -complex, then our
category-theoretic finiteness obstruction o(Or(G);Z) agrees with the equivariant finiteness ob-
struction of EG. If the model EG is even a finite G-CW -complex, then both the functorial Euler
characteristic χf (Or(G);Z) and the functorial L2-Euler characteristic χ

(2)
f (Or(G)) agree with

the equivariant Euler characteristic of EG. Examples of groups G with finite models EG in-
clude hyperbolic groups, groups that act simplicially cocompactly and properly by isometries on
a CAT(0)-space, mapping class groups, the group of outer automorphisms of a finitely gener-
ated free group, finitely generated one-relator groups, and cocompact lattices in connected Lie
groups.

In addition to these geometric aspects of our invariants in the case of the category Or(G),
we also have interesting algebraic consequences of the K-theoretic Möbius inversion and its
compatibility with the L2-rank. For example, if the category Or(G) is of type (FPQ) and satisfies
condition (I) of Condition 6.26, then the functorial L2-Euler characteristic of Or(G) is the L2-
Möbius inversion of the L2-Euler characteristics of Weyl groups associated to finite H < G:

χ
(2)
f

(
Or(G)

)= μ(2)
((

χ(2)(WGH)
)
(H),|H |<∞

)
.

More substantially, for finite G we deduce the Burnside ring congruences, which distinguish the
image of the character map

ch = chG :U
(
Or(G)

)→⊕
(H)

Z.

Here U(Or(G)) is the free abelian group on the set of isomorphism classes of objects in Or(G),
we identify U(Or(G)) with the Burnside ring A(G), and the direct sum of Z’s is over the conju-
gacy classes (H) of subgroups of the finite group G. The character map counts H -fixed points,
namely, for any finite G-set S we have ch(S) = (|SH |)(H). An element ξ lies in the image of ch
if and only if the integral congruence

ν(ξ)(H) ≡ 0 mod |WGH |

holds for every conjugacy class (H) of subgroups of G (the matrix ν is specified in Section 8.4).
We finish Section 8 by working out everything explicitly for the infinite dihedral group.

The last two sections of the paper are explicit examples. In Section 9 we consider a small
example of a category which is not EI and calculate its various K-theoretic morphisms: the split-
ting functor S, the extension functor E, the restriction functor Res, and the homomorphism ω. In
Section 10 we consider a category A which does not satisfy property (FPR). Leinster considered
this category in Example 1.11.d of [13] and proved that it does not admit a weighting. We prove
that A does not satisfy property (FPR), classify the finitely generated projective RA-modules,
and compute the projective class group K0(RA), the Grothendieck group of finitely generated
QA-modules G0(QA), and the homology Hn(BA;R) = Hn(A;R).
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1. Basics about modules over a category

Throughout this paper, let Γ be a small category and let R be an associative, commutative
ring with identity. We explain some basics about modules over a category. More details can be
found in Lück [15, Section 9]. An RΓ -module is a functor from Γ op into the abelian category of
left R-modules. This is a natural generalization of the notion of right RG-module for a group G.
The category of RΓ -modules forms an abelian category MOD-RΓ . An object of MOD-RΓ

is projective if and only if it is a direct summand in an RΓ -module which is free on a collec-
tion of sets indexed by ob(Γ ). Given a functor F :Γ1 → Γ2, we have induction and restriction
functors indF :MOD-RΓ1 � MOD-RΓ2 : resF , and these are adjoint. We also introduce in this
section the projective class group K0(RΓ ), which provides a home for the finiteness obstruc-
tion o(Γ ;R). The projective class group K0(RΓ ) is the free abelian group on the isomorphism
classes of finitely generated projective RΓ -modules modulo short exact sequences. The induc-
tion functor induces a homomorphism of projective class groups, as does the restriction functor,
provided F is admissible.

Definition 1.1 (Modules over a category). A (contravariant) RΓ -module is a contravariant func-
tor Γ → R-MOD from Γ to the abelian category of R-modules. A morphism of RΓ -modules is
a natural transformation of such functors. We denote by MOD-RΓ the category of (contravari-
ant) RΓ -modules.

Example 1.2 (Modules over group rings). Let G be a group. Let Ĝ be the associated groupoid
with one object and G as its set of morphisms with the obvious composition law. Then the cat-
egory MOD-RĜ of contravariant RĜ-modules agrees with the category of right RG-modules,
where RG is the group ring of G with coefficients in R.

Example 1.3. Let Γ be the category having one object and the natural numbers N = {0,1,2, . . .}
as morphisms with the obvious composition law. Then MOD-RΓ is the category whose objects
are endomorphisms of R-modules and whose set of morphisms from an endomorphism f to an
endomorphism g is given by the set of commutative diagrams

M
f

u

M

u

N
g

N.

If one replaces N by Z and endomorphisms by automorphisms, the corresponding statement
holds.

The (standard) structure of an abelian category on R-MOD induces the structure of an abelian
category on MOD-RΓ in the obvious way, namely objectwise. In particular, the notion of a
projective RΓ -module is defined. Namely, an RΓ -module P is projective if for every surjec-
tive RΓ -morphism p :M → N and RΓ -morphism f :P → N there exists an RΓ -morphism
f :P → M such that p ◦ f = f , where p is called surjective if for any object x ∈ Γ the R-
homomorphism p(x) :M(x) → N(x) is surjective.



2378 T.M. Fiore et al. / Advances in Mathematics 226 (2011) 2371–2469
Consider an object x in Γ . For a set C we denote by RC the free module with C as basis, i.e.,
the R-module of maps with finite support from C to R. Denote by

R mor(?, x) for x ∈ ob(Γ ) (1.4)

the RΓ -module which sends an object y to the R-module R mor(y, x), and a morphism u :y → z

to the R-map induced by the morphism of sets mor(z, x) → mor(y, x) that maps v : z → x to
v ◦ u :y → x.

Lemma 1.5. Let M be any RΓ -module. Consider any element α ∈ M(x). Then there is precisely
one map of RΓ -modules

Fα :R mor(?, x) → M

such that Fα(x) :R mor(x, x) → M(x) sends idx to α.

Proof. This is a direct application of the Yoneda Lemma. Given u :y → x, define Fα(u) :=
M(u)(α). �

Since Γ is by assumption small, its objects form a set denoted by ob(Γ ). An ob(Γ )-set C is a
collection of sets C = {Cx | x ∈ ob(Γ )} indexed by ob(Γ ). A morphism of ob(Γ )-sets f :C → D

is a collection of maps of sets {fx :Cx → Dx | x ∈ ob(Γ )}. Denote by ob(Γ )-SETS the category
of ob(Γ )-sets. We obtain an obvious forgetful functor

F :MOD-RΓ → ob(Γ )-SETS.

Let

B : ob(Γ )-SETS → MOD-RΓ

be the functor sending an ob(Γ )-set C to the RΓ -module

B(C) :=
⊕

x∈ob(Γ )

⊕
Cx

R mor(?, x). (1.6)

We call B(C) the free RΓ -module with basis the ob(Γ )-set C. This name is justified by the
following consequence of Lemma 1.5 and the universal property of the direct sum.

Lemma 1.7. We obtain a pair of adjoint functors by (B,F ).

Lemma 1.7 implies that the abelian category MOD-RΓ has enough projectives. Namely, any
free RΓ -module is projective and for any RΓ -module M there is a surjective morphism of RΓ -
modules B(F(M)) → M , given by the adjoint of id :F(M) → F(M). Therefore the standard
machinery of homological algebra applies to MOD-RΓ . We also conclude that an RΓ -module
is projective if and only if it is a direct summand in a free RΓ -module.
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An ob(Γ )-set C is finite if the cardinality of
∐

x∈ob(Γ ) Cx is finite. An RΓ -module M is
finitely generated if and only if there is a finite ob(Γ )-set C together with a surjective RΓ -
morphism B(C) → M . An RΓ module is finitely generated projective if and only if it is a direct
summand in free RΓ -module B(C) for a finite ob(Γ )-set C.

Definition 1.8. If M :Γ op → R-MOD and N :Γ → R-MOD are functors, then the tensor prod-
uct M ⊗RΓ N is the quotient of the R-module⊕

x∈ob(Γ )

M(x) ⊗R N(x)

by the R-submodule generated by elements of the form(
M(f )m

)⊗ n − m ⊗ (N(f )n
)

where f : x → y is a morphism in Γ , m ∈ M(y), and n ∈ N(x). The tensor product is an R-
module, not an RΓ -module.

Definition 1.9 (Projective class group). The projective class group K0(RΓ ) is the abelian group
whose generators [P ] are isomorphism classes of finitely generated projective RΓ -modules and
whose relations are given by expressions [P0] − [P1] + [P2] = 0 for every exact sequence 0 →
P0 → P1 → P2 → 0 of finitely generated projective RΓ -modules.

Given a functor F :Γ1 → Γ2, induction with F is the functor

indF :MOD-RΓ1 → MOD-RΓ2 (1.10)

which sends a contravariant RΓ1-module M =M(?) to the contravariant RΓ2-module M(?)⊗RΓ1

R morΓ2(??,F (?)) which is the tensor product over RΓ1 with the RΓ1-RΓ2-bimodule
R morΓ2(??,F (?)) (see Lück [15, 9.15 on page 166] for more details). The functor indF respects
direct sums over arbitrary index sets and satisfies indF (R morΓ1(?, x)) = R morΓ2(??,F (x))

for every x ∈ ob(Γ1). Hence indF sends finitely generated RΓ1-modules to finitely generated
RΓ2-modules and sends projective RΓ1-modules to projective RΓ2-modules. The functor indF

induces a homomorphism

F∗ :K0(RΓ1) → K0(RΓ2), (1.11)

which depends only on the natural isomorphism class of F . Given functors F0 :Γ0 → Γ1 and
F1 :Γ1 → Γ2, the functors of abelian categories indF1◦F0 and indF1 ◦ indF0 are naturally isomor-
phic and hence (F1 ◦ F0)∗ = (F1)∗ ◦ (F0)∗.

Given a functor F :Γ1 → Γ2, restriction with F is the functor of abelian categories

resF :MOD-RΓ2 → MOD-RΓ1, M 	→ M ◦ F. (1.12)

It is exact and sends the constant RΓ2-module R to the constant RΓ1-module R. In general
it does not send a finitely generated projective RΓ2-module to a finitely generated projective
RΓ1-module. We call F admissible if resF sends a finitely generated projective RΓ2-module
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to a finitely generated projective RΓ1-module. The question when F is admissible is answered
in Lück [15, Proposition 10.16 on page 187]. If F is admissible, it induces a homomorphism

F ∗ :K0(RΓ2) → K0(RΓ1). (1.13)

The following is proved in Lück [15, 9.22 on page 169] and is based on the fact that resF is
the same as the functor − ⊗RΓ2 R morΓ2(F (?), ??).

Lemma 1.14. Given a functor F :Γ0 → Γ1, we obtain an adjoint pair of functors (indF , resF ).

2. The finiteness obstruction of a category

After the introduction to RΓ -modules in Section 1, we can now define the finiteness obstruc-
tion of a category in terms of chain complexes and establish its basic properties. Since MOD-RΓ

is abelian, we can talk about RΓ -chain complexes. In the sequel all chain complexes C∗ will sat-
isfy Cn = 0 for n � −1. A finite projective RΓ -chain complex P∗ is an RΓ -chain complex such
there exists a natural number N with Pn = 0 for n > N and each RΓ -module Pi is finitely gen-
erated projective. Let M be an RΓ -module. A finite projective RΓ -resolution of M is a finite
projective RΓ -chain complex P∗ satisfying Hn(P∗) = 0 for n � 1 together with an isomorphism
of RΓ -modules M

∼=−→ H0(P∗). If P∗ can be chosen as a finite free RΓ -chain complex, we call
it a finite free RΓ -resolution.

If the constant RΓ -module R :Γ op → R-MOD with value R admits a finite projective RΓ -
resolution or a finite free RΓ -resolution, we say that Γ is of type (FPR) or of type (FFR)
respectively. Examples of categories of type (FPR) are: any finite group of order invertible in R,
and more generally, any finite category in which every endomorphism is an isomorphism and
|autΓ (x)| is invertible in R for each object x. Any category Γ which admits a finite Γ -CW -
model for EΓ is of type (FFR) and therefore of type (FPR), in particular any category with a
terminal object is of type (FFR) and (FPR).

If Γ is of type (FPR), we define the finiteness obstruction o(Γ ;R) ∈ K0(RΓ ) to be the alter-
nating sum of the classes [Pn] appearing in a finite projective resolution of R. If G is a finitely
presented group of type (FPZ), then the finiteness obstruction is the same as Wall’s finiteness
obstruction o(BG) ∈ K0(ZG).

Type (FPR) and the finiteness obstruction have all the properties one could hope for. Any
category equivalent to a category of type (FPR) is also of type (FPR), and the induced map
of an equivalence preserves the finiteness obstruction. If Γ1 and Γ2 are of type (FPR), then so
are Γ1 × Γ2 and Γ1 � Γ2, and the finiteness obstructions behave accordingly. Restriction along
admissible functors preserves type (FPR) and finiteness obstructions, as does induction along
right adjoints. In [12], we prove that type (FPR), type (FFR), and the finiteness obstruction are
compatible with homotopy colimits.

Definition 2.1 (Finiteness obstruction of an RΓ -module). Let M be an RΓ -module which pos-
sesses a finite projective resolution. The finiteness obstruction of M is

o(M) :=
∑
n�0

(−1)n · [Pn] ∈ K0(RΓ ),

where P∗ is any choice of a finite projective RΓ -resolution of M .
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This definition is a special case of Lück [15, Definition 11.1 on page 211]. It is indeed in-
dependent of the choice of finite projective resolution. If P is a finitely generated projective
RΓ -module, then of course o(P ) = [P ]. Given an exact sequence 0 → M0 → M1 → M2 → 0
of RΓ -modules such that two of them possess finite projective resolutions, then all three possess
finite projective resolutions and we get in K0(RΓ )

o(M0) − o(M1) + o(M2) = 0. (2.2)

All this follows for instance from Lück [15, Chapter 11].

Definition 2.3 (Type (FPR) and (FFR) for categories). We call a category Γ of type (FPR) if the
constant functor R :Γ op → R-MOD with value R defines a contravariant RΓ -module which
possesses a finite projective resolution.

We call a category Γ of type (FFR) if R possesses a finite free resolution.

If G is a group and Ĝ is the groupoid with one object and G as automorphism group of this
object, then the notions (FPR) and (FFR) for Ĝ of Definition 2.3 agree with the classical notions
(FPR) and (FFR) for the group G (see Brown [9, page 199]).

Example 2.4 (Finite groups of invertible order are of type (FPR)). Let G be a finite group whose
order is invertible in the ring R. Then the RG-map RG → R,∑

g∈G

rgg 	→
∑
g∈G

rg

admits a right inverse, namely 1 	→ 1
|G|
∑

g∈G g. The trivial RG-module R is then a direct sum-
mand of a free RG-module, and is therefore projective. A finite projective resolution of R is
simply the identity R → R. The group G and category Ĝ are of type (FPR).

Example 2.5 (Finite EI-categories with automorphism groups of invertible order are of
type (FPR)). We may extend Example 2.4 to certain categories. If Γ is a category in which
every endomorphism is an automorphism, |aut(x)| is invertible in R for every object x, the cate-
gory Γ has only finitely many isomorphism classes of objects, and |morΓ (x, y)| is finite for all
objects x and y, then Γ is of type (FPR). This will follow from Lemma 6.15(v).

Example 2.6 (Categories Γ with a finite Γ -CW -model for EΓ are of type (FFR)). If Γ is
a category which admits a finite Γ -CW -model X for the classifying Γ -space EΓ , then the
cellular R-chains of X form a finite free resolution of the constant RΓ -module R. For example,
the categories {1 ← 0 → 2} and {a ⇒ b} admit finite models, as does the poset of non-empty
subsets of [q] = {0,1, . . . , q}. Every category with a terminal object also admits a finite model.
(Our paper [12] recalls the Γ -CW -complexes of Davis and Lück [11] in the context of Euler
characteristics and homotopy colimits.)

Definition 2.7 (Finiteness obstruction of a category). The finiteness obstruction with coefficients
in R of a category Γ of type (FPR) is

o(Γ ;R) := o(R) ∈ K0(RΓ ),
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where o(R) is the finiteness obstruction in Definition 2.1 for the constant RΓ -module R. We
also use the notation [R], or simply [R], to denote the finiteness obstruction o(Γ ;R).

The notation [R] for the finiteness obstruction is quite natural, for in Example 2.4 the module
R is projective, and the alternating sum of Definition 2.1 is merely [R]. However, in general, the
module R may not be projective.

The homomorphism F∗ of (1.11) depends only on the natural isomorphism class of F . Hence
F∗ is bijective if F is an equivalence of categories. In general indF is not exact and indF R is not
isomorphic to R. However, this is the case if F is an equivalence of categories. This implies

Theorem 2.8 (Invariance of the finiteness obstruction under equivalence of categories). Let Γ1
and Γ2 be two categories such that there exists an equivalence F :Γ1 → Γ2 of categories.

Then Γ1 is of type (FPR) if and only if Γ2 is of type (FPR). In this case the isomorphism
induced by F

F∗ :K0(RΓ1)
∼=−→ K0(RΓ2)

maps o(Γ1;R) to o(Γ2;R).
Moreover, Γ1 is of type (FFR) if and only if Γ2 is of type (FFR).

One easily checks

Theorem 2.9 (Restriction). Suppose that F :Γ1 → Γ2 is an admissible functor and Γ2 is of
type (FPR).

Then Γ1 is of type (FPR) and the homomorphism F ∗ :K0(RΓ2) → K0(RΓ1) sends o(Γ2;R)

to o(Γ1;R).

Theorem 2.10 (Right adjoints and induction). Suppose for the functors F :Γ1 → Γ2 and
G :Γ2 → Γ1 that they form an adjoint pair (G,F ). Suppose that Γ1 is of type (FPR).

Then Γ2 is of type (FPR) and

F∗
(
o(Γ1;R)

)= o(Γ2;R).

Proof. Recall that indF agrees with − ⊗RΓ1 R morΓ2(??,F (?)) and resG agrees with − ⊗RΓ1

R morΓ1(G(??), ?). The adjunction (G,F ) (see Lemma 1.14) implies that resG = indF . Hence
G is admissible. We conclude from Theorem 2.9

F∗
(
o(Γ1;R)

)= G∗(o(Γ1;R)
)= o(Γ2;R). �

Example 2.11 (Category with a terminal object). Suppose that Γ has a terminal object x. Then
the constant RΓ -module R with value R agrees with the free RΓ -module R mor(?, x). Hence
Γ is of type (FFR) and the finiteness obstruction satisfies

o(Γ ;R) = [R mor(?, x)
] ∈ K0(RΓ ).

Let i : {∗} → Γ be the inclusion of the trivial category which has precisely one morphism and
sends the only object in {∗} to x. Then the induced map
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i∗ :K0(R) = K0
(
R{∗})→ K0(RΓ )

sends [R] to o(Γ ;R). This follows also from Theorem 2.10 taking F = i and G to be the obvious
projection.

Example 2.12 (Wall’s finiteness obstruction). Let G be a group. Let Ĝ be the groupoid with
one object and G as morphism set with the composition law coming from the group struc-
ture. Because of Example 1.2 the group G is of type (FPR) in the sense of homological algebra
(see Brown [9, page 199]) if and only if Ĝ is of type (FPR) in the sense of Definition 2.3, and
the projective class group K0(ZG) of the group ring ZG agrees with K0(ZĜ) introduced in
Definition 1.9.

Suppose that G is of type (FPZ) and finitely presented. Then there is a model for BG which
is finitely dominated (see Brown [9, Theorem 7.1 in VIII.7 on page 205]) and Wall (see [29]
and [30]) has defined its finiteness obstruction

o(BG) ∈ K0(ZG).

It agrees with the finiteness obstruction o(Ĝ;Z) of Definition 2.7.

The elementary proof of the next result is left to the reader.

Theorem 2.13 (Coproduct formula for the finiteness obstruction). Let Γ1 and Γ2 be categories
of type (FPR). Then their disjoint union Γ1 � Γ2 has type (FPR) and the inclusions induce an
isomorphism

K0(RΓ1) ⊕ K0(RΓ2)
∼=−→ K0

(
R(Γ1 � Γ2)

)
which sends (o(Γ1), o(Γ2)) to o(Γ1 � Γ2).

Let x be any object of Γ . We denote by aut(x) the group of automorphisms of x. We often
abbreviate the associated group ring by

R[x] := R
[
aut(x)

]
. (2.14)

Example 2.15 (The finiteness obstruction of a finite groupoid). Let G be a finite groupoid, i.e.,
a (small) groupoid such that iso(G) and autG (x) for any object x ∈ ob(G) are finite sets. Then
Γ is of type (FPR) if and only if for every object x ∈ ob(G), |autG (x)| · 1R is a unit in R (see
Lemma 6.15(v)).

Suppose that G is of type (FPR). Then the trivial R[x]-module R is finitely generated projec-
tive and defines a class [R] in K0(R[x]) for every object x ∈ ob(G). We obtain from Theorem 2.8
and Theorem 2.13 a decomposition

K0(RG) =
⊕

x∈iso(Γ )

K0
(
R[x]).

The finiteness obstruction o(G) has under the decomposition above the entry [R] ∈ K0(R[x]) for
x ∈ iso(Γ ).
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Let Γ1 and Γ2 be two small categories. Then their product Γ1 × Γ2 is a small category. Since
R is commutative, the tensor product ⊗R defines a functor

⊗R :MOD-RΓ1 × MOD-RΓ2 → MOD-R(Γ1 × Γ2).

Namely, put (M ⊗R N)(x, y) = M(x) ⊗R N(y). Obviously

(M1 ⊕ M2) ⊗R (N1 ⊕ N2) ∼= (M1 ⊗R N1) ⊕ (M1 ⊗R N2) ⊕ (M2 ⊗R N1) ⊕ (M2 ⊗R N2),

and for x1 ∈ ob(Γ1) and x2 ∈ ob(Γ2) we obtain isomorphisms of R(Γ1 × Γ2)-modules

R morΓ1(?, x1) ⊗R R morΓ2(??, x2) ∼= R morΓ1×Γ2

(
(?, ??), (x1, x2)

)
.

Hence we obtain a well-defined pairing

⊗R :K0(RΓ1) ⊗Z K0(RΓ2) → K0
(
R(Γ1 × Γ2)

)
, [P1] ⊗ [P2] → [P1 ⊗R P2]. (2.16)

Theorem 2.17 (Product formula for the finiteness obstruction). Let Γ1 and Γ2 be categories of
type (FPR).

Then Γ1 × Γ2 is of type (FPR) and we get

o(Γ1 × Γ2;R) = o(Γ1;R) ⊗R o(Γ2;R)

under the pairing (2.16).

Proof. Let P i∗ be a finite projective resolution of R over MOD-RΓi for i = 1,2. The evaluation
of a projective RΓi -module at an object is projective and hence flat as R-module since this is
obviously true for R morΓi

(?, x) and every projective RΓi -module is a direct sum in a free one.
Hence the R(Γ1 × Γ2)-chain complex P 1∗ ⊗R P 2∗ is a projective RΓ1 × RΓ2-resolution of R.
Now an easy calculation (see Lück [15, 11.18 on page 227]) shows

o(Γ1 × Γ2;R) = o
(
P 1∗ ⊗R P 2∗

)= o
(
P 1∗
)⊗R o

(
P 2∗
)= o(Γ1;R) ⊗R o(Γ2;R). �

Example 2.18. Let Γ be the category which has precisely one object x and two morphisms
idx :x → x and p :x → x such that p ◦ p = p. Given an R-module M , let Ii(M) for i = 0,1
be the contravariant RΓ -module which sends p :x → x to i · idM :M → M . Given any RΓ -
module N , we obtain an isomorphism of RΓ -modules

f : I0
(
ker
(
N(p)

))⊕ I1
(
im
(
N(p)

)) ∼=−→ N

from the inclusions of ker(N(p)) and im(N(p)) to N(x). This isomorphism is natural in N and
respects direct sums. If N = R mor(?, x), we have ker(N(p)) ∼= im(N(p)) ∼= R. Hence Ii(R) is
a finitely generated projective RΓ -module for i = 0,1. This implies that N is a finitely generated
projective RΓ -module if and only if ker(N(p)) and im(N(p)) are finitely generated projective
R-modules. Hence we obtain an isomorphism

K0(RΓ )
∼=−→ K0(R) ⊕ K0(R), [P ] 	→ ([

ker
(
P(p)

)]
,
[
im
(
P(p)

)])
.
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Its inverse sends ([P0], [P1]) to [I0(P0) ⊕ I1(P1)]. The constant RΓ -module R agrees with
I1(R). Hence the category Γ is of type (FPR) and the finiteness obstruction o(Γ ;R) is sent
under the isomorphism above to the element (0, [R]).

3. Splitting the projective class group

In this section we will investigate the projective class group K0(RΓ ). In the case that every
endomorphism in Γ is an isomorphism, we construct the natural splitting isomorphism

S :K0(RΓ ) → SplitK0(RΓ ) :=
⊕

x∈iso(Γ )

K0
(
R autΓ (x)

)
and its natural inverse E, called extension. This is Lück’s Splitting of K0(RΓ ) in [15, Theo-
rem 10.34 on page 196]. If Γ is merely directly finite rather than EI, we still have S ◦ E =
idSplitK0(RΓ ) and the naturality of S, though S is no longer bijective. The splitting functor Sx of
(3.3) and the extension functor Ex of (3.4) respect direct sums and send epimorphisms to epi-
morphisms. The extension functor Ex sends free R autΓ (x)-modules to free RΓ -modules. If Γ

is directly finite, the restriction functor Sx sends free RΓ -modules to free R autΓ (x)-modules
and respects finitely generated and projective. The relationship between EI-categories, directly
finite categories, and Cauchy complete categories is clarified in Lemma 3.13.

Recall that a ring is called directly finite if for two elements r, s ∈ R we have the implication
rs = 1 ⇒ sr = 1. Therefore we define

Definition 3.1 (Directly finite category). A category is called directly finite if for any two objects
x and y and morphisms u :x → y and v :y → x the implication vu = idx ⇒ uv = idy holds.

Lemma 3.2 (Invariance of direct finiteness under equivalence of categories). Suppose Γ1 and Γ2
are equivalent categories. Then Γ1 is directly finite if and only if Γ2 is directly finite.

Proof. Suppose F :Γ1 → Γ2 is fully faithful and essentially surjective, that Γ1 is directly finite,
and vu = idx in Γ2. Then we can extend to a commutative diagram

x
u

idx

∼=m

y
v

∼=n

x

∼= m

u
y

n∼=

F(a)
F(f )

F (b)
F(g)

F (a)
F(f )

F (b).

Hence F(g ◦ f ) = idF(a), and g ◦ f = ida . The direct finiteness of Γ1 then implies f ◦ g = idb .
Together with the commutativity of the two right squares above, this implies u ◦ v = idy , so that
Γ2 is also directly finite. �

Let M be any RΓ -module and let x be any object. We denote by autΓ (x) (or aut(x) when Γ

is clear) the group of automorphisms of x. As in (2.14), we abbreviate the associated group ring
by R[x] := R[aut(x)]. Define an R-module SxM by the cokernel of the map of R-modules
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SxM := coker

( ⊕
u : x→y

u is not an isomorphism

M(u) :
⊕

u : x→y
u is not an isomorphism

M(y) → M(x)

)
.

In other words, SxM is the quotient of the R-module M(x) by the R-submodule generated by
all images of R-module homomorphisms M(u) :M(y) → M(x) induced by all non-invertible
morphisms u :x → y in Γ . One easily checks that the right R[x]-module structure on M(x)

coming from functoriality induces a right R[x]-module structure on SxM . Thus we obtain a
functor called splitting functor at x ∈ ob(Γ )

Sx :MOD-RΓ → MOD-R[x], (3.3)

where MOD-R[x] denotes the category of right R[x]-modules. Define a functor, called exten-
sion functor at x ∈ ob(Γ ),

Ex :MOD-R[x] → MOD-RΓ (3.4)

by sending an R[x]-module N to the RΓ -module N ⊗R[x] R mor(?, x).

Lemma 3.5 (Extension/splitting, direct sums, and free/projective modules).

(i) The functor Ex respects direct sums. It sends epimorphisms to epimorphisms. It sends a free
R[x]-module with the set C as basis to the free RΓ -module with the ob(Γ )-set D as basis,
where Dx = C and Dy = ∅ for y �= x. It respects finitely generated and projective;

(ii) We have Sy ◦ Ex = 0, if x and y are not isomorphic. For every projective right R[x]-
module P we have a surjective map of R[x]-modules, natural in P and compatible with
direct sums

σP :P → Sx ◦ Ex(P );
(iii) The functor Sx respects direct sums. It sends epimorphisms to epimorphisms and sends

finitely generated RΓ -modules to finitely generated R[x]-modules;
(iv) Suppose that Γ is directly finite. Then Sx sends a free RΓ -module with the ob(Γ )-set C as

basis to the free R[x]-module with
∐

y∈ob(Γ ),y=x Cy as basis and respects finitely generated
and projective. Further, σP appearing in assertion (ii) is bijective for every projective right
R[x]-module P .

Proof. (i) Obviously Ex is compatible with direct sums. It sends epimorphisms to epimorphisms
since tensor products are right exact. We have

Ex

(
R[x])= R[x] ⊗R[x] R mor(?, x) = R mor(?, x).

(ii) Suppose that x and y are not isomorphic. Let P be an R[x]-module. Consider an element
p ⊗ u ∈ ExP (y) = P ⊗R[x] R mor(y, x). Since x and y are not isomorphic, u is not an isomor-
phism. The element p ⊗ u lies in the image of the map induced by composition from the right
with u

P ⊗R[x] R mor(x, x) → P ⊗R[x] R mor(y, x),

a preimage is given by p ⊗ idx . Hence Sy ◦ Ex(P ) = 0.
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Define an R[x]-map P → P ⊗R[x] mor(x, x) by sending p ∈ P to p⊗R[x] idx . Its composition
with the canonical projection P ⊗R[x] mor(x, x) → Sx ◦ Ex(P ) yields an R[x]-map

σP :P → Sx ◦ Ex(P ).

Obviously it is surjective, natural in P and compatible with direct sums.
(iii) This is obvious except that Sx respects finitely generated. We know already that

SyR mor(?, x) = 0 if x and y are not isomorphic and that there is an epimorphism R[x] →
SxR mor(?, x). Hence SxR mor(?, y) is a finitely generated R aut(x)-module for all y ∈ ob(Γ )

and the claim follows.
(iv) Consider an endomorphism u :x → x. It lies in the image of the map mor(x, x) →

mor(x, x), v 	→ v ◦ u, a preimage is idx . If u is an isomorphism, then there exists no morphism
w :x → y such that w is not an isomorphism and u lies in the image of mor(y, x) → mor(x, x),
v 	→ v ◦ w, since Γ is directly finite. This implies that

σR[x] :R[x] ∼=−→ Sx ◦ Ex

(
R[x])= SxR mor(?, x)

is an isomorphism. Now assertion (iv) follows from compatibility with direct sums and the facts
that an RΓ -module is projective if and only if it is a direct summand in a free RΓ -module and
that Sx respects epimorphisms. �

We denote by iso(Γ ) the set of isomorphism classes of objects of Γ . Choose for any class
x ∈ iso(Γ ) a representative x ∈ x. Define

SplitK0(RΓ ) :=
⊕

x∈iso(Γ )

K0
(
R[x]). (3.6)

Provided that Γ is directly finite, we obtain from Lemma 3.5 homomorphisms

S :K0(RΓ ) → SplitK0(RΓ ), [P ] 	→ {[SxP ] ∣∣ x ∈ iso(Γ )
}; (3.7)

E : SplitK0(RΓ ) → K0(RΓ ),
{[Qx]

∣∣ x ∈ iso(Γ )
} 	→

∑
x∈iso(Γ )

[ExQx], (3.8)

and get

Lemma 3.9. Suppose that Γ is directly finite. The composite S ◦ E is the identity. In particular
S is split surjective.

The group SplitK0(RΓ ) is easier to understand than K0(RΓ ) since its input are projective
class groups over group rings. We will later explain that for an EI-category the maps E and S are
bijective (see Theorem 3.14).

Definition 3.10. A category is an EI-category if every endomorphism is an isomorphism.

The EI-property is invariant under equivalence of categories.
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Lemma 3.11. Suppose Γ1 and Γ2 are equivalent categories. Then Γ1 is an EI-category if and
only if Γ2 is an EI-category.

Proof. Let Γ1 be an EI-category, F :Γ1 → Γ2 an equivalence of categories, and b ∈ ob(Γ2).
Then b ∼= F(a) for some a ∈ ob(Γ1). We have isomorphisms of monoids

morΓ1(a, a) ∼= morΓ2

(
F(a),F (a)

)∼= morΓ2(b, b).

The first monoid is a group, and hence so is the last. �
Definition 3.12 (Cauchy complete category). A category Γ is Cauchy complete if every idem-
potent splits, i.e., for every idempotent p :x → x there exist morphisms i :y → x and r :x → y

with r ◦ i = idy and i ◦ r = p.

Lemma 3.13. Consider a category Γ . Consider the statements

(i) Γ is an EI-category;
(ii) Every idempotent p :x → x in Γ satisfies p = idx ;

(iii) Γ is directly finite and Cauchy complete.

Then (i) ⇒ (ii) and (ii) ⇔ (iii).
If mor(x, x) is finite for all x ∈ ob(Γ ), then (i) ⇔ (ii) ⇔ (iii).

Proof. (i) ⇒ (ii). If p :x → x is an idempotent, it is an endomorphism and hence an isomor-
phism. Hence idx = p−1 ◦ p = p−1 ◦ p ◦ p = idx ◦ p = p.

(ii) ⇒ (iii). Consider morphisms u :x → y and v :y → x with vu = idx . Then (uv)2 =
uvuv = u ◦ idx ◦ v = uv is an idempotent and hence by assumption uv = idy . Obviously Γ

is Cauchy complete.
(iii) ⇒ (ii). Consider an idempotent p :x → x. Since Γ is Cauchy complete, we can choose

morphisms i :y → x and r :x → y with r ◦ i = idy and i ◦ r = p. Since Γ is directly finite,
p = i ◦ r = idx .

It remains to show (ii) ⇒ (i) provided that mor(x, x) is finite for all objects x ∈ ob(Γ ).
Consider an endomorphism f :x → x. Since mor(x, x) is finite, there exist integers m,n � 1
with f m = f m+n. This implies f m = f m+kn for all natural numbers k � 1. Hence we get f m =
f m+n for some n � 1 with n − m � 0. Then

f n ◦ f n = f 2n = f m+n ◦ f n−m = f m ◦ f n−m = f n.

Hence f n is an idempotent. Since then f n = id for some n � 1, the endomorphism f must be
an isomorphism. �

The next result is from Lück [15, Theorem 10.34 on page 196].

Theorem 3.14 (Splitting of K0(RΓ ) for EI-categories). If Γ is an EI-category, the group homo-
morphisms
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S :K0(RΓ ) → SplitK0(RΓ ), [P ] 	→ {[SxP ] ∣∣ x ∈ iso(Γ )
};

E : SplitK0(RΓ ) → K0(RΓ ),
{[Qx]

∣∣ x ∈ iso(Γ )
} 	→

∑
x∈iso(Γ )

[ExQx],

of (3.7) and (3.8) are isomorphisms and inverse to one another. They are covariantly natural with
respect to functors F : Γ1 → Γ2 between EI-categories, that is

(SplitF∗) ◦ SRΓ1 = SRΓ2 ◦ F∗

and

F∗ ◦ ERΓ1 = ERΓ2 ◦ (SplitF∗).

The functor SplitF∗ is defined in more detail in Lemma 3.15. Moreover, S and E are also con-
travariantly natural with respect to admissible functors F : Γ1 → Γ2 between EI-categories, that
is

SRΓ1 ◦ F ∗ = SplitF ∗ ◦ SRΓ2

and

ERΓ1 ◦ (SplitF ∗)= F ∗ ◦ ERΓ2 .

Example 2.18 shows that the EI hypothesis on Γ in Theorem 3.14 is necessary for S and E

to be bijections. Though the splitting homomorphism S is no longer an isomorphism in general,
it is covariantly natural in the more general setting of directly finite categories.

Lemma 3.15. Let Γ1 and Γ2 be directly finite categories and F :Γ1 → Γ2 be a functor.
Then the following diagram commutes

K0(RΓ1)
F∗

SRΓ1

K0(RΓ2)

SRΓ2

SplitK0(RΓ1)
SplitF∗

SplitK0(RΓ2)

where the vertical maps have been defined in (3.7), the upper horizontal map is induced by
induction with F , and the lower horizontal arrow is given by the matrix of homomorphisms(

(Fx,y)∗
)
x∈iso(Γ1),y∈iso(Γ2)

where (Fx,y)∗ is trivial if F(x) �= y and given by induction with the group homomorphism
Fx : autΓ1(x) → autΓ2(F (x)), f 	→ F(f ) for y = F(x).

In particular, the commutativity of the diagram guarantees

S
RΓ2
F(x) ◦ F∗ = Fx ◦ SRΓ1

x .
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Proof. For two objects x and y in Γ1, let mor∼=(x, y) be the set of isomorphisms from x to y.
The covariant RΓ1-module R mor∼=(x, ?) assigns to an object x the trivial R-module {0} if x �= y

and R mor∼=(x, y) if x = y. The evaluation of R mor∼=(x, ?) at a morphism f :y1 → y2 is given
by

R mor
∼=(x, y1) → R mor

∼=(x, y2), g 	→ f ◦ g

if f is an isomorphism and x = y, and by the trivial R-homomorphism otherwise. This definition
makes sense since Γ1 is directly finite. Obviously R mor∼=(x, ?) is an RΓ1-R[x]-bimodule. Hence
we obtain a functor

MOD-RΓ1 → MOD-R[x], P 	→ P ⊗RΓ1 R mor
∼=(x, ?).

It is naturally isomorphic to the splitting functor Sx defined in (3.3). Namely, a natural isomor-
phism is given by the R[x]-isomorphisms which are inverse to one another

SxP → P ⊗RΓ1 R mor
∼=(x, ?), p 	→ p ⊗ idx

and

P ⊗RΓ1 R mor
∼=(x, ?) → SxP, p ⊗ f 	→ P(f )(p).

Consider a projective RΓ1-module P . Then we obtain for y ∈ iso(Γ2) a natural isomorphism
of R[y]-modules

Sy ◦ indF P ∼= P ⊗RΓ1 R morΓ2

(
??,F (?)

)⊗RΓ2 R mor
∼=
Γ2

(y, ??)

∼= P ⊗RΓ1 R mor
∼=
Γ2

(
y,F (?)

)
∼= P ⊗RΓ1

⊕
x∈iso(Γ1),F (x)=y

R mor
∼=
Γ1

(x, ?) ⊗R[x] R mor
∼=
Γ2

(
y,F (x)

)
∼=

⊕
x∈iso(Γ1),F (x)=y

P ⊗RΓ1 R mor
∼=
Γ1

(x, ?) ⊗R[x] R mor
∼=
Γ2

(
y,F (x)

)
∼=

⊕
x∈iso(Γ1),F (x)=y

indFx ◦SxP.

This finishes the proof of Lemma 3.15. �
4. The (functorial) Euler characteristic of a category

Perhaps the most naive notion of Euler characteristic for a category Γ is the topological
Euler characteristic, namely the classical Euler characteristic of the classifying space BΓ . How-
ever, even in the simplest cases, χ(BΓ ;R) may not exist, for example Γ = Ẑ2 and R = Z2.
We propose better invariants using the homological algebra of RΓ -modules and von Neumann
dimension.
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Depending on which notion of rank we choose for RΓ -modules, rkRΓ vs. rk(2)
Γ , there are

two possible ways to define (functorial) Euler characteristics. In this section, we start with the
topological Euler characteristic χ(BΓ ;R), and then treat the homological Euler characteristic
χ(Γ ;R) and its functorial counterpart χf (Γ ;R), both of which arise from rkRΓ . In Section 5

we take R = C and rk(2)
Γ (defined in terms of the von Neumann dimension) to treat the L2-Euler

characteristic χ(2)(Γ ) and its functorial counterpart χ
(2)
f (Γ ).

To obtain the Euler characteristic, we use the splitting functor Sx as follows. The RΓ -rank
of a finitely generated RΓ -module M is an element of U(Γ ), the free abelian group on the
isomorphism classes of objects of Γ . At x ∈ iso(Γ ), rkRΓ M is rkR(SxM ⊗R aut(x) R). This
induces a homomorphism rkRΓ from K0(RΓ ) to U(Γ ). If Γ is of type (FPR), we define the
functorial Euler characteristic χf (Γ ;R) to be the image of the finiteness obstruction o(Γ ;R)

under rkRΓ . The functorial Euler characteristic is compatible with equivalences between directly
finite categories of type (FPR). The Euler characteristic χ(Γ ;R) is the sum of the components
of the functorial Euler characteristic χf (Γ ;R). If Γ is a directly finite category of type (FPR)
and R is Noetherian, then the Euler characteristic χ(Γ ;R) is equal to the topological Euler
characteristic χ(BΓ ;R). If R is Noetherian and Γ is of type (FPR), but not necessarily directly
finite, then the image of the finiteness obstruction under rkR pr∗ in (4.16) is the topological Euler
characteristic χ(BΓ ;R). If R is Noetherian and Γ is directly finite and of type (FFZ), then
χ(BΓ ;R) = χ(Γ ;R) = χ(2)(Γ ), see Theorem 5.25.

Each notion of Euler characteristic (χ vs. χ(2)) has its advantages. Both are invariant un-
der equivalence of categories (assuming directly finite) and are compatible with finite products,
finite coproducts, and homotopy colimits (see Fiore, Lück and Sauer [12] for the compatibil-
ity with homotopy colimits). The L2-Euler characteristic is compatible with isofibrations and
coverings between connected finite groupoids (see Section 5.5). If the groupoids are addition-
ally of type (FFC), then the Euler characteristic and topological Euler characteristic agree with
the L2-Euler characteristic, and are therefore compatible with the isofibrations and coverings
at hand. For a finite discrete category (a set), both χ and χ(2) return the cardinality. For a fi-
nite group G, we have χ(Ĝ;Q) = 1, while the L2-Euler characteristic is χ(2)(Ĝ) = 1

|G| . The
groupoid cardinality of Baez and Dolan [2] and the Euler characteristic of Leinster [13] will
occur as an L2-Euler characteristic, see Section 7 for the comparison. The main advantages of
our K-theoretic approach are: 1) it works for infinite categories, and 2) it encompasses important
examples, such as the L2-Euler characteristic of a group and the equivariant Euler characteristic
of the classifying space EG for proper G-actions.

To begin with the details of the topological Euler characteristic and the Euler characteristic,
suppose that we have specified the notion of a rank

rkR(N) ∈ Z (4.1)

for every finitely generated R-module such that rkR(N1) = rkR(N0)+ rkR(N2) for any sequence
0 → N0 → N1 → N2 → 0 of finitely generated R-modules and rkR(R) = 1. If R is a commu-
tative principal ideal domain, we will use rkR(N) := dimF (F ⊗R N) for F the quotient field
of R.

Definition 4.2 (The topological Euler characteristic of a category Γ ). Let Γ be a category. Let
BΓ be its classifying space, i.e., the geometric realization of its nerve. Suppose that Hn(BΓ ;R)
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is a finitely generated R-module for every n � 0 and that there exists a natural number d with
Hn(BΓ ;R) = 0 for n > d . The topological Euler characteristic of Γ is

χ(BΓ ;R) =
∑
n�0

(−1)n · rkR

(
Hn(BΓ ;R)

) ∈ Z.

Example 4.3 (The topological Euler characteristic of a finite groupoid). Let G be a finite
groupoid, i.e., a (small) groupoid such that iso(G) and aut(x) for any object x ∈ ob(G) are fi-
nite. Consider R = Q. Then the assumptions in Definition 4.2 are satisfied and

χ(BG) = ∣∣iso(G)
∣∣.

Notation 4.4 (The abelian group U(Γ ) and the augmentation homomorphism ε). Let Γ be a
category. We denote by U(Γ ) the free abelian group on the set of isomorphism classes of objects
in Γ , that is

U(Γ ) := Z iso(Γ ).

For a functor F :Γ1 → Γ2, the group homomorphism U(F) :Γ1 → Γ2 maps the basis element x

to the basis element Fx. The augmentation homomorphism ε :U(Γ ) → Z sends every basis
element of iso(Γ ) to 1 ∈ Z. The augmentation homomorphism is a natural transformation from
the covariant functor U :CAT → ABELIAN-GROUPS to the constant functor Z, that is, for
any functor F :Γ1 → Γ2 the diagram

U(Γ1)
U(F )

ε

U(Γ2)

ε

Z
idZ

Z

(4.5)

commutes.

Definition 4.6 (Rank of a finitely generated RΓ -module). Let M be a finitely generated RΓ -
module M , define its rank

rkRΓ (M) := {rkR(SxM ⊗R[x] R)
∣∣ x ∈ iso(Γ )

} ∈ U(Γ ).

The rank rkRΓ defines a homomorphism

rkRΓ :K0(RΓ ) → U(Γ ), [P ] → rkRΓ (P ). (4.7)

It obviously factorizes over S :K0(RΓ ) → SplitK0(RΓ ). Define

ι :U(Γ ) → K0(RΓ ), (nx)x∈iso(Γ ) 	→
∑

nx · [R mor(?, x)
]
. (4.8)
x∈iso(Γ )
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This is the same as the composite

U(Γ ) =
⊕

x∈iso(Γ )

Z
⊕

x∈iso(Γ ) ix−−−−−−−→
⊕

x∈iso(Γ )

K0
(
R[x])= SplitK0(RΓ )

E−→ K0(RΓ ),

where ix : Z → K0(R[x]) sends n to n · [R[x]] and E has been defined in (3.8).

Lemma 4.9 (Naturality of rkRΓ ). The rank rkRΓ is natural for functors F :Γ1 → Γ2 between
directly finite categories. In particular, we have a natural transformation

rkR− :K0(R−) → U(−)

between covariant functors

K0(R−),U(−) :DIR.FIN.-CAT → ABELIAN-GROUPS.

Proof. The proof by Lück [15, Proposition 10.44(b) on page 202] for functors between EI-
categories also works for functors between directly finite categories. The rank rkRΓ is equal to
r ◦ S where r : SplitK0(RΓ ) → U(Γ ) is the direct sum of

K0
(
R[x])→ Z,

[P ] 	→ rkR(P ⊗R[x] R)

over x ∈ iso(Γ ). By Lemma 3.15, the functor S is covariantly natural with respect to func-
tors between directly finite categories. The functor r is also natural for such functors F , for if
Fx : autΓ1(x) → autΓ2(Fx) is the restriction of F to autΓ1(x) we have

P ⊗R[x] R ∼= indFx (P ) ⊗R[Fx] R. �
Lemma 4.10. Let Γ be a directly finite category.

(i) The composite

U(Γ )
ι−→ K0(RΓ )

rkRΓ−−−→ U(Γ )

of the homomorphisms defined in (4.7) and (4.8) is the identity;
(ii) Let F be a finitely generated free RΓ -module. Then

F ∼=
⊕

x∈iso(Γ )

rkRΓ (F )x⊕
i=1

R mor(?;x).

In particular two finitely generated free RΓ -modules F1 and F2 are isomorphic if and only
if rkRΓ (F1) = rkRΓ (F2).
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Proof. (i) This follows from Lemma 3.5.
(ii) Let F be a free RΓ -module. By definition it looks like

F =
⊕

x∈iso(Γ )

⊕
Ix

R mor(?, x)

for some index sets Ix . It is finitely generated if there exist natural numbers mx and an epimor-
phism

f :
⊕

x∈iso(Γ )

mx⊕
i=1

R mor(?, x) →
⊕

x∈iso(Γ )

⊕
Ix

R mor(?, x)

such that only finitely many mx are different from zero. Lemma 3.5 implies that we obtain for
every x ∈ iso(Γ ) an epimorphism Sxf :

⊕mx

i=1 R[x] →⊕
Ix

R[x]. This implies that each set Ix

is finite and only finitely many of the sets Ix are not empty. Hence we can find for a finitely
generated free RΓ -module F natural numbers nx such that

F ∼=
⊕

x∈iso(Γ )

nx⊕
i=1

R mor(?, x)

and only finitely many nx are different from zero. Lemma 3.5 implies

rkRΓ (F )x = nx.

In particular rkRΓ (F ) determines the isomorphism type of a finitely generated free RΓ -
module F . �
Definition 4.11 (The functorial Euler characteristic of a category). Suppose that Γ is of
type (FPR). The functorial Euler characteristic of Γ with coefficients in R,

χf (Γ ;R) ∈ U(Γ ),

is the image of the finiteness obstruction o(Γ ;R) ∈ K0(RΓ ) in Definition 2.1 under the homo-
morphism rkRΓ :K0(RΓ ) → U(Γ ) in (4.7).

The word functorial refers to the fact that the group, in which χf takes values, depends in a
functorial way on Γ .

Example 4.12 (The functorial Euler characteristic of a finite groupoid). Let G be a finite
groupoid, i.e., a (small) groupoid such that iso(G) and aut(x) for any object x ∈ ob(G) are fi-
nite. Consider R = Q. Then U(G) is the abelian group generated by iso(G) and χf (G) ∈ U(G)

is given by the sum of the basis elements.

Theorem 4.13 (Invariance of the functorial Euler characteristic under equivalence of cate-
gories). Let F :Γ1 → Γ2 be an equivalence of categories and suppose that Γ1 is of type (FPR)
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and directly finite. Then Γ2 is of type (FPR) and directly finite, and

U(F)
(
χf (Γ1;R)

)= χf (Γ2;R).

Proof. The category Γ2 is of type (FPR) and F∗(o(Γ1;R)) = o(Γ2;R) by Theorem 2.8. The
category Γ2 is directly finite by Lemma 3.2. We have U(F)(χf (Γ1;R)) = χf (Γ2;R) by the
naturality of rkR− in Lemma 4.9 and F∗(o(Γ1;R)) = o(Γ2;R). �
Lemma 4.14. Let Γ be a directly finite category. Suppose that Γ is of type (FFR) (see Defini-
tion 2.3). Then the finiteness obstruction o(Γ ;R) ∈ K0(RΓ ) is the image of χf (Γ ;R) under the
homomorphism ι of (4.8).

Proof. This follows from the definitions in combination with Lemma 4.10. �
Obviously the functorial Euler characteristic χf (Γ ;R) and the topological Euler character-

istic χ(BΓ ;R) are weaker invariants than the finiteness obstruction and carry less information,
but they live in explicit abelian groups and are easier to compute.

Theorem 4.15 (The finiteness obstruction determines the topological Euler characteristic). Let
Γ be a category of type (FPR). Suppose that R is Noetherian. We denote by pr :Γ → {∗} the
projection to the trivial category with precisely one morphism.

Then the assumptions in Definition 4.2 are satisfied and the composite

K0(RΓ )
pr∗−−→ K0

(
R{∗})= K0(R)

rkR−−→ Z (4.16)

sends the finiteness obstruction o(Γ ;R) to the topological Euler characteristic χ(BΓ ;R).

Proof. Associated to a category Γ there is a classifying contravariant Γ -space EΓ which is a
Γ -CW -complex with the property that EΓ evaluated at any object x ∈ ob(Γ ) is contractible. We
refer to Davis and Lück [11, Definition 1.2, Definition 3.2, Definition 3.8, and page 230] for the
definition of a contravariant Γ -space, a Γ -CW -complex (which is called free Γ -CW -complex
there), the classifying Γ -space EΓ , and the bar construction. The cellular RΓ -chain complex
C∗(X) with R coefficients of a Γ -CW -complex X is the composition of the functor given by X

with the functor cellular chain complex with coefficients in R and has free RΓ -chain modules.
The proof of the last fact is analogous to the proof of Lück [15, Lemma 13.2 on page 260]. Since
the evaluation of EΓ at any object x ∈ ob(Γ ) is contractible, the RΓ -module Hn(C∗(EΓ ;R))

is trivial for n �= 0 and isomorphic to the constant RΓ -module R for n = 0. In particular
C∗(EΓ ;R) is a projective RΓ -resolution of the constant RΓ -module R. By assumption there
exists a finite projective RΓ -resolution P∗ of R. By the fundamental lemma of homological al-
gebra (see Lück [15, Lemma 11.3 on page 212]) there exists an RΓ -chain homotopy equivalence
f∗ :C∗(EΓ ;R) → P∗. If pr :Γ → {∗} is the projection to the trivial category, we obtain an R-
chain homotopy equivalence indpr f∗ : indpr C∗(EΓ ;R) → indpr P∗. There is also the notion of
an induction functor for contravariant Γ -spaces (see Davis and Lück [11, Definition 1.8]) and
a natural isomorphism of R-chain complexes indpr C∗(EΓ ;R)

∼=−→ C∗(indpr EΓ ;R). The CW -
complex indpr EΓ is a model for BΓ (see [11, Definition 3.10, page 225 and page 230]). Hence
we obtain a chain homotopy equivalence
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C∗(BΓ ;R)
�−→ indpr P∗

and indpr P∗ is an R-chain complex such that every R-chain module is finitely generated projec-
tive and only finitely many R-chain modules are non-trivial. Since R is Noetherian, this implies
that Hn(indpr P∗) is finitely generated as an R-module for every n � 0 and that there is a natural
number d with Hn(indpr P∗) = 0 for n > d . This implies that the same is true for the homology
H∗(BΓ ;R). Our assumptions on the rank function rkR of (4.1) imply

∑
n�0

(−1)n · rkR(indpr Pn) =
∑
n�0

(−1)n · rkR

(
Hn(indpr P∗)

)
=
∑
n�0

(−1)n · rkR

(
Hn(BΓ )

)
= χ(BΓ ;R).

Since the composite

K0(RΓ )
pr∗−−→ K0

(
R{∗})= K0(R)

rkR−−→ Z

sends o(Γ ;R) =∑n�0(−1)n · [Pn] to
∑

n�0(−1)n · rkR(indpr Pn), Theorem 4.15 follows. �
Example 4.17. Let Γ be the category appearing in Example 2.18. It contains idempotents
different from the identity, is directly finite, and of type (FPR). We have U(Γ ) = Z and
χf (Γ ;R) = χ(BΓ ;R) = 1.

Definition 4.18 (The Euler characteristic of a category). Suppose that Γ is of type (FPR). The
Euler characteristic of Γ with coefficients in R is the sum of the components of the functorial
Euler characteristic, that is,

χ(Γ ;R) := ε
(
χf (Γ ;R)

)
.

Theorem 4.19 (Invariance of the Euler characteristic under equivalence of categories). Let
F :Γ1 → Γ2 be an equivalence of categories and suppose that Γ1 is of type (FPR) and di-
rectly finite. Then Γ2 is of type (FPR) and directly finite, and Γ1 and Γ2 have the same Euler
characteristic, that is,

χ(Γ1;R) = χ(Γ2;R).

Proof. This follows from Theorem 4.13 and the naturality of the augmentation homomorphism
in diagram (4.5). �

As we have seen in Theorem 4.15, the topological Euler characteristic is determined by the
finiteness obstruction when Γ is of type (FPR) and R is Noetherian. If we additionally assume
Γ is directly finite, then the topological Euler characteristic and Euler characteristic agree.
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Theorem 4.20 (The Euler characteristic and topological Euler characteristic). Let R be a
Noetherian ring and Γ a directly finite category of type (FPR). Then the Euler characteristic
and topological Euler characteristic of Γ agree. That is, Hn(BΓ ;R) is a finitely generated R-
module for every n � 0, there exists a natural number d with Hn(BΓ ;R) = 0 for all n > d , and

χ(Γ ;R) = χ(BΓ ;R) =
∑
n�0

(−1)n · rkR

(
Hn(BΓ ;R)

) ∈ Z,

where χ(Γ ;R) is defined in Definition 4.18.

Proof. Because of Theorem 4.15, it suffices to show that the diagram

K0(RΓ )
rkRΓ

pr∗

U(Γ )

ε

K0(R{∗}) = K0(R)
rkR

Z

commutes. However, this is precisely the rkR− naturality diagram associated to the functor
Γ → {∗}. This diagram commutes by Lemma 4.9 because Γ and {∗} are directly finite cate-
gories. �

Euler characteristics are compatible with finite products. There is an obvious pairing coming
from the natural bijection iso(Γ1) × iso(Γ2)

∼=−→ iso(Γ1 × Γ2)

⊗ :U(Γ1) ⊗Z U(Γ2) → U(Γ1 × Γ2). (4.21)

Theorem 4.22 (Product formula for χf , χ , and χ(B−)). Let Γ1 and Γ2 be categories of
type (FPR). Suppose that the rank rkR satisfies rkR(M ⊗ N) = rkR(M) · rkR(N) for all finitely
generated R-modules M and N .

Then Γ1 × Γ2 is of type (FPR), the functorial Euler characteristic satisfies

χf (Γ1 × Γ2;R) = χf (Γ1;R) ⊗ χf (Γ2;R)

under the pairing (4.21), the Euler characteristic satisfies

χ(Γ1 × Γ2;R) = χ(Γ1;R) · χ(Γ2;R),

and the topological Euler characteristic satisfies

χ
(
B(Γ1 × Γ2);R

)= χ(BΓ1;R) · χ(BΓ2;R).

Proof. The product Γ1 × Γ2 is of type (FPR) by Theorem 2.17.
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Consider the diagram below,

K0(RΓ1) ⊗ K0(RΓ2)
⊗R

(rkRΓ1 ◦SRΓ1 )⊗(rkRΓ2 ◦SRΓ2 )

K0(R(Γ1 × Γ2))

rkR(Γ1×Γ2) ◦SR(Γ1×Γ2)

U(Γ1) ⊗ U(Γ2) ⊗ U(Γ1 × Γ2)

where the horizontal pairings have been introduced in (2.16) and (4.21), the homomorphisms S

in (3.7), and the homomorphism rkRΓ in (4.7). One easily checks that it commutes. Now the
claim follows for χf from Theorem 2.17.

The claim for χ follows from that for χf because the pairing (4.21) is compatible with the
augmentation homomorphism.

The claim for the topological Euler characteristic follows from the fact BΓ1 × BΓ2 =
B(Γ1 × Γ2) and the Künneth formula. �
5. The (functorial) L2-Euler characteristic and L2-Betti numbers of a category

In this section we introduce the (functorial) L2-Euler characteristic and L2-Betti numbers
of a category. This requires some input from the theory of finite von Neumann algebras and
their dimension theory which we briefly record next. For more information we refer for instance
to Lück [18,20].

In Section 5.1 we recall the group von Neumann algebra N (G) associated to a group G,
the von Neumann dimension dimN (G) for right N (G)-modules, its properties, and compatibil-
ity with induction and restriction for modules over group von Neumann algebras. For a finite
group G, the von Neumann algebra N (G) is CG and the von Neumann dimension of a CG-
module is the complex dimension divided by |G|. For general G, the von Neumann algebra
N (G) is a CG-N (G)-bimodule.

In Section 5.2 we recall the L2-Euler characteristic χ(2)(C∗) of an N (G)-chain complex C∗
as the alternating sum of the von Neumann dimensions of the homology groups, and discuss the
relevant properties.

In Section 5.3 we define the L2-Euler characteristic for categories of type (L2) using the split-
ting functor Sx . A category Γ is of type (L2) if the constant CΓ -module C admits a (not necessar-
ily finite) projective CΓ -resolution P∗ such that the sum over all x ∈ iso(Γ ) of all von Neumann
dimensions of the homology groups of all N (aut(x))-chain complexes SxP∗ ⊗C aut(x) N (aut(x))

converges to a finite number. Any directly finite category of type (FPC) is of type (L2). For
example, finite groupoids, finite posets, and more generally finite EI-categories are of type (L2).

Let U(1)(Γ ) be the set of absolutely convergent sequences on the index set iso(Γ ). The func-
torial L2-Euler characteristic χ

(2)
f (Γ ) ∈ U(1)(Γ ) has at index x the number χ(2)(SxP∗ ⊗C aut(x)

N (aut(x))), where P∗ is a projective CΓ -resolution of C. The L2-Euler characteristic
χ(2)(Γ ) ∈ R is the sum of the sequence χ

(2)
f (Γ ). For example, if Γ is a finite groupoid, then

χ
(2)
f (Γ ) has at index x the value 1/|aut(x)|, and the L2-Euler characteristic is the sum of these.

Like the topological Euler characteristic and the Euler characteristic, the L2-Euler character-
istic comes from the finiteness obstruction in certain cases. However, for the L2-Euler character-
istic, we use the L2-rank rk(2)

Γ instead of the RΓ -rank rkRΓ . In Section 5.4 we define the L2-rank

and prove that rk(2)
o(Γ ;C) = χ

(2)
(Γ ) whenever Γ is directly finite and of type (FPC).
Γ f
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The L2-Euler characteristic is compatible with covering maps and isofibrations between con-
nected finite groupoids, as we prove in Section 5.5.

We now recall the prerequisites from the theory of finite von Neumann algebras and motivate
its use.

5.1. Group von Neumann algebras and their dimension theory

The appearance of (group) von Neumann algebras and their dimension theory in our context
stems from the task to assign some sort of rational- or real-valued dimension to projective mod-
ules over group rings (coming from automorphism groups in a category), which itself is needed
to extract a number, namely the Euler characteristic, from the finiteness obstruction.

The well-known Hattori–Stallings rank HS(M) in Brown [9, Chapter IX, 2] of a finitely
generated projective R-module M over an arbitrary ring R is a way to assign a “dimension” to M .
However, HS(M) is not a number but an element in the quotient R/[R,R] of R by the additive
subgroup [R,R] generated by all commutators ab − ba, a, b ∈ R. In order to get, say, a C-
valued invariant one needs an additive homomorphism t : R → C satisfying the trace property
t (ab) = t (ba).

Consider the case of the complex group ring R =CG of a group G. The map trN (G) : CG→C,
the notation of which already anticipates a more general setup, is defined by

trN (G)

(∑
g∈G

λgg

)
= λe

and satisfies the trace property, thus providing a notion of dimension for finitely generated pro-
jective CG-modules. This dimension does not extend to arbitrary CG-modules, which is a major
drawback as we would like to define the dimension of certain homology groups of projective
resolutions that are not projective anymore. Next we explain work of the second author [16,17]
that allows to define a dimension for all modules – if one works with the larger ring N (G), the
group von Neumann algebra of G, instead.

Let l2(G) be the Hilbert space with Hilbert basis G; it consists of formal sums
∑

g∈G λg · g
for complex numbers λg such that

∑
g∈G |λg|2 < ∞. The complex group ring CG is a dense

subset of l2(G). In fact, l2(G) is the Hilbert space completion of the complex group ring CG

with respect to the pre-Hilbert structure for which G is an orthonormal basis. Left and right mul-
tiplications with elements in G induce respectively isometric left and right G-actions on l2(G).

Definition 5.1 (Group von Neumann algebra). The group von Neumann algebra of the group G

N (G) = B
(
l2(G)

)G
is the algebra of bounded operators that are equivariant with respect to the right G-action. The
standard trace on N (G) is defined by

trN (G) : N (G) → C, f 	→ 〈
f (e), e

〉
l2(G)

.

The standard trace extends the definition on CG given earlier on. From now on we view
N (G) simply as a ring, ignoring its functional-analytic origin. The latter is only important for
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the proof of our ‘blackbox’ Theorem 5.2 below. Modules over N (G) are understood in the purely
algebraic sense.

Sending an element g ∈ G to the isometric G-equivariant operator l2(G) → l2(G) given by
left multiplication with g ∈ G induces an embedding of CG into N (G) as a subring. In particular,
we can view N (G) as a CG-N (G)-bimodule.

Theorem 5.2 (Properties of the dimension function). There exists a dimension function dimN (G)

that assigns to every right N (G)-module M a number, possibly infinite,

dimN (G)(M) ∈ [0,∞] = R�0 ∪ {∞}

and satisfies the following properties:

(i) Hattori–Stallings rank.
If M is a finitely generated projective N (G)-module, then

dimN (G)(M) =
n∑

i=1

trN (G)(ai,i) ∈ [0,∞),

where A = (ai,j ) is any (n,n)-matrix over N (G) with A2 = A such that the image of
the N (G)-homomorphism N (G)n → N (G)n given by left multiplication with A is N (G)-
isomorphic to M ;

(ii) Additivity.
If 0 → M0 → M1 → M2 → 0 is an exact sequence of N (G)-modules, then

dimN (G)(M1) = dimN (G)(M0) + dimN (G)(M2),

where for r, s ∈ [0,∞] we define r + s by the ordinary sum of two real numbers if both r

and s are not ∞, and by ∞ otherwise;
(iii) Cofinality.

Let {Mi | i ∈ I } be a cofinal system of submodules of M , i.e., M =⋃i∈I Mi and for two
indices i and j there is an index k in I satisfying Mi,Mj ⊆ Mk . Then

dimN (G)(M) = sup
{
dimN (G)(Mi)

∣∣ i ∈ I
}
.

Proof. See Lück [18, Theorem 6.5 and Theorem 6.7 on page 239]. �
Let i :H → G be an injective group homomorphism. Then the induced injective ring homo-

morphism i∗ : CH → CG extends to an injective ring homomorphism denoted in the same way
by i∗ : N (H) → N (G).

Lemma 5.3. Let i :H → G be an injective group homomorphism.

(i) The induction functor indi∗ :MOD-N (H) → MOD-N (G) sending M to M ⊗N (H) N (G)

is faithfully flat, i.e., a sequence of N (H)-modules M1 → M2 → M3 is exact if and only if
the induced sequence of N (G)-modules indi∗ M1 → indi∗ M2 → indi∗ M3 is exact;
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(ii) If M is an N (H)-module, then

dimN (G)(indi∗ M) = dimN (H)(M);

(iii) Suppose that the index [G : i(H)] of i(H) in G is finite. Then we get for every N (G)-
module M , if resi∗ denotes its restriction to an N (H)-module by i∗

dimN (H)(resi∗ M) = [G : i(H)
] · dimN (G)(M),

where [G : i(H)] · ∞ is defined to be ∞.

Proof. See Lück [18, Theorem 6.29 on page 253 and Theorem 6.54(6) on page 266]. �
Here are some useful examples of the von Neumann dimension.

Example 5.4.

(i) (von Neumann dimension for finite groups). Let G be a finite group. Then N (G) = CG and
we get for a CG-module M

dimN (G)(M) = 1

|G| · dimC(M);

where dimC is the dimension of M viewed as a complex vector space.
(ii) (von Neumann dimension and permutation modules). Let G be a (not necessarily finite)

group and S a cofinite G-set, i.e., S is the disjoint union of homogeneous G-spaces∐
i∈I G/Li for finite I . By Lück [16, Lemma 4.4], we have

dimN (G)

(
CS ⊗CG N (G)

)= ∑
i∈I|Li |<∞

1

|Li | .

(iii) (von Neumann dimension for Z). Let G = Z. Then N (Z) = L∞(S1) by Fourier transfor-
mation. Under this identification we obtain that

trN (Z) : N (Z) → C, f 	→
∫
S1

f dμ,

where μ is the probability Lebesgue measure on S1.
Let X ⊆ S1 be any measurable set and χX ∈ L∞(S1) be its characteristic function. Since
χX is an idempotent, its image P is a finitely generated projective N (Z)-module, whose
von Neumann dimension dimN (Z)(P ) is the volume μ(X) of X. In particular any non-
negative real number occurs as dimN (Z)(P ) for some finitely generated projective N (Z)-
module P .
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5.2. The L2-Euler characteristic and L2-Betti numbers

In this section we briefly recall some basic facts about L2-Betti numbers and L2-Euler char-
acteristics. For more information we refer to Lück [18, Section 6.6.1 on page 277ff].

Definition 5.5 (L2-Betti numbers). Let C∗ be an N (G)-chain complex. The p-th L2-Betti num-
ber of C∗ is the von Neumann dimension of the N (G)-module given by its p-th homology,
namely

b(2)
p (C∗) := dimN (G)

(
Hp(C∗)

) ∈ [0,∞].

Definition 5.6 (L2-Euler characteristic). Let C∗ be an N (G)-chain complex. Define

h(2)(C∗) :=
∑
p�0

b(2)
p (C∗) ∈ [0,∞].

If h(2)(C∗) < ∞, the L2-Euler characteristic of C∗ is

χ(2)(C∗) :=
∑
p�0

(−1)p · b(2)
p (C∗) ∈ R.

Notice that h(2)(C∗) can be finite also in the case, where infinitely many L2-Betti numbers
are different from zero.

Lemma 5.7.

(i) Let C∗ be an N (G)-chain complex. Suppose that
∑

p�0 dimN (G)(Cp) is finite. Then

h(2)(C∗) is finite and
∑

p�0(−1)p · dimN (G)(Cp) = χ(2)(C∗);
(ii) Let C∗ and D∗ be N (G)-chain complexes which are N (G)-homotopy equivalent. Then

we get b
(2)
p (C∗) = b

(2)
p (D∗) and h(2)(C∗) = h(2)(D∗) and, provided that h(2)(C∗) is finite,

χ(2)(C∗) = χ(2)(D∗);
(iii) Let 0 → C∗ → D∗ → E∗ → 0 be an exact sequence of N (G)-chain complexes. Suppose

that two of the elements h(2)(C∗), h(2)(D∗), and h(2)(E∗) in [0,∞] are finite. Then this is
true for all three and we obtain that

χ(2)(C∗) − χ(2)(D∗) + χ(2)(E∗) = 0;

(iv) Let i :H → G be an injective group homomorphism and let C∗ be an N (H)-chain com-
plex. Then h(2)(C∗) = h(2)(indi∗ C∗) and, provided that h(2)(C∗) < ∞, we have χ(2)(C∗) =
χ(2)(indi∗ C∗);

(v) Let i :H → G be an injective group homomorphism with finite index [G : i(H)]. Let C∗ be
an N (G)-chain complex. Then

h(2)(resi∗ C∗) = [G : i(H)
] · h(2)(C∗)
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and, provided that h(2)(C∗) < ∞, we have

χ(2)(resi∗ C∗) = [G : i(H)
] · χ(2)(C∗).

Proof. (ii) is obvious from the definition. The rest easily follows from Theorem 5.2 and
Lemma 5.3. �
5.3. The (functorial) L2-Euler characteristic

In the following, Γ is always a small category. For every x ∈ ob(Γ ) let

N (x) := N
(
aut(x)

)
be the group von Neumann algebra of the automorphism group aut(x).

Recall that two projective N (G)-resolutions P∗ and Q∗ of the constant CΓ -module C are
CΓ -chain homotopy equivalent and hence the C[x]-chain complexes SxP∗ and SxQ∗ and the
C[x]-chain complexes Resx P∗ and Resx Q∗ are C[x]-chain homotopy equivalent. Therefore the
following definitions will be independent of the choice of a projective CΓ -resolution of C.

Definition 5.8 (Type (L2)). We call Γ of type (L2) if for some (and hence for every) projective
CΓ -resolution P∗ of the constant CΓ -module C we have

∑
x∈isoΓ

h(2)
(
SxP∗ ⊗C[x] N (x)

)
< ∞.

We shall see in Example 5.12 that any finite groupoid is of type (L2). We shall see in Theo-
rem 5.22 that any directly finite category of type (FPC) is of type (L2).

Definition 5.9 (The functorial L2-Euler characteristic of a category). Suppose that Γ is of
type (L2) and let

U(1)(Γ ) :=
{ ∑

x∈iso(Γ )

rx · x
∣∣∣ rx ∈ R,

∑
x∈iso(Γ )

|rx | < ∞
}

⊆
∏

x∈iso(Γ )

R.

The functorial L2-Euler characteristic of Γ is

χ
(2)
f (Γ ) := {χ(2)

(
SxP∗ ⊗C[x] N (x)

) ∣∣ x ∈ iso(Γ )
} ∈ U(1)(Γ ),

where P∗ is a projective CΓ -resolution of the constant CΓ -module C.

The word functorial refers to the fact that the group U(1)(Γ ), in which χ
(2)
f takes values,

depends in a functorial way on Γ .
We can also get a real-valued invariant as follows.
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Definition 5.10 (The L2-Euler characteristic of a category). Suppose that Γ is of type (L2). The
L2-Euler characteristic of Γ is the sum over x ∈ iso(Γ ) of the components of the functorial
Euler characteristic, that is,

χ(2)(Γ ) :=
∑

x∈iso(Γ )

χ(2)
(
SxP∗ ⊗C[x] N (x)

) ∈ R,

where P∗ is a projective CΓ -resolution of the constant CΓ -module C.

Notice that this definition makes sense since the condition (L2) ensures that the sum∑
x∈iso(Γ ) χ

(2)(SxP∗ ⊗C[x] N (x)) is absolutely convergent.

Remark 5.11. In Definition 5.10, the L2-Euler characteristic is defined to be the sum of the
components of the functorial L2-Euler characteristic. This is analogous to the situation for the
ordinary Euler characteristic in Definition 4.18.

Example 5.12 (The (functorial) L2-Euler characteristic of groupoids). Let G be a (small)
groupoid such that autG (x) is finite for any object x ∈ ob(G) and

∑
x∈iso(G)

1

|autG (x)| < ∞. (5.13)

Let P∗ be any projective CG -resolution of C; a (not necessarily finite) projective resolution
always exists. Since G is a groupoid, for every x ∈ ob G and every CG -module M we have
SxM = Resx M . Thus Sx is exact. By Lemma 3.5, Sx respects projectives. Hence SxPx is a
projective C[x]-resolution of the trivial C[x]-module C. Since autG (x) is finite, C is already a
projective C[x]-module. This implies that

Hp

(
SxP∗ ⊗C[x] N (x)

)= {C ⊗C[x] N (x), p = 0,

0, p > 0.

Example 5.4(i) and (5.13) yield that G is of type (L2), the functorial L2-Euler characteristic
χ

(2)
f (G) ∈∏x∈iso(G) R has at x ∈ iso(G) the value 1/|autG (x)|, and

χ(2)(G) =
∑

x∈iso(G)

1

|autG (x)| .

In particular, we can conclude that, for all groupoids such that (5.13) holds, the L2-Euler
characteristic coincides with the Baez and Dolan’s groupoid cardinality, and also with Leinster’s
Euler characteristic when the groupoid is finite.

A concrete case of a groupoid satisfying our conditions is a skeleton G of the groupoid of non-
empty finite sets. This groupoid has objects (isomorphic to) 1 = {1}, 2 = {1,2}, 3 = {1,2,3}, and
so on. The morphisms are the permutations. This example was studied by Baez and Dolan [2].
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The groupoid G is of type (L2), and the functorial L2-Euler characteristic has at the object n the
value 1/|autG (n)| = 1/n!. The L2-Euler characteristic is

χ(2)(G) =
∑
n�1

1

|Sn| =
∑
n�1

1

n! = e.

Remark 5.14. If G is a group and Ĝ denotes the groupoid with precisely one object and G as
automorphism group of this object, then χ(2)(Ĝ) in the sense of Definition 5.10 agrees with the
classical definition of the L2-Euler characteristic χ(2)(G) of a group which has been intensively
studied in the literature (see for instance Lück [18, Chapter 7]).

Lemma 5.15 (Invariance of L2-Euler characteristic under equivalence of categories).

(i) Suppose Γ1 and Γ2 are equivalent categories. Then Γ1 is both directly finite and of type (L2)
if and only if Γ2 is both directly finite and of type (L2).

(ii) Let F :Γ1 → Γ2 be an equivalence of categories. Suppose that Γi is both directly finite and
of type (L2) for i = 1,2.
Then the bijection

U(1)(F ) :U(1)(Γ1)
∼=−→ U(1)(Γ2)

induced by F sends χ
(2)
f (Γ1) to χ

(2)
f (Γ2) and we have

χ(2)(Γ1) = χ(2)(Γ2).

Proof. We have already shown that the property of being directly finite depends only on the
equivalence class of a category (see Lemma 3.2). So in the sequel we can assume that Γ1 and Γ2
are directly finite.

Let F :Γ1 → Γ2 be an equivalence of categories. It induces a bijection

F∗ : iso(Γ1)
∼=−→ iso(Γ2), x 	→ F(x),

and thus a bijection

U(1)(F ) :U(1)(Γ1)
∼=−→ U(1)(Γ2).

Recall from Section 1 that the induction functor indF associated to F sends projective CΓ1-
modules to projective CΓ2-modules. The equivalence F induces for every object x in Γ1 an
isomorphism of groups

Fx : autΓ1(x)
∼=−→ autΓ2

(
F(x)

)
, f 	→ F(f ).

From the proof of Lemma 3.15, we have for every object x in Γ1 and projective CΓ1-module P

a natural isomorphism of C[F(x)]-modules

α(P ) : indFx ◦SxP
∼=−→ SF(x) ◦ indF P

(the direct sum in the proof of Lemma 3.15 has only one summand because F is an equivalence).
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Fix an object x in Γ1. The argument in the proof of Theorem 2.10 shows that the induction
functor indF associated to F is an exact functor and sends C to C. Let P∗ be a free CΓ1-resolution
of C. Then indF P∗ is a free CΓ2-resolution of C. The various isomorphisms α(Pn) induce an
isomorphism of C[F(x)]-chain complexes

α(P∗) : indFx ◦SxP∗
∼=−→ SF(x) ◦ indF P∗.

We have for every R[x]-module M a canonical N (F (x))-isomorphism

(indFx M) ⊗C[F(x)] N
(
F(x)

) ∼=−→ indFx

(
M ⊗C[x] N (x)

)
.

If we apply − ⊗C[F(x)] N (F (x)) to α(P∗) and use the isomorphisms above we obtain an iso-
morphism of N (F (x))-chain complexes

α(2)(P∗) : indFx

(
SxP∗ ⊗C[x] N (x)

) ∼=−→ (SF(x) ◦ indF P∗) ⊗C[F(x)] N
(
F(x)

)
.

We conclude from Lemma 5.7(ii)

h(2)
(
SxP∗ ⊗C[x] N (x)

)= h(2)
(
(SF(x) ◦ indF P∗) ⊗C[F(x)] N

(
F(x)

))
and, provided that h(2)(SxP∗ ⊗C[x] N (x)) < ∞

χ(2)
(
SxP∗ ⊗C[x] N (x)

)= χ(2)
(
(SF(x) ◦ indF P∗) ⊗C[F(x)] N

(
F(x)

))
.

Now Lemma 5.15 follows. �
Next we consider products of categories. Since iso(Γ1 × Γ2) = iso(Γ1) × iso(Γ2), we obtain

a pairing

⊗ :U(1)(Γ1) ⊗ U(1)(Γ2) → U(1)(Γ1 × Γ2),∑
x1∈iso(Γ1)

rx1 · x1 ⊗
∑

x2∈iso(Γ2)

sx2 · x2 	→
∑

(x1,x2)∈iso(Γ1×Γ2)

rx1sx2 · (x1, x2). (5.16)

Theorem 5.17 (Product formula for χ
(2)
f and χ(2)). Let Γ1 and Γ2 be categories of type (L2).

Then Γ1 × Γ2 is of type (L2), we get for the functorial L2-Euler characteristic

χ
(2)
f (Γ1 × Γ2) = χ

(2)
f (Γ1) ⊗ χ

(2)
f (Γ2)

under the pairing (5.16), and we get for the L2-Euler characteristic

χ(2)(Γ1 × Γ2) = χ(2)(Γ1) · χ(2)(Γ2).
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Proof. If P∗ is a projective CΓ1-resolution of the constant CΓ1-module C and Q∗ is a projective
CΓ2-resolution of the constant CΓ2-module C, then P∗ ⊗ Q∗ is a projective C(Γ1 × Γ2)-
resolution of the constant C(Γ1 × Γ2)-module C. Given x ∈ iso(Γ1) and y ∈ iso(Γ2), there is
a canonical isomorphism of chain complexes over C[(x, y)] = C[x] ⊗C C[y]

SxP∗ ⊗C SyP∗ = S(x,y)(P∗ ⊗C Q∗).

Since the Cauchy product of two absolutely convergent series of real numbers is again an ab-
solutely convergent series, it suffices to show for two groups H and G, a projective CH -chain
complex C∗ and a projective CG-chain complex D∗, that for the projective C[G × H ]-chain
C∗ ⊗C D∗ we have

h(2)(C∗ ⊗C D∗) < ∞;
χ(2)(C∗ ⊗C D∗) = χ(2)(C∗) · χ(2)(D∗)

provided that h(2)(C∗) and h(2)(D∗) are finite. The proof of this claim is the chain complex
analogue of the proof of Lück [18, Theorem 6.80(6) on page 278]. �
5.4. The finiteness obstruction and the (functorial) L2-Euler characteristic

Next we compare these definitions with the finiteness obstruction and Euler characteristic.

Definition 5.18 (L2-rank of a finitely generated CΓ -module). Let M be a finitely generated
CΓ -module M . The L2-rank of M is

rk(2)
Γ (M) := {dimN (x)

(
SxM ⊗C[x] N (x)

) ∣∣ x ∈ iso(Γ )
} ∈ U(Γ ) ⊗Z R =

⊕
iso(Γ )

R.

The rank rk(2)
Γ defines a homomorphism

rk(2)
Γ :K0(CΓ ) → U(Γ ) ⊗Z R, [P ] → rk(2)

Γ (P ) (5.19)

since for a finitely generated CΓ -module M the value of SxM is non-trivial only for finitely many
elements x ∈ iso(Γ ) and the C aut(x)-module SxM is finitely generated for every x ∈ ob(Γ ) (see
Lemma 3.5).

If Γ is directly finite, then the map rk(2)
Γ obviously factorizes over S :K0(CΓ ) →

SplitK0(CΓ ).

Example 5.20. If H is a subgroup of G of finite index [G : H ], and i denotes the inclusion, then
the diagram

K0(CG)
rk(2)

G

i∗

R

[G:H ]·

K0(CH)
rk(2)

H

R

commutes.
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Proof. It follows from existence of a CH -isomorphism CGn =⊕G/H CHn that the restriction
i∗P of a finitely generated projective CG-module P is a finitely generated projective CH -
module. So the left vertical map in the above diagram is well defined. It directly follows from the
proof of Lück [18, Theorem 6.54(6) on page 266] that

(
i∗P
)⊗CH N (H) ∼= resi∗

(
P ⊗CG N (G)

)
.

Now the assertion follows from Lemma 5.3(iii). �
Remark 5.21 (L2-rank of a finitely generated RΓ -module). In Definition 5.18 we have defined
the L2-rank of a finitely generated CΓ -module. If R is a subring of C, we may analogously
define the L2-rank of a finitely generated RΓ -module M . Namely, we view N (x) as an R aut(x)-
N (x)-bimodule via the embedding of rings R aut(x) → C aut(x) → N (aut(x)) and then take
dimN (x)(SxM ⊗R[x] N (x)) as the components of the L2-rank of M . We will primarily be inter-

ested in the case R = C, so we omit C from the notation rk(2)
Γ . Occasionally we will also consider

R = Q.

Theorem 5.22 (Relating the finiteness obstruction and the L2-Euler characteristic). Suppose
that Γ is a directly finite category of type (FPC). Then Γ is of type (L2) and the image of the
finiteness obstruction o(Γ ;C) (see Definition 2.7) under the homomorphism

rk(2)
Γ :K0(CΓ ) → U(Γ ) ⊗Z R =

⊕
x∈iso(Γ )

R

defined in (5.19) is χ
(2)
f (Γ ).

Proof. Since Γ is of type (FPC), we can find a finite projective CΓ -resolution P∗ of C. Hence
SxP∗ is non-trivial only for finitely many objects x in Γ and a finite projective C[x]-chain com-
plex for all objects x in Γ by Lemma 3.5. Hence Γ is of type (L2). Now apply Lemma 5.7(i). �
Example 5.23. Finite EI-categories are of type (L2) by Theorem 5.22, Lemma 3.13, and
Lemma 6.15(v).

Lemma 5.24. Suppose that Γ is directly finite. Then:

(i) If F is a finitely generated free CΓ -module, the rank rkCΓ (F ) of Definition 4.6 and the rank
rk(2)

Γ (F ) of Definition 5.18 agree;
(ii) The composite

U(Γ )
ι−→ K0(CΓ )

rk(2)
Γ−−→ U(Γ ) ⊗Z R

of the homomorphisms defined in (4.8) and (5.19) is the obvious inclusion U(Γ ) →
U(Γ ) ⊗Z R.
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Proof. (i) This follows from Lemma 4.10 since for y = x we have

rk(2)
Γ

(
C mor(?, x)

)
y

= dimN (x)

(
SxC mor(?, x) ⊗C[x] N (x)

)
= dimN (x)

(
N (x)

)= 1 = rkC
(
SxC mor(?, x) ⊗C[x] C

)
= rkCΓ

(
C mor(?, x)

)
y

and for y �= x we get

rk(2)
Γ

(
C mor(?, x)

)
y

= 0 = rkCΓ

(
C mor(?, x)

)
y
.

(ii) This follows from assertion (i) and Lemma 4.10(i). �
Theorem 5.25 (Invariants agree for directly finite and type (FFZ)). Suppose Γ is directly finite
and of type (FFZ). Then the functorial L2-Euler characteristic of Definition 5.9 coincides with
the functorial Euler characteristic of Definition 4.11 for any associative, commutative ring R

with identity

χ
(2)
f (Γ ) = χf (Γ ;R) ∈ U(Γ ) ⊆ U(1)(Γ ),

and thus χ(2)(Γ ) = χ(Γ ;R) in Definition 5.10 and Definition 4.18.
If R is additionally Noetherian, then

χ(BΓ ;R) = χ(Γ ;R) = χ(2)(Γ ). (5.26)

Moreover, if Γ is merely of type (FFC) rather than (FFZ), then Eq. (5.26) holds for any Noethe-
rian ring R containing C.

Proof. If Γ is of type (FFZ), it is also of type (FFR), since any (augmented) resolution of
Z is contractible as a complex of Z-modules, thus stays exact after applying _ ⊗Z R. Using
Lemma 3.5(iv), we can show

rkR

(
Sx(Fn ⊗Z R) ⊗R[x] R

)= rkZ(SxFn ⊗Z[x] Z).

Consequently, χf (Γ ;R) = χf (Γ ;Z) and χ(Γ ;R) = χ(Γ ;Z) for any ring R.

By Lemma 5.24(i), the CΓ -rank rkCΓ coincides with the L2-rank rk(2)
Γ for finitely gener-

ated free CΓ -modules, and we have χ
(2)
f (Γ ) = rk(2)

Γ o(Γ ;C) = rkCΓ o(Γ ;C) = χf (Γ ;C) =
χf (Γ ;R) by Theorem 5.22 and the above (here we use a finite free resolution in o(Γ ;C)).
Summing up, we have χ(2)(Γ ) = χ(Γ ;R). If R is additionally Noetherian, then Theorem 4.20
implies χ(Γ ;R) = χ(BΓ ;R).

The statement after (5.26) follows by a similar argument as above. �
We may contrast the assumptions of (FFZ) and direct finiteness in Theorem 5.25 with the

relaxed assumptions of (FPR) and direct finiteness. If we only assume type (FPR) and direct
finiteness, then χ(Γ ;R) and χ(BΓ ;R) coincide by Theorem 4.20, but these may be different
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from χ(2)(Γ ). For example, if G is a non-trivial finite group, then it is of type (FPC) but not of
type (FFC), and we have χ(BΓ ;C) = χ(Γ ;C) = 1, but χ(2)(Γ ) = 1

|G| .

Corollary 5.27. Suppose Γ is directly finite and of type (FFZ). We have

ι
(
χ

(2)
f (Γ ;C)

)= o(Γ ;C)

for the homomorphism ι defined in Eq. (4.8).

Proof. This follows from Theorem 5.25 and Lemma 4.14. �
Remark 5.28. Recall that χ(BC;Q) is the Euler characteristic of BC . However, it is not true that
χ(2)(C) is related to the L2-Euler characteristic χ(2)(B̃C; N (π1(BC))) in the sense of Lück [18,
Definition 6.20]. We will compute χ(2)(Or(D∞)) = 0 in Section 8.5. On the other hand
BOr(D∞) = D∞\ED∞ is contractible and hence χ(2)(B̃C; N (π1(BC))) = χ(BOr(D∞)) = 1.

5.5. Compatibility of Euler characteristics with coverings and isofibrations

Our next task is to show that the L2-Euler characteristic is compatible with covering maps
and isofibrations between connected finite groupoids. In the context of groupoids, the role of a
covering neighborhood is played by the star of an object. If E is a small groupoid and e is an
object of E , we denote by St(e) the star of e, namely the set of all morphisms in E with domain e.

Definition 5.29 (Covering of a groupoid). A functor p : E → B between connected small
groupoids is a covering if it is surjective on objects and restricts to a bijection

St(e) → St
(
p(e)

)
for each object e of E . We say that a covering p is n-sheeted if |ob(p−1(b))| = n for all objects b

of B.

Recall that a small groupoid E is finite if iso(E ) is finite and for any object e ∈ ob(E ) the set
aut(e) is finite.

Theorem 5.30 (Compatibility of the L2-Euler characteristic with coverings of finite groupoids).
Let E and B be connected finited groupoids. If p : E → B is an n-sheeted covering, then

χ(2)(E ) = nχ(2)(B). (5.31)

Proof. We present two proofs, one counting morphisms and the other using the technology of
the finiteness obstruction.

To prove the theorem by counting morphisms, we first reduce to the case where the base
groupoid has only one object. If b ∈ B and Eb denotes the groupoid p−1(âut(b)), then the diagram
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Eb

p|Eb

E

p

âut(b) B

commutes and the horizontal functors are equivalences of categories. The groupoid Eb is con-
nected; for if e, e′ ∈ Eb , then f : e ∼= e′ in E , and p(f ) ∈ aut(b), so f ∈ mor(Eb). Moreover,
StEb

(e) ⊆ StE (e) for all e ∈ Eb , Staut(b)(b) ⊆ StB(b), and p|Eb
is an n-sheeted covering. By The-

orem 2.8, Lemma 3.13, Theorem 5.22, and Definition 5.10, the groupoids Eb and E have the
same L2-Euler characteristic, as do âut(b) and B. Alternatively, we know from Example 5.12
directly that

χ(2)(Eb) = 1

|aut(e)| = χ(2)(E ),

χ(2)
(
âut(b)

)= 1

|aut(b)| = χ(2)(B).

Thus, if the theorem holds in the case where the base groupoid has only one object, it holds in
general.

Suppose now that B has only one object b, so that B = âut(b). Then E has only n objects, say
e1, . . . , en. Since E is a connected finite groupoid, all of its hom-sets have the same number of
elements. Let e ∈ E . We have

∣∣aut(b)
∣∣= ∣∣St(e)

∣∣= ∣∣∣∣∣
n⋃

i=1

morE (e, ei)

∣∣∣∣∣=
n∑

i=1

∣∣morE (e, ei)
∣∣= n∑

i=1

∣∣aut(e)
∣∣

= n
∣∣aut(e)

∣∣. (5.32)

In conclusion, χ(2)(E ) = nχ(2)(B).
We may also prove Theorem 5.30 on the level of finiteness obstructions as follows, without

reduction to the case of one object in the base groupoid.
The covering p : E → B is admissible in the sense that resp sends a finitely generated pro-

jective RB-module to a finitely generated projective RE -module as a consequence of Lück [15,
Proposition 10.16 on page 187] as follows. A morphism h :p(x) → y in B is said to be irre-
ducible if for any factorization h = f ◦ p(g) the morphism g in E is an isomorphism. Clearly,
the set Irr(x, y) of irreducible morphisms p(x) → y in B is morB(p(x), y), since E is a groupoid.
Since E is finite, for a given y ∈ B, the set Irr(x, y) is non-empty for only finitely many
x ∈ iso(E ). Since B is finite, for each x ∈ E the right autE (x)-set Irr(x, y) has only finitely many
orbits. The right action of autE (x) on Irr(x, y) is free because B is a groupoid and p is a cover-
ing: if h ∈ morB(p(x), y) and h ◦pm = h ◦pn, then pm = pn and m = n. Every morphism h in
morB(p(x), y) is irreducible, so clearly we have a factorization f ◦p(g) = h with f irreducible,
namely f = h and g = idx . Any two factorizations f ◦ p(g) = h and f ′ ◦ p(g′) = h with f and
f ′ irreducible are related by the isomorphism k := g′ ◦ g−1.

We fix an x ∈ E and let H = autE (x), G = autB(p(x)). The covering p induces an inclusion
of H into G. Consider the following diagram.
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K0(CB)
S

∼=

rk(2)
B

p∗

K0(CG)
rk(2)

G

p∗

R

[G:H ]·

U(B) ⊗ R
∼=

K0(CE )
S

∼=

rk(2)
E

K0(CH)
rk(2)

H

R U(E ) ⊗ R∼=

The left square commutes by Theorem 3.14. The second square commutes by Example 5.20. The
top and bottom diagrams commute by definition of rk(2). Beginning in the upper left-hand corner,
we have o(B;C) ∈ K0(CB). By Theorem 2.9, we have p∗(o(B;C)) = o(E ;C). Two applications
of Theorem 5.22 combined with the commutativity of the diagrams lead us to χ(2)(E ) = [G : H ] ·
χ(2)(B). An argument similar to the one in (5.32) shows that [G : H ] is equal to the number of
sheets n. �
Example 5.33. Let E = {0 ↔ 1} and let B be the category with one object and one non-trivial
arrow, which is its own inverse. By Example 5.12, the L2-Euler characteristics are χ(2)(E ) = 1
and χ(2)(B) = 1/2. The unique covering E → B is 2-sheeted and we have

χ(2)(E ) = 2χ(2)(B).

Corollary 5.34. Any n-sheeted covering functor between connected finite groupoids is equivalent
to the inclusion of an index n subgroup into a finite group. More precisely, if p : E → B is an n-
sheeted covering between connected finite groupoids and e ∈ E , then the diagram

âut(e)

p|
âut(e)

E

p

̂aut(p(e)) B

commutes, the horizontal functors are equivalences of categories, the left vertical functor is
mono, and [aut(p(e)) : p(aut(e))] = n.

Remark 5.35. Examples of covering functors are obtained from coverings of topological spaces:
a covering of topological spaces induces a covering functor between the associated fundamental
groupoids.

We next turn to compatibility of χ(2) with isofibrations.

Definition 5.36 (Isofibration). A functor p : E → B is an isofibration if for every isomorphism
in B of the form g :b ∼= p(e) there is an isomorphism f in E such that p(f ) = g.



T.M. Fiore et al. / Advances in Mathematics 226 (2011) 2371–2469 2413
We remark that if E and B are groupoids, then isofibrations and Grothendieck fibrations coin-
cide (because isomorphisms in the domain category are always cartesian arrows).

Theorem 5.37 (Compatibility of the L2-Euler characteristic with isofibrations of finite
groupoids). Let p : E → B be an isofibration between connected finite groupoids. If b ∈ B and
p−1(b) is connected, then

χ(2)(E ) = χ(2)
(
p−1(b)

) · χ(2)(B). (5.38)

Proof. As in the proof of Theorem 5.30, we reduce to the case where the base groupoid has only
one object. If b ∈ B and Eb denotes the groupoid p−1(âut(b)), then the diagram

Eb

p|Eb

E

p

âut(b) B

commutes, the horizontal functors are equivalences of categories, and Eb is connected. The fiber
groupoid p|−1

Eb
(b) is the same as the fiber groupoid p−1(b), so p|−1

Eb
(b) is also connected. Since

χ(2)(E ) = χ(2)(Eb) and χ(2)(B) = χ(2)(âut(b)), we have (5.38) if χ(2)(Eb) = χ(2)(p|−1
Eb

(b)) ·
χ(2)(âut(b)). We have reduced to the case where the base groupoid has only one object.

Suppose now that B has only one object b, so that B = âut(b). For e ∈ p−1(b), we write
simply pe for the group homomorphism aut(e) → aut(b). Then pe is surjective. If g is an auto-
morphism of b, there exists an f : e′ → e with p(f ) = g. The connectivity of the fiber p−1(b)

then gives us an isomorphism h : e → e′, and an automorphism f ◦h of e such that pe(f ◦h) = g.
Finally,

χ(2)(E ) = 1

|aut(e)| = 1

|kerpe| · |aut(b)| = χ(2)
(
p−1(b)

) · χ(2)(B). �
6. Möbius inversion

We extend the K-theoretic Möbius inversion of Lück [15, Chapter 16] from finite to quasi-
finite EI-categories and apply it to the finiteness obstruction and the Euler characteristic of a
category. Throughout this section let Γ be an EI-category (see Definition 3.10). We have already
introduced the splitting (S,E) of K0(RΓ ) in Theorem 3.14. Provided that Γ is a quasi-finite
EI-category, we obtain a second splitting (Res, I ) in Theorem 6.16. The K-theoretic Möbius
inversion (μ,ω) will compare these two splittings in Theorem 6.22. As a consequence, in Theo-
rem 6.23 we obtain explicit formulas for the various Euler characteristics of finite EI-categories.
Important special cases of our K-theoretic Möbius inversion include Philip Hall’s Möbius in-
version formula for finite posets and Leinster’s Möbius inversion formula for finite skeletal
categories with only trivial endomorphisms. See Examples 6.24 and 6.25.

After treating the second splitting (Res, I ) and the K-theoretic Möbius inversion (μ,ω) in
Sections 6.1 and 6.2, we turn to the relationship between the K-theoretic Möbius inversion (μ,ω)

and the L2-rank in Section 6.3. There we construct a pair of homomorphisms μ(2) :U(Γ ) ⊗Z
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Q � U(Γ )⊗Z Q :ω(2) that are inverse to one another if Γ is a quasi-finite, free EI-category, and
commute appropriately with (μ,ω) and rk(2)

Γ as in Theorem 6.34. All of these homomorphisms
and splittings are illustrated for G-H -bisets (viewed as two-object EI-categories) in Section 6.4.

In general, the finiteness obstruction and Euler characteristics of Γ op are different from those
of Γ , as we see in Section 6.5 with a biset example. However, in the case of a finite EI-
category Γ , the groups K0(QΓ ) and K0(QΓ op) are isomorphic, and we say more about the
respective splittings in Section 6.6.

In Section 6 we also introduce the proper orbit category Or(G), an important quasi-finite, free
EI-category to which we shall return in Section 8.

6.1. A second splitting

Given an object x in a (small) category Γ , define the restriction functor at x

Resx :MOD-RΓ → MOD-R[x] (6.1)

by evaluating an RΓ -module N at the object x. This functor is exact but does not respect finitely
generated projective in general. Given an EI-category Γ , the inclusion functor at x

Ix :MOD-R[x] → MOD-RΓ (6.2)

sends a right R[x]-module M to the RΓ -module given by

IxM(y) :=
{

M ⊗R[x] R mor(y, x) if y = x;
0 if y �= x.

Notice that we need the EI-condition to ensure that this definition makes sense. This functor is
compatible with direct sums, but does not respect finitely generated projective in general.

Lemma 6.3. Let Γ be an EI-category. Then we obtain for every x ∈ ob(Γ ) adjoint pairs of
functors (Ex,Resx) and (Sx, Ix), where Ex , Resx , Sx and Ix are the functors defined in (3.4),
(6.1), (3.3) and (6.2).

Proof. See Lück [15, Lemma 9.31 on page 171]. �
The EI-property ensures that we obtain a well-defined partial ordering on iso(Γ ) by

x � y ⇔ mor(x, y) �= ∅. (6.4)

Definition 6.5 (Length of an element). Given an element x ∈ iso(Γ ), define its length

l(x) ∈ {0,1,2, . . .} � {∞}
to be the supremum over the natural numbers n, for which there exist elements xn, xn−1, . . . , x0
in iso(Γ ) with xn < xn−1 < · · · < x0 and x0 = x.

The length of x is zero if and only if every morphism with x as target is an isomorphism.
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Definition 6.6 (Finite, quasi-finite, and free categories). Let Γ be a (small) category.
We call Γ quasi-finite if for every x ∈ iso(Γ ) the set {y ∈ iso(Γ ) | y � x} is finite, and for

every two objects x, y ∈ ob(Γ ) the right aut(x)-set mor(x, y) is proper and cofinite, i.e., every
isotropy group under the right aut(x)-action is finite and the quotient mor(x, y)/ aut(x) is finite.

We call Γ finite if iso(Γ ) is finite and mor(x, y) is finite for every two objects x, y ∈ ob(Γ ).
A small category is finite if and only if it is equivalent to a category with finitely many objects
and finitely many morphisms.

We call Γ free if the left aut(y)-action on mor(x, y) is free for every two objects x, y ∈ ob(Γ ).

One of our main examples for Γ will be the orbit category.

Definition 6.7 (Orbit category and proper orbit category). Let G be a group. The orbit category
Or(G) has as objects homogeneous spaces G/H and as morphisms G-equivariant maps. The
proper orbit category

Or(G) = OrF I N (G),

sometimes also called the orbit category associated to the family F I N of finite subgroups, is
defined to be the full subcategory of Or(G) consisting of objects G/H with finite H .

Lemma 6.8. Let H and K be subgroups of a group G. If g ∈ G and g−1Hg ⊆ K , then we get a
well-defined G-equivariant map

Rg :G/H → G/K,

g′H 	→ g′gK.

Every G-equivariant map G/H → G/K is of the form Rg . We have Rg = Rg′ if and only if
g−1g′ ∈ K holds. In particular, we have a bijection

mor(G/H,G/K) → {
gK

∣∣ g−1Hg ⊆ K
}
,

f 	→ f (1H). (6.9)

We also have Rg2 ◦ Rg1 = Rg1g2 .

Proof. See tom Dieck [27, I.1.14] and Lück [15, Lemma 1.31 on page 22]. �
Lemma 6.10. The orbit category Or(G) is a free EI-category.

Proof. A direct consequence of Lemma 6.8 is that the monoid map(G/H,G/H) is isomorphic
to the Weyl group NGH/H , so every endomorphism of Or(G) is an automorphism.

If G/H and G/K are two objects in Or(G), and f :G/H → G/K and a :G/K → G/K

are G-equivariant maps, then a ◦ f = f implies a = id since f is surjective. Hence Or(G) is
free. �
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Lemma 6.11. The proper orbit category Or(G) is a quasi-finite and free EI-category.

Proof. The proper orbit category Or(G) is a full subcategory of the orbit category Or(G), which
is a free EI-category, so Or(G) is also a free EI-category.

For the quasi-finiteness, we first observe from the bijection (6.9) that

mor(G/H,G/K) �= ∅

if and only if H is G-conjugate to a subgroup of K . If H and H ′ are G-conjugate, then G/H

and G/H ′ are isomorphic objects of Or(G). Thus for a fixed G/K , the number of isomorphism
classes G/H with mor(G/H,G/K) �= ∅ is at most the number of G-conjugacy classes of sub-
groups of K . Whenever K is a finite group, this number is finite. Thus, {G/H ∈ iso(Or(G)) |
G/H � G/K} is finite.

Continuing the notation of Lemma 6.8, consider a morphism Rg2 :G/H → G/K in Or(G).
Suppose Rg1 ∈ aut(G/H) fixes Rg2 . Then Rg1g2 = Rg2 and g−1

2 g1g2 ∈ K , so that g1 ∈ g2Kg−1
2 .

But g2Kg−1
2 is finite, so there are only finitely many possibilities for g1. Thus every isotropy

group for the right aut(G/H)-action on mor(G/H,G/K) is finite.
For objects G/H and G/K in Or(G), the quotient mor(G/H,G/K)/ aut(G/H) is in bijec-

tive correspondence with {
g2K

∣∣ g−1
2 Hg2 ⊆ K

}
/ ∼ (6.12)

by Lemma 6.8, where g2K ∼ g1g2K if g1 ∈ G and g−1
1 Hg1 ⊆ H . Since H is finite,

g−1
1 Hg1 ⊆ H implies g−1

1 Hg1 = H . But (6.12) is in bijective correspondence with G-conjugates
of H contained in K , of which there are only finitely many because K is finite. Thus the quotient
mor(G/H,G/K)/ aut(G/H) is finite. �
Lemma 6.13.

(i) Suppose for the EI-category Γ that for every x ∈ iso(Γ ) the set {y ∈ iso(Γ ) | y � x} is finite.
Let M be a finitely generated RΓ -module M . Then{

x ∈ iso(Γ )
∣∣M(x) �= 0

}
is finite;

(ii) If Γ is a quasi-finite EI-category of type (FPR), then iso(Γ ) is finite.

Proof. (i) Choose a finite subset I ⊆ iso(Γ ) and natural numbers ni � 1 for each i ∈ I such that
there exists an epimorphism of RΓ -modules⊕

i∈I

R mor(?, xi)
ni → M.

Then for every y ∈ iso(Γ ) with M(y) �= 0 there is i ∈ I with y � xi . Since I is finite,
{x ∈ iso(Γ ) | M(x) �= 0} is finite.

(ii) This follows from assertion (i) applied to the constant module R. �
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Definition 6.14 (Length of a module). The length l(M) ∈ {−1,0,1,2 . . .} � {∞} of an RΓ -
module M is defined to be −1 if M is zero and otherwise to be the supremum of the length of
elements x ∈ iso(Γ ) with M(x) �= 0.

If Γ is quasi-finite and hence {y ∈ iso(Γ ) | y � x} is finite for every x ∈ iso(Γ ), the length of
R mor(?, x) is finite for every object x ∈ ob(Γ ) and hence every finitely generated RΓ -module
has finite length.

Lemma 6.15. Suppose that Γ is a quasi-finite EI-category. Suppose for any morphism f :x → y

in Γ that the order of the finite group {g ∈ aut(x) | f ◦ g = f } is invertible in R.

(i) Consider x ∈ ob(Γ ). Let M be an RΓ -module which is finitely generated projective or
which possesses a finite projective RΓ -resolution respectively. Then the R aut(x)-module
Resx M = M(x) is finitely generated projective or has a finite projective R[x]-resolution
respectively;

(ii) Let M be an RΓ -module such that the set{
x ∈ iso(Γ )

∣∣M(x) �= 0
}

is finite. If Resx M possesses a finite projective R[x]-resolution for all x ∈ ob(Γ ), then
M possesses a finite projective RΓ -resolution;

(iii) Let x ∈ ob(Γ ) and let N be an R[x]-module which possesses a finite projective R[x]-
resolution. Then the RΓ -module IxN defined in (6.2) possesses a finite projective RΓ -
resolution;

(iv) Γ is of type (FPR) if and only if iso(Γ ) is finite and for every object x ∈ ob(Γ ) the trivial
R[x]-module R is of type (FPR) respectively;

(v) Let Γ be a finite EI-category. Assume that for every object x the order of the finite group
aut(x) is invertible in R. Then an RΓ -module M possesses a finite projective resolution if
for every object x the R-module M(x) possesses a finite projective R-resolution. In partic-
ular Γ is of type (FPR).

Proof. (i) Since Resx is exact, it suffices to show that Resx R mor(?, y) = R mor(x, y) is a
finitely generated projective R[x]-module for every y ∈ ob(Γ ). This follows from the assump-
tions that the right aut(x)-set mor(x, y) is a finite union of homogeneous aut(x)-spaces of the
form H\ aut(x) for finite H ⊆ aut(x) such that |H | · 1R is a unit in R.

(ii) Since Γ is quasi-finite and M has finite support, the RΓ -module M has finite length. We
do induction over the length of the RΓ -module M . The induction beginning l = −1 is trivial,
the induction step from l − 1 to l � 0 done as follows.

If 0 → M1 → M1 → M3 → 0 is an exact sequence of RΓ -modules such that two of the
RΓ -modules M1, M2, and M3 possess finite projective RΓ -resolutions, then all three possess
finite projective RΓ -resolutions (see Lück [15, Lemma 11.6 on page 216]). Thus, using the Fil-
tration Theorem (see Lück [15, Theorem 16.8 on page 326]) and the induction hypothesis, it
suffices to show for any object x of length l and any R[x]-module N which admits a finite pro-
jective R[x]-resolution that IxN has a finite projective RΓ -resolution. Since Ix is exact, it is
enough to consider the case N = R[x]. Consider the epimorphism f :R mor(?, x) → Ix(R[x])
sending idx to 1R[x] ⊗ idx ∈ R[x] ⊗R[x] R mor(x, x) = Ix(R[x]). Its kernel ker(f ) is an RΓ -
module of length � l−1 and satisfies Resy(ker(f )) = R mor(y, x) = Resy R mor(?, x) for y < x
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and Resy(ker(f )) = 0 otherwise. Assertion (i) implies that Resy(ker(f )) possesses a finite pro-
jective R[y]-resolution for all objects y ∈ ob(Γ ). Hence ker(f ) possesses a finite projective
RΓ -resolution by induction hypothesis. This implies that IxR[x] possesses a finite projective
RΓ -resolution. This finishes the proof of the induction step.

(iii) This follows directly from assertion (ii).
(iv) This follows directly from Lemma 6.13(ii) and assertions (i) and (ii).
(v) Since |aut(x)| is invertible in R and finite, an R[x]-module possesses a finite projective

R[x]-resolution if and only if it possesses a finite projective R-resolution. Now apply asser-
tion (ii). �

Our main example for R will of course be Q.

Theorem 6.16 (A second splitting of K0(RΓ )). Suppose that Γ is a quasi-finite EI-category. Sup-
pose for any morphism f :x → y in Γ that the order of the finite group {g ∈ aut(x) | f ◦ g = f }
is invertible in R.

Then we obtain isomorphisms Res and I which are inverse to one another.

Res :K0(RΓ ) → SplitK0(RΓ ), [P ] 	→ {[Resx P ] ∣∣ x ∈ iso(Γ )
}
,

I : SplitK0(RΓ ) → K0(RΓ ),
{[Qx]

∣∣ x ∈ iso(Γ )
} 	→

∑
x∈iso(Γ )

[IxQx].

Proof. Consider a finitely generated projective RΓ -module P . Then for any object x ∈ ob(Γ )

the R[x]-module Resx P possesses a finite projective R[x]-resolution (see Lemma 6.15(i)) and
hence defines an element in K0(R[x]), namely its finiteness obstruction in the sense of Defi-
nition 2.1. Since Γ is by assumption quasi-finite and hence {y ∈ iso(Γ ) | y � x} is finite for
every object x ∈ ob(Γ ), there are only finitely many elements x ∈ iso(Γ ) with Resx P �= 0 by
Lemma 6.13(i). Hence we obtain a well-defined element

Res
([P ]) := {[Resx P ] ∣∣ x ∈ iso(Γ )

} ∈
⊕

x∈iso(Γ )

K0
(
R[x])= SplitK0(RΓ ).

Thus we obtain a homomorphism

Res :K0(RΓ ) → SplitK0(RΓ ).

Define

I : SplitK0(RΓ ) → K0(RΓ )

analogously using Lemma 6.15(iii).
One obtains Res◦I = id from the fact that the functor Resy ◦Ix :MOD-R[x] → MOD-R[y]

is naturally isomorphic to the identity functor if x = y and is trivial if x �= y. It remains to show
that I is surjective. This is done by induction over the length, which is finite by Lemma 6.13(i),
of a finitely generated projective RΓ -module representing a class in K0(RΓ ) using Lemma 6.15
and the Filtration Theorem (see Lück [15, Theorem 16.8 on page 326]). �
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6.2. The K-theoretic Möbius inversion

Convention 6.17. Suppose for the remainder of this subsection that Γ is a quasi-finite EI-
category and that for every morphism f :x → y in Γ the order of the finite group {g ∈ aut(x) |
f ◦ g = f } is invertible in R.

We obtain a well-defined homomorphism

ωx,y :K0
(
R[x])→ K0

(
R[y]), [P ] 	→ [

P ⊗R[x] R mor(y, x)
]

since the right R[y]-module R mor(y, x) = Resy R mor(?, x) is finitely generated projective by
Lemma 6.15(i). Define

ω : SplitK0(RΓ ) → SplitK0(RΓ ) (6.18)

by the matrix of homomorphisms

(ωx,y)x,y∈iso(Γ ) :
⊕

x∈iso(Γ )

K0
(
R[x])→ ⊕

y∈iso(Γ )

K0
(
R[y]).

This definition makes sense since for a given x ∈ iso(Γ ) there are only finitely many y ∈ iso(Γ )

with ωx,y �= 0.

Example 6.19. If R = Q and Γ is a finite skeletal category with trivial automorphism groups,
then K0(Q[x]) = Z and ωx,y = |morΓ (y, x)| for all x, y ∈ ob(Γ ). In this case of R and Γ , the
matrix for ω is the transpose of the zeta function considered by Leinster in Section 1 of [13]. See
also Example 6.25.

Definition 6.20 (l-chain in iso(Γ )). Let Γ be an EI-category. Given a natural number l � 1, an
l-chain in iso(Γ ) is a sequence c = x0 < x1 < · · · < xl . Denote by chl (Γ ) the set of l-chains
in Γ .

Given two objects x and y, let chl(y, x) be the set of l-chains c = x0 < x1 < · · · < xl with
x0 = y and xl = x. Define for an l-chain c = x0 < x1 < · · · < xl in chl(y, x) the aut(x)-aut(y)-
biset

S(c) = mor(xl−1, x) ×aut(xl−1) mor(xl−2, xl−1) ×aut(xl−2) · · · ×aut(x1) mor(y, x1)

for some choice of representatives xi ∈ xi for 0 < i < l−1. (If l = 1 then S(c) is to be understood
as the aut(x)-aut(y)-biset mor(y, x).)

Define ch0(Γ ) to be iso(Γ ). Define ch0(y, x) to be empty if x �= y and to be y if x = y. If
x = y, put S(c) = mor(x, x) for c ∈ ch0(y, x).

Notice that the aut(x)-aut(y)-biset S(c) is unique up to isomorphism of aut(x)-aut(y)-bisets.
Since Γ is quasi-finite and hence for every two objects x, y ∈ ob(Γ ) the right aut(y)-set
mor(y, x) is proper and cofinite, each set S(c) is a proper cofinite right aut(y)-set, and the R[y]-
module RS(c) is finitely generated projective. Hence we obtain a well-defined homomorphism
for c ∈ chl (y, x)
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μx,y(c) :K0
(
R[x])→ K0

(
R[y]), [P ] 	→ [

P ⊗R[x] RS(c)
]
.

Define a homomorphism

μ : SplitK0(RΓ ) → SplitK0(RΓ ) (6.21)

by the matrix of homomorphisms(∑
l�0

(−1)l ·
∑

c∈chl (y,x)

μx,y(c)

)
x,y∈iso(Γ )

:
⊕

x∈iso(Γ )

K0
(
R[x])→ ⊕

y∈iso(Γ )

K0
(
R[y]).

This definition makes sense since for a given x ∈ iso(Γ ) there are only finitely many y ∈ iso(Γ )

with μx,y �= 0.

Theorem 6.22 (Two splittings and the K-theoretic Möbius inversion). Suppose that Γ is a quasi-
finite EI-category. Suppose for any morphism f :x → y in Γ that the order of the finite group
{g ∈ aut(x) | f ◦ g = f } is invertible in R.

(i) Then we obtain pairs of inverse isomorphisms (S,E) (see Theorem 3.14), (Res, I ) (see The-
orem 6.16) and (ω,μ) (see (6.18) and (6.21)). They are compatible with one another in the
sense that the following diagram commutes

K0(RΓ )

S

Res

SplitK0(RΓ )

E

ω

SplitK0(RΓ ).

I

μ

(ii) Suppose that Γ is of type (FPR), or, equivalently, that iso(Γ ) is finite and for each object
x ∈ ob(Γ ) the trivial R[x]-module R possesses a finite projective R[x]-resolution. Let η ∈
SplitK0(RΓ ) be the element whose component at x ∈ iso(Γ ) is given by the class [R] ∈
K0(R[x]) of the trivial R[x]-module R. That is, the component of η at each x is the finiteness
obstruction o(âut(x);R) ∈ K0(R aut(x)). Then

S
(
o(Γ ;R)

)= μ(η).

Proof. (i) We have already shown in Theorem 3.14 that S and E are inverse to one another and
in Theorem 6.16 that Res and I are inverse to one another. Obviously ω = Res◦E. Hence it
remains to show that μ◦ω = id. This follows analogously to the argument at the end of the proof
of Lück [15, Theorem 16.27 on page 330].

(ii) This follows from assertion (i) and Lemma 6.15(i) and (iv). Namely, Resx[R] = [R], so
Res[R] = η, and S(o(Γ ;R)) = μRes(o(Γ ;R)) = μRes[R] = μ(η). �
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We can now apply Möbius inversion to calculate the finiteness obstruction and Euler charac-
teristics of finite EI-categories in terms of chains.

Theorem 6.23 (The finiteness obstruction and Euler characteristics of finite EI-categories). Sup-
pose that Γ is a finite EI-category. Suppose that for every object x ∈ ob(Γ ) the order of its
automorphism group |aut(x)| is invertible in R. Then Γ is of type (FPR) and we have:

(i) The image of the finiteness obstruction o(Γ ;R) under the isomorphism

S :K0(RΓ )
∼=−→

⊕
y∈iso(Γ )

K0
(
R[y])

has as component for y ∈ iso(Γ ) the element in K0(R[y]) given by∑
l�0

(−1)l ·
∑

x∈iso(Γ )

∑
c∈chl (y,x)

[
R
(
aut(x)\S(c)

)]
,

where aut(x)\S(c) is the finite right aut(y)-set obtained from the aut(x)-aut(y)-biset S(c)

(see Definition 6.20) by dividing out the left aut(x)-action and R(aut(x)\S(c)) is the asso-
ciated right R[y]-module;

(ii) The functorial Euler characteristic χf (Γ ;R) ∈ U(Γ ) has at y the value

∑
l�0

(−1)l ·
∑

x∈iso(Γ )

∑
c∈chl (y,x)

∣∣aut(x)\S(c)/ aut(y)
∣∣,

where |aut(x)\S(c)/ aut(y)| is the order of the set obtained from S(c) by dividing out the
aut(x)-action and the aut(y)-action;

(iii) The Euler characteristic χ(Γ,R) and topological Euler characteristic χ(BΓ ;R) are equal
and are both given by the integer∑

l�0

(−1)l ·
∑

x,y∈iso(Γ )

∑
c∈chl (y,x)

∣∣aut(x)\S(c)/ aut(y)
∣∣;

(iv) The functorial L2-Euler characteristic χ
(2)
f (Γ ) ∈ U(1)(Γ ) has at y the value

∑
l�0

(−1)l ·
∑

x∈iso(Γ )

∑
c∈chl (y,x)

dimN (y)

(
C
(
aut(x)\S(c)

)⊗C[y] N (y)
)
,

where dimN (y)(C(aut(x)\S(c)) ⊗C[y] N (y)) is
∑

i∈I,|Li |<∞ 1/|Li | if the cofinite right
aut(y)-set aut(x)\S(c) is the disjoint union of homogeneous aut(y)-spaces

∐
i∈I Li\ aut(y);

(v) The L2-Euler characteristic χ(2)(Γ ) is given by∑
l�0

(−1)l ·
∑

x,y∈iso(Γ )

∑
c∈chl (y,x)

dimN (y)

(
C
(
aut(x)\S(c)

)⊗C[y] N (y)
)
.
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Proof. The category Γ is of type (FPR) by Lemma 6.15(v).
(i) This follows from Theorem 6.22(ii) since the R[y]-modules R ⊗R aut(x) RS(c) and

R(aut(x)\S(c)) are isomorphic.
(ii) and (iii) follow now from assertion (i), Lemma 3.13, and Theorem 4.20.
(iv) and (v) follow from Theorem 5.22, Example 5.4(ii) and assertion (i). �

Example 6.24 (Möbius inversion for a finite partially ordered set). Let (I,�) be a partially
ordered set. It defines an EI-category Γ (I) whose set of objects is I and for which mor(x, y)

consists of precisely one element if x � y and is empty otherwise.
Suppose that I is finite. Take R = Q. Then

SplitK0
(
QΓ (I)

)= ZI =
⊕

I

Z

and the homomorphism ω is given by the matrix A = (ai,j )i,j∈I with ai,j = 1 if j � i and
wi,j = 0 otherwise. Let B = (bi,j )i,j∈I be the matrix given by

bi,j =
∑
l�0

(−1)l · ∣∣chl (j, i)
∣∣,

where |ch0(j, i)| is 0 if j �= i and 1 otherwise, and for l � 1, chl(j, i) is the set of chains
j = k0 < k1 < · · · < kl−1 < kl = i. Then we conclude from Theorem 6.22 that the matrices
A and B are inverse to one another. This is the classical Möbius inversion in combinatorics (see
for instance Aigner [1, IV.2]).

We get from Theorem 6.23 (iii) and (v)

χ(Γ ;Q) = χ(2)(Γ ) =
∑
i,j∈I

bi,j .

Example 6.25 (Möbius inversion for a finite skeletal category with trivial endomorphisms). Gen-
eralizing Example 6.24, let Γ be a finite skeletal category in which every endomorphism is an
identity, and take R = Q. Recall that a category is skeletal if for any two objects x and y with
x ∼= y, we have x = y. Then

SplitK0(QΓ ) = Z ob(Γ ) =
⊕

ob(Γ )

Z

and the homomorphism ω is given by the matrix A = (ax,y)x,y∈ob(Γ ) with ax,y = |mor(y, x)|.
The (bi)set S(c) in Definition 6.20 is simply the set of non-degenerate paths x0 → x1 →

·· · → xl , and μx,y(c) = |S(c)|. Let B = (bx,y)x,y∈ob(Γ ) be the matrix given by

bx,y =
∑
l�0

(−1)l ·
∑

c∈chl (y,x)

∣∣S(c)
∣∣=∑

l�0

(−1)l · ∣∣{non-degenerate l-paths from y to x}∣∣.
Then we conclude from Theorem 6.22 that the matrices A and B are inverse to one another.
That is to say, in the terminology of Leinster [13], the category Γ has Möbius inversion given
by B . Thus Corollary 1.5 of Leinster [13] is a special case of the K-theoretic Möbius inversion of
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Theorem 6.22(i). See also Example 6.33, which illustrates rational Möbius inversion for a finite,
skeletal, free EI-category. See also the related proof of Lemma 7.3, which shows that the L2-
Euler characteristic coincides with Leinster’s Euler characteristic in the case of a finite, skeletal,
free EI-category.

6.3. The K-theoretic Möbius inversion and the L2-rank

In this subsection we investigate when the homomorphisms ω and μ factorize over the homo-
morphism given by the L2-rank.

Condition 6.26 (Condition (I) for groups and categories). A group G satisfies condition (I) if
the map induced by the various inclusions of finite subgroups⊕

H⊆G,|H |<∞
K0(QH) ⊗Z Q → K0(QG) ⊗Z Q

is surjective. A category Γ satisfies condition (I) if for every object x its automorphism group
autΓ (x) satisfies condition (I).

Obviously any finite group and any finite category satisfy condition (I).

Remark 6.27 (Condition (I) and the Farrell–Jones Conjecture). Let F J (Q) be the class of
groups for which the K-theoretic Farrell–Jones Conjecture with coefficients in Q holds. By Bar-
tels, Lück and Reich [5, Theorem 0.5], every group in F J (Q) satisfies condition (I). This class
F J (Q) is analyzed for instance by Bartels–Lück in [3] and Bartels–Lück–Reich in [4] and [5].
It contains for instance subgroups of finite products of hyperbolic groups or CAT(0)-groups, di-
rected colimits of hyperbolic groups or CAT(0)-groups, and all elementary amenable groups. For
a survey article on the Farrell–Jones Conjecture we refer for instance to Lück and Reich [22].

Lemma 6.28. Let G and H be groups. Suppose that H satisfies condition (I) defined in Con-
dition 6.26. Let S be an H -G-biset which is cofinite proper as a right G-set and free as a left
H -set.

(i) The image of

rk(2)
H :K0(QH) → R, [P ] 	→ dimN (H)

(
P ⊗QH N (H)

)
lies in Q;

(ii) The following diagram commutes

K0(QH)
ωS

rk(2)
H

K0(QG)

rk(2)
G

R
ωS

R

where ωS sends [P ] to [P ⊗QH QS], and ωS is multiplication with the rational number
dimN (G)(QS ⊗QG N (G)).
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Proof. (i) Because H satisfies condition (I), this follows from Lemma 5.3(ii) and Example 5.4(i).
(ii) For a finite group H ′ every element in K0(QH ′) ⊗Z Q can be written as a Q-linear

combination of elements of the form [Q[K\H ′]] (see Serre [24, Theorem 30 in Chapter 13
on page 103]). Since H in the claim satisfies condition (I), we can find for every element
η ∈ K0(QH) a natural number k � 1, finitely many finite subgroups K1,K2, . . . ,Kr of H , and
integers n1, n2, . . . , nr such that we get in K0(QH)

k · η =
r∑

i=1

ni · [Q[Ki\H ]].
Hence it suffices to show for any finite subgroup K ⊆ H

dimN (G)

(
Q[K\H ] ⊗QH QS ⊗QG N (G)

)
= dimN (H)

(
Q[K\H ] ⊗QH N (H)

) · dimN (G)

(
QS ⊗QG N (G)

)
.

We get from Example 5.4(ii)

dimN (H)

(
Q[K\H ] ⊗QH N (H)

)= 1

|K| ;

dimN (G)

(
Q[K\H ] ⊗QH QS ⊗QG N (G)

)= dimN (G)

(
Q[K\S] ⊗QG N (G)

)
.

Hence it suffices to show for a K-G-biset T which is proper and cofinite as a G-set and free as
a left K-set

|K| · dimN (G)

(
Q[K\T ] ⊗QG N (G)

)= dimN (G)

(
QT ⊗QG N (G)

)
.

We can interpret the K-G-biset T as a right (K × G)-set by putting t · (k, g) = k−1tg for k ∈ K ,
g ∈ G and t ∈ T , and vice versa. Since K is finite, T is free as a left K-set, and T is cofinite and
proper as a right G-set, the (K × G)-set T is a finite union of homogeneous spaces of the form
L\(K × G), where L is a finite subgroup of K × G with (K × {1}) ∩ L = {1}. Hence we can
assume without loss of generality that T is of the form L\(K × G) for finite L ⊆ K × G with
(K × {1}) ∩ L = {1}.

The projection pr :K ×G → G induces a bijection L
∼=−→ pr(L). Since the G-sets K\(L\(K ×

G)) and pr(L)\G are G-isomorphic, we conclude from Example 5.4(ii)

|K| · dimN (G)

(
Q
[
K\(L\(K × G)

)]⊗QG N (G)
)= |K|

|L| .

We conclude from Lemma 5.3 and Example 5.4(ii)

dimN (G)

(
Q
[
L\(K × G)

]⊗QG N (G)
)

= dimN (G)

(
Q
[
L\(K × G)

]⊗Q[K×G] Q[K × G] ⊗QG N (G)
)

= dimN (G)

(
Q
[
L\(K × G)

]⊗Q[K×G] N (K × G)
)
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= |K| · dimN (K×G)

(
Q
[
L\(K × G)

]⊗Q[K×G] N (K × G)
)

= |K|
|L| .

This finishes the proof of Lemma 6.28. �
Let Γ be a quasi-finite, free EI-category. Define the Q-homomorphism

ω(2) :U(Γ ) ⊗Z Q → U(Γ ) ⊗Z Q (6.29)

by the matrix over the rational numbers(
dimN (y)

(
Q mor(y, x) ⊗Q[y] N (y)

))
x,y∈iso(Γ )

.

Define the Q-homomorphism

μ(2) :U(Γ ) ⊗Z Q → U(Γ ) ⊗Z Q (6.30)

by the matrix over the rational numbers(∑
l�0

(−1)l ·
∑

c∈chl (y,x)

dimN (y)

(
QS(c) ⊗Q[y] N (y)

))
x,y∈iso(Γ )

.

Notice that these homomorphisms are well defined because of Example 5.4(ii) since the right
aut(y)-sets mor(y, x) and S(c) are proper cofinite and for a given x ∈ iso(Γ ) there are only
finitely many y ∈ iso(Γ ) for which the sets mor(y, x) and S(c) are non-empty.

Theorem 6.31 (Rational Möbius inversion). Let Γ be a quasi-finite, free EI-category. Then the
homomorphisms ω(2) of (6.29) and μ(2) of (6.30) are isomorphisms and inverse to one another.

Proof. Let

ι :U(Γ ) =
⊕

x∈iso(Γ )

Z → SplitK0(QΓ ) =
⊕

x∈iso(Γ )

K0
(
Q[x])

be the homomorphism that sends {nx | x ∈ iso(Γ )} to {nx · [Q[x]] | x ∈ iso(Γ )}. A direct com-
putation shows that

rk(2)
Γ ◦ω ◦ ι = ω(2).

The image of ω ◦ ι in SplitK0(QΓ ) has the property that its value at any x ∈ iso(Γ ) is an
element in K0(Q[x]) given by a Z-linear combination of classes of the form [Q[K\ aut(x)]] for
finite subgroups K ⊆ aut(x). Hence the argument in the proof of Lemma 6.28(ii) shows (without
using condition (I)) that rk(2)

Γ ◦μ = μ(2) ◦ rk(2)
Γ is true on the image of ω ◦ ι. This implies

μ(2) ◦ ω(2) = μ(2) ◦ rk(2) ◦ω ◦ ι = rk(2) ◦μ ◦ ω ◦ ι.
Γ Γ



2426 T.M. Fiore et al. / Advances in Mathematics 226 (2011) 2371–2469
We conclude μ ◦ ω = id from Theorem 6.22. A direct computation shows rk(2)
Γ ◦ι = id. Hence

μ(2) ◦ ω(2) = id.

Since the matrix defining ω(2) is a triangular matrix whose entries on the diagonal are all 1,
ω(2) is an isomorphism. Hence ω(2) of (6.29) and μ(2) of (6.30) are isomorphisms and inverse to
one another. �
Remark 6.32. Notice that the condition free is not needed when we want to define the finiteness
obstruction or to compute it as long as we stay on the K-theory level. It does enter, when we want
to consider the rank or L2-rank of the finiteness obstruction, to ensure that certain comparisons
can be done on the level of the Euler characteristics, or, equivalently, certain maps on the K0-level
factorize over the rank or L2-rank homomorphism from K0(RΓ ) to U(Γ ) or U(Γ ) ⊗Z R.

Example 6.33 (Rational Möbius inversion for a finite, skeletal, free EI-category). Generalizing
Example 6.24, let Γ be a finite skeletal EI-category which is free in the sense of Definition 6.6,
and take R = Q. Then

U(Γ ) ⊗Z Q =
⊕

ob(Γ )

Q

and the homomorphism ω(2) is given by the matrix

(
dimN (y)

(
Q mor(y, x) ⊗Q[y] N (y)

))
x,y∈ob(Γ )

=
( |mor(y, x)|

|aut(y)|
)

x,y∈ob(Γ )

.

The last equality follows from Example 5.4(ii). If we let ωL be the matrix(∣∣morΓ (y, x)
∣∣)

x,y∈ob(Γ )

and D is the diagonal matrix with entry |aut(y)| at (y, y) for y ∈ ob(Γ ), then D ◦ ω(2) = ωL.
Then by Theorem 6.31, the homomorphism ω(2) is invertible and its inverse is μ(2). Hence

ωL admits an inverse μL := (D ◦ ω(2))−1 = μ(2) ◦ D−1. We calculate μL by way of the matrix
for μ(2) using the formula just after Eq. (6.30). For any l-chain c ∈ chl (y, x) with c = x0 < x1 <

· · · < xl we have

∣∣S(c)
∣∣= |mor(xl−1, xl)| · |mor(xl−2, xl−1)| · · · · · |mor(x0, x1)|

|aut(xl−1)| · |aut(xl−2)| · · · · · |aut(x1)|
by freeness. Then,

dimN (y)

(
QS(c) ⊗Q[y] N (y)

)
= |S(c)|

|aut(y)| = |mor(xl−1, xl)| · |mor(xl−2, xl−1)| · · · · · |mor(x0, x1)|
|aut(xl−1)| · |aut(xl−2)| · · · · · |aut(x1)| · |aut(x0)|

by Example 5.4(ii). Summing up, we have
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μL = μ(2) ◦ D−1

=
(∑

l�0

(−1)l ·
∑

c∈chl (y,x)

dimN (y)

(
QS(c) ⊗Q[y] N (y)

))
x,y∈ob(Γ )

◦ D−1

=
(∑

l�0

(−1)l

·
∑

c∈chl (y,x)

|mor(xl−1, xl)| · |mor(xl−2, xl−1)| · · · · · |mor(x0, x1)|
|aut(xl−1)| · |aut(xl−2)| · · · · · |aut(x1)| · |aut(x0)|

)
x,y∈ob(Γ )

◦ D−1

=
(∑

l�0

(−1)l

·
∑

c∈chl (y,x)

|mor(xl−1, xl)| · |mor(xl−2, xl−1)| · · · · · |mor(x0, x1)|
|aut(xl)| · |aut(xl−1)| · |aut(xl−2)| · · · · · |aut(x1)| · |aut(x0)|

)
x,y∈ob(Γ )

=
(∑

l�0

(−1)l ·
∑ 1

|aut(xl)| · |aut(xl−1)| · |aut(xl−2)| · · · · · |aut(x1)| · |aut(x0)|
)

x,y∈ob(Γ )

.

The final sum is over all l-paths x0 → x1 → ·· · → xl from y to x such that x0, . . . , xl are all
distinct. Thus, in the terminology of Leinster [13], the category Γ has Möbius inversion given
by μL, and Leinster’s Euler characteristic χL(Γ ) is the sum of the entries in the matrix μL

above. The free case of Leinster [13, Theorem 1.4] is now a special case of rational Möbius
inversion (Theorem 6.31). See also the related proof of Lemma 7.3, which shows that the L2-
Euler characteristic coincides with Leinster’s Euler characteristic in the case of a finite, skeletal,
free EI-category. Thus, the L2-Euler characteristic χ(2)(Γ ) is also given by the sum of the entries
in the matrix μL above.

Theorem 6.34 (The K-theoretic Möbius inversion and the L2-rank). Let Γ be a quasi-finite,
free EI-category satisfying condition (I) defined in Remark 6.27. Then the following diagram
commutes.

K0(QΓ )

S

Res

SplitK0(QΓ )

E

ω

rk(2)
Γ

SplitK0(QΓ )

I

μ

rk(2)
Γ

U(Γ ) ⊗Z Q

ω(2)

U(Γ ) ⊗Z Q

μ(2)
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Here the pairs (S,E) (see Theorem 3.14), (Res, I ) (see Theorem 6.16), (ω,μ) (see Theo-
rem 6.22), and (ω(2),μ(2)) (see Theorem 6.31) are pairs of isomorphisms inverse to one another,
and the map rk(2)

Γ comes from the map defined in (5.19).

Proof. The map rk(2)
Γ takes values in U(Γ ) ⊗Z Q by Lemma 6.28(i). The other claims follow

from Theorem 6.22, Lemma 6.28(ii), and Theorem 6.31. �
Theorem 6.35 (The finiteness obstruction and the (functorial) L2-Euler characteristic).

(i) Let Γ be a quasi-finite EI-category of type (FPQ). Then the image of the finiteness obstruc-
tion o(Γ ;Q) under the homomorphism

Res :K0(QΓ ) → SplitK0(QΓ )

defined in Theorem 6.16 has as entry at x ∈ iso(Γ ) the finiteness obstruction o(âut(x);Q)

of the category âut(x), i.e., the finiteness obstruction o(Q) of the Q[x]-module Q with the
trivial aut(x)-action. This possesses a finite projective Q[x]-resolution by Lemma 6.15(i). As
usual, we will write [Q] for o(âut(x);Q).

(ii) Suppose that Γ is a quasi-finite, free EI-category of type (FPQ) satisfying condition (I) or
that Γ is a quasi-finite, free EI-category of type (FFQ).
Then for every object x the L2-Euler characteristic χ(2)(aut(x)) is a rational number and is
non-trivial for only finitely many x ∈ iso(Γ ). The collection (χ(2)(aut(x)))x∈iso(Γ ) defines an

element η ∈ U(Γ )⊗Z Q. The functorial L2-Euler characteristic χ
(2)
f (Γ ) lies in U(Γ )⊗Z Q.

We get

ω(2)
(
χ

(2)
f (Γ )

)= η;
μ(2)(η) = χ

(2)
f (Γ ),

where ω(2) and μ(2) are the homomorphisms defined in (6.29) and (6.30).

Proof. (i) Since Γ is of type (FPQ), we conclude from Lemma 6.15(i) that the Q[x]-module Q
with the trivial aut(x)-action possesses a finite projective Q[x]-resolution and hence defines an
element in K0(Q[x]). Since Resx :MOD-QΓ → MOD-Q[x] is exact, the claim follows from
Lemma 6.15(i).

(ii) We begin with the case where Γ is a quasi-finite, free EI-category of type (FPQ) satisfy-

ing condition (I). The map rk(2)
Γ : SplitK0(QΓ ) →∏

x∈iso(Γ ) R takes values in U(Γ ) ⊗Z Q by
Lemma 6.28(i). The image of o(Γ ;Q) under the composite

K0(QΓ )
S−→ SplitK0(QΓ )

rk(2)
Γ−−→

∏
x∈iso(Γ )

R

is by definition χ
(2)

(Γ ). The image of o(Γ ;Q) under the composite
f
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K0(QΓ )
Res−−→ SplitK0(QΓ )

rk(2)
Γ−−→

∏
x∈iso(Γ )

R

is by definition η. Now the claim follows from Theorem 6.34.
Next we deal with the case where Γ is a quasi-finite, free EI-category of type (FFQ). Since

Γ is of type (FFQ), the image of o(Γ ;Q) under the isomorphism S :K0(QΓ )
∼=−→ SplitK0(QΓ )

is the image of χ
(2)
f (Γ ) ∈ U(Γ ) under the map ι :U(Γ ) → SplitK0(QΓ ) defined in (4.8), as

rk(2)
Γ ◦ι is the inclusion of U(Γ ), see Lemma 5.24. A direct computation shows that ω(2) =

rk(2)
Γ ◦ω ◦ ι. This implies

ω(2)
(
χ(2)(Γ )

)= η.

We get

μ(2)(η) = χ
(2)
f (Γ ),

from Theorem 6.31. �
6.4. The example of a biset

Let H and G be groups and let S be a G-H -biset. They define an EI-category Γ (S) with
two objects x and y, where the automorphism group of x is H , the automorphism group of y

is G, the set of morphisms from x to y is S, the set of morphisms from y to x is empty and the
composition in Γ (S) comes from the group structure on H and G and the G-H -biset structure
on S. Any EI-category with precisely two objects which are not isomorphic arises as Γ (S) for
some S. The category Γ (S) is free if and only if S is free as a left G-set. The category Γ (S)

is quasi-finite if and only if S is proper and cofinite as a right H -set. The set of isomorphism
classes of objects contains precisely two elements, namely x and y.

Suppose that Γ (S) is quasi-finite. Then Γ (S) is of type (FPQ) if and only if the trivial
QH -module Q has a finite projective QH -resolution and the trivial QG-module Q has a finite
projective QG-resolution (see Lemma 6.15(iv)).

Suppose that Γ (S) is quasi-finite and of type (FPQ). Then the image of the finiteness obstruc-
tion under the isomorphism

S :K0
(
QΓ (S)

) ∼=−→ K0(QH) ⊕ K0(QG)

is the element μ([Q], [Q]) by Theorem 6.22(ii), where [Q] stands, of course, for the finiteness
obstruction of the trivial QH -module and trivial QG-module Q, respectively. That is, [Q] means
o(Ĥ ;Q) or o(Ĝ;Q) respectively.

Suppose that Γ (S) is quasi-finite, free, and of type (FPQ). Then the QH -module QG\S has
a finite projective QH -resolution and the image of the finiteness obstruction under the isomor-
phism

S :K0
(
QΓ (S)

) ∼=−→ K0(QH) ⊕ K0(QG)

is the element
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μ
([Q], [Q])= ([Q] − [Q ⊗QG QS], [Q])= ([Q] − [QG\S], [Q])

by Theorem 6.22(ii).
Suppose that Γ (S) is quasi-finite, free, and of type (FPQ), and that H and G satisfy condi-

tion (I) (see Condition 6.26). Then Γ (S) satisfies condition (I) by definition. The commutative
diagram appearing in Theorem 6.34

K0(QΓ (S))

S

Res

SplitK0(QΓ (S))

E

ω

rk(2)
Γ (S)

SplitK0(QΓ (S))

I

μ

rk(2)
Γ (S)

U(Γ (S)) ⊗Z Q

ω(2)

U(Γ (S)) ⊗Z Q

μ(2)

becomes

K0(QΓ (S))

S

Res

K0(QH) ⊕ K0(QG)

E

ω

rk(2)
Γ (S)

K0(QH) ⊕ K0(QG)

I

μ

rk(2)
Γ (S)

Q ⊕ Q

ω(2)

Q ⊕ Q

μ(2)

where ω sends ([P ], [Q]) to ([P ] + [Q ⊗QG QS], [Q]) and μ sends ([P ], [Q]) to ([P ] −
[Q ⊗QG QS], [Q]). If the proper cofinite right H -set S is the disjoint union

∐r
i=1 Li\H

and d :=∑r
i=1 1/|Li |, then the matrices for ω(2) and μ(2) are respectively

( 1 0
d 1

)
and

( 1 0
−d 1

)
by Example 5.4(ii) and Lemma 6.28(ii). We conclude from Theorem 6.35, the definitions of
χf (Γ (S);Q) and χ(Γ (S);Q), and Theorem 4.20 that

χ
(2)(

Γ (S)
)= (χ(2)(H) − d · χ(2)(G),χ(2)(G)

);
f
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χ(2)
(
Γ (S)

)= χ(2)(H) + (1 − d) · χ(2)(G);
χf

(
Γ (S);Q

)= (1 − |G\S/H |,1
);

χ
(
Γ (S);Q

)= 2 − |G\S/H |;
χ
(
BΓ (S);Q

)= 2 − |G\S/H |.

The situation above simplifies considerably in the finite case.

Example 6.36 (Finite G-H -biset for finite groups H and G). Let H and G be finite groups
and S a finite G-H -biset. Then the category Γ (S) is a finite EI-category. We conclude from
Theorem 6.23 that Γ (S) is of type (FPQ). The image of the finiteness obstruction under the
isomorphism

S :K0
(
QΓ (S)

) ∼=−→ K0(QH) ⊕ K0(QG)

is the element μ([Q], [Q]) = ([Q] − [QG\S], [Q]), and

χ
(2)
f

(
Γ (S)

)= ( 1

|H | − |G\S|
|H | ,

1

|G|
)

;

χ(2)
(
Γ (S)

)= 1

|H | + 1

|G| − |G\S|
|H | ;

χf

(
Γ (S);Q

)= (1 − |G\S/H |,1
);

χ
(
Γ (S);Q

)= 2 − |G\S/H |;
χ
(
BΓ (S);Q

)= 2 − |G\S/H |,

since dimN (H)(C(G\S) ⊗CH N (H)) = |G\S|
|H | by Example 5.4(ii). If S is free as a left G-set, or,

equivalently, if Γ (S) is free, we obtain

χ
(2)
f

(
Γ (S)

)= ( 1

|H | − |S|
|G| · |H | ,

1

|G|
)

;

χ(2)
(
Γ (S)

)= 1

|H | + 1

|G| − |S|
|G| · |H | ,

since in this case |G\S|
|H | = |S|

|G|·|H | .

6.5. The passage to the opposite category

In this subsection we want to compare the invariants of Γ with the invariants of the opposite
category Γ op. The categories Γ and Γ op can be distinguished by o,χf ,χ

(2)
f , and χ(2).

In general Γ and Γ op behave very differently. It may happen that Γ is of type (FPR) but Γ op

is not of type (FPR) or that both Γ and Γ op are of type (FPR), but their finiteness obstructions and
functorial Euler characteristics are very different. This is illustrated by the following example.
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Example 6.37. Let G be a group. Let S be the G-{1} biset consisting of precisely one ele-
ment. Let Γ (S) be the associated EI-category of Section 6.4. It has two objects x and y. The
sets morΓ (S)(x, x) and morΓ (S)(x, y) each contain precisely one element, the set morΓ (S)(y, y)

is equal to G, and the set morΓ (S)(y, x) is empty. The category Γ (S) is quasi-finite in the
sense of Definition 6.6 and also directly finite in the sense of Definition 3.1. We conclude from
Lemma 6.15(iv) that Γ (S) is of type (FPQ) if and only if the group G is of type (FPQ), i.e., the
trivial QG-module Q possesses a finite projective QG-resolution.

Now suppose that G is of type (FPQ). Then the trivial QG-module Q has a finite projective
QG-resolution and defines an element [Q] = o(G;Q) ∈ K0(QG). Let α :K0(QG) → K0(Q) be
the homomorphism which sends [P ] to [P ⊗QG Q]. We conclude from Theorem 6.22(ii) that the
finiteness obstruction o(Γ ;Q) is sent under the isomorphism of (3.7)

SQΓ (S) :K0
(
QΓ (S)

) ∼=−→ K0(Q) ⊕ K0(QG)

to μ([Q], [Q]) = ([Q] − α([Q]), [Q]).
This implies

χ
(2)
f

(
Γ (S)

)= (1 − χ(BG),χ(2)(G)
) ∈ U

(
Γ (S)

)⊗Z Q = Q ⊕ Q;
χ(2)

(
Γ (S)

)= 1 − χ(BG) + χ(2)(G) ∈ Q;
χf

(
Γ (S);Q

)= (1 − χ(BG),χ(BG)
) ∈ U

(
Γ (S)

)= Z ⊕ Z;
χ
(
Γ (S);Q

)= 1 ∈ Z;
χ
(
BΓ (S);Q

)= 1 ∈ Z.

If G satisfies condition (I) of Condition 6.26 or G is of type (FFQ), then we conclude from
Lemma 5.24(i)

χ(2)
(
Γ (S)

)= 1.

The opposite category Γ (S)op = Γ (Sop) has a terminal object, namely x. Hence it is always
of type (FPQ) and its finiteness obstruction o(Γ (S)op;Q) is sent under the isomorphism of (3.7)

SQΓ (S)op :K0
(
QΓ (S)op) ∼=−→ K0(Q) ⊕ K0(QG)

to μ([Q], [Q]) = ([Q],0).
This implies

χ
(2)
f

(
Γ (S)op)= (1,0) ∈ U

(
Γ (S)op)⊗Z Q = Q ⊕ Q;

χ(2)
(
Γ (S)op)= 1 ∈ Q;

χf

(
Γ (S)op;Q

)= (1,0) ∈ U
(
Γ (S)op)= Z ⊕ Z;

χ
(
Γ (S)op;Q

)= 1 ∈ Z;
χ
(
BΓ (S)op;Q

)= 1 ∈ Z.
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Notice that all the results for Γ (S) depend on G, whereas the results for Γ (S)op are all inde-
pendent of G. So for example, if G is not of type (FPQ), then Γ (S) is not of type (FPQ), while
Γ (S)op is of type (FPQ).

6.6. The passage to the opposite category for finite EI-categories

One can say more about the passage from Γ to Γ op in the special case where Γ is a finite EI-
category. Let R be a commutative ring. Given an R-module M , denote by M∗ := homR(M,R)

its dual R-module. Notice that M∗ is again an R-module since R is commutative. This defines a
contravariant functor

∗R :MOD-R → MOD-R.

There is a natural R-homomorphism I (M) :M → (M∗)∗ which sends m ∈ M to M∗ → R, φ 	→
φ(m). It is an isomorphism if M is a finitely generated projective R-module.

We obtain a functor

∗RΓ :MOD-RΓ → MOD-RΓ op

which sends a contravariant RΓ -module P to the contravariant RΓ op-module, or equivalently,
covariant RΓ -module P ∗ given by the composite Γ

P−→ MOD-R ∗−→ MOD-R. The functor ∗RΓ

is exact when it is restricted to RΓ -modules M for which M(x) is a finitely generated projective
R-module for every object x ∈ ob(Γ ). Let M be an RΓ -module such that M(x) is a finitely
generated projective R-module for every object x ∈ ob(Γ ). Then M∗ is an RΓ op-module such
that M(x) is a finitely generated projective R-module for every object x ∈ ob(Γ op) and there is
a natural isomorphism of RΓ -modules M

∼=−→ (M∗)∗.
Now assume that the order of the automorphism group of every object in Γ is invertible in R.

Then an RΓ -module M , for which the R-module M(x) possesses a finite projective R-resolution
for every object x ∈ ob(Γ ), possesses a finite projective RΓ -resolution by Lemma 6.15(v).
Hence we obtain a well-defined homomorphism

∗RΓ :K0(RΓ ) → K0
(
RΓ op), [P ] 	→ [

P ∗]. (6.38)

The functor ∗RΓ sends the constant RΓ -module R to the constant RΓ op-module R. We con-
clude:

Lemma 6.39. Let Γ be a finite EI -category. Let R be a commutative ring such that the order of
the automorphism group of every object in Γ is invertible in R.

(i) The map of (6.38)

∗RΓ :K0(RΓ ) → K0
(
RΓ op)

is bijective, an inverse is

∗RΓ op :K0
(
RΓ op)→ K0(RΓ );
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(ii) Both Γ and Γ op are of type (FPR) and

∗RΓ

(
o(Γ ;R)

)= o
(
Γ op;R).

The map ∗RΓ is rather complicated as the next result shows.

Lemma 6.40. Let Γ be a finite EI-category. Let R be a commutative ring such that the order
of the automorphism group of every object in Γ is invertible in R. Then the following diagram
commutes.

K0(RΓ )
∗RΓ

∼=
SRΓ ∼=

K0(RΓ op)

SRΓ op∼=

SplitK0(RΓ )
ν

∼=
SplitK0(RΓ op)

Here SRΓ and SRΓ op are the homomorphisms defined in (3.7) which are isomorphisms by The-
orem 3.14, the isomorphism ∗RΓ has been defined in (6.38) and the isomorphism ν is the
composite

ν : SplitK0(RΓ )
ωRΓ−−−→ SplitK0(RΓ )

D−→ SplitK0
(
RΓ op) μRΓ op−−−−→ SplitK0

(
RΓ op),

where ωRΓ is the isomorphism defined in (6.18) for Γ , μRΓ op is the isomorphism defined
in (6.21) for Γ op and D is given by the direct sum of the isomorphisms K0(R autΓ (x))

∼=−→
K0(R autΓ op(x)) sending the class of the finitely generated projective R autΓ (x)-module P to
the class of the finitely generated projective R autΓ op(x)-module P ∗.

Proof. Consider the following diagram.

K0(RΓ )
∗RΓ

SRΓ
ResRΓ

K0(RΓ op)

SRΓ op
ResRΓ op

SplitK0(RΓ )
ωRΓ

SplitK0(RΓ )
D

SplitK0(RΓ op)
μRΓ op

SplitK0(RΓ op)

The left and right triangles commute by Theorem 6.22 and the middle square commutes from the
definitions, so the entire diagram commutes. �
Lemma 6.41. Let Γ be a finite EI-category. Suppose that both Γ and Γ op are free in the sense
of Definition 6.6. Then the following diagram commutes.
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K0(QΓ )
∗QΓ

∼=
SQΓ ∼=

K0(QΓ op)

SQΓ op∼=

SplitK0(QΓ )
ν

∼=
rk(2)

Γ

SplitK0(QΓ op)

rk(2)

Γ op

U(Γ ) ⊗Z Q
ν(2)

∼= U(Γ ) ⊗Z Q

Here the upper square is taken from Lemma 6.40, the maps rk(2)
Γ and rk(2)

Γ op have been defined

in (5.19), and the isomorphism ν(2) is defined to be μ
(2)
Γ op ◦ ω

(2)
Γ , where ω

(2)
Γ is the isomorphism

defined in (6.29) for Γ and μ
(2)
Γ op is the isomorphism defined in (6.30) for Γ op.

Proof. This follows from Theorem 6.34, Lemma 6.40, and the easy to verify fact that the fol-
lowing diagram commutes for the homomorphism D appearing in Lemma 6.40.

SplitK0(QΓ )
D

rk(2)
Γ

SplitK0(QΓ op)

rk(2)

Γ op

U(Γ ) ⊗Z Q
id

U(Γ ) ⊗Z Q

�

Example 6.42 (The isomorphism ∗ for a finite G-H -biset for finite groups H and G). Let H

and G be finite groups and S a finite G-H -biset. We have defined a finite EI-category Γ (S)

in Section 6.4 and Example 6.36. We conclude from Section 6.4 that the commutative diagram
appearing in Lemma 6.40 can be identified for Γ (S) with

K0(QΓ (S))
∗QΓ (S)

∼=
SQΓ (S) ∼=

K0(QΓ (S)op)

SQΓ (S)op∼=

K0(QH) ⊕ K0(QG)
ν

∼=
K0(QH op) ⊕ K0(QGop).

By the calculation for ω and μ in Section 6.4, the homomorphism ν sends ([P ], [Q]) to

([
P ∗]+ [(Q ⊗QG QS)∗

]
,
[
Q∗]− [P ∗ ⊗QH op QSop]− [(Q ⊗QG QS)∗ ⊗QH op QSop])

(recall that the roles of Gop and H op are switched in the formula for μQΓ op ).
Now suppose that both Γ (S) and Γ (S)op are free, or, equivalently, that G acts freely from

the left on S and H acts freely from the right on S. Then the commutative diagram appearing in
Lemma 6.41 can be identified with
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K0(QΓ (S))
∗QΓ (S)

∼=
SQΓ (S) ∼=

K0(QΓ (S)op)

SQΓ (S)op∼=

K0(QH) ⊕ K0(QG)
ν

∼=
rk(2)

Γ (S)

K0(QH op) ⊕ K0(QGop)

rk(2)

Γ (S)op

Q ⊕ Q
ν(2)

Q ⊕ Q

where ν(2) is given by the matrix

(
1 |S|

|H |
− |S|

|G| 1− |S|2
|H |·|G|

)
.

7. Comparison with the invariants of Baez and Dolan and Leinster

In this section we compare our invariants with the groupoid cardinality of Baez and Dolan [2]
and the Euler characteristic of Leinster [13]. If Γ is a skeletal, finite, free EI-category, then Γ is
of type (FPQ) and of type (L2), and Leinster’s Euler characteristic coincides with the L2-Euler
characteristic. However, if we leave out the freeness hypothesis, then Leinster’s Euler character-
istic can very well be different from the L2-Euler characteristic, see Remark 7.4.

7.1. Comparison with the groupoid cardinality of Baez and Dolan

Baez and Dolan define in [2] the groupoid cardinality of a groupoid Γ to be

∑
x∈iso(Γ )

1

|aut(x)| ,

provided this sum converges. In other words, the groupoid cardinality is the count of the isomor-
phism classes of objects inversely weighted by the size of their symmetry groups. This agrees
with the L2-Euler characteristic of such groupoids as seen in Example 5.12.

7.2. Review of Leinster’s Euler characteristic

We briefly review the Euler characteristic due to Leinster [13]. Let Γ be a finite category
(see Definition 6.6). A weighting on Γ is a function k• : ob(Γ ) → Q such that for all objects
x ∈ iso(Γ ) we have

∑
y∈ob(Γ )|mor(x, y)| ·ky = 1. A coweighting k• on Γ is a weighting on Γ op.

Definition 7.1. A finite category Γ has an Euler characteristic in the sense of Leinster if it has a
weighting and a coweighting. Its Euler characteristic in the sense of Leinster is then defined as

χL(Γ ) :=
∑

y∈ob(Γ )

ky =
∑

x∈ob(Γ )

kx

for any choice of weighting k• or coweighting k•.
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This is indeed independent of the choice of the weighting and the coweighting. In particular
we get χL(Γ ) = χL(Γ op).

Remark 7.2. Leinster’s Euler characteristic can only be defined if the category Γ is finite and
depends only on the set of objects ob(Γ ) and the orders |mor(x, y)| for x, y ∈ ob(Γ ). This is
different from the other invariants such as the finiteness obstruction. For instance χL does not
distinguish between the category Γ appearing in Example 2.18 and the groupoid Ẑ/2, whereas
the finiteness obstructions and the L2-Euler characteristic do.

7.3. Finite, free, skeletal, EI-categories and comparison of χ(2) with χL

Lemma 7.3. Let Γ be a finite, free, EI-category which is skeletal, i.e., two isomorphic objects
are already equal.

Then Γ is of type (FPC) and of type (L2), and has an Euler characteristic in the sense of
Leinster. We get for the L2-Euler characteristic χ(2)(Γ ) of Definition 5.10 and Leinster’s Euler
characteristic χL(Γ ) of Definition 7.1

χ(2)(Γ ) = χL(Γ ).

Proof. By [13, Lemma 1.3 and Theorem 1.4] the category Γ op has a Möbius inversion, i.e., the
homomorphism

ωL :U(Γ ) ⊗Z Q → U(Γ ) ⊗Z Q

given by the matrix

(∣∣morΓ (y, x)
∣∣)

x,y∈ob(Γ )

is bijective, and has an Euler characteristic in the sense of Leinster. Then by definition

χL(Γ ) = χL

(
Γ op)= ∑

x∈ob(Γ )

kx

for any element k• ∈ U(Γ ) ⊗Z Q such that ωL(k•) is the element 1 ∈ U(Γ ) which assigns 1 to
every element in ob(Γ ).

We conclude from Theorem 6.23 that Γ is of type (FPC) and hence of type (L2). Hence it
remains to show

ωL

(
χ

(2)
f (Γ )

)= 1 ∈ U(Γ ),

since by definition χ(2)(Γ ) =∑x∈ob(Γ ) χ
(2)
f (Γ )(x).

Since aut(y) is finite, Example 5.4(ii) implies

dimN (y)

(
C mor(y, x) ⊗C[y] N (y)

)= |mor(y, x)|

|aut(y)|
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for every x, y ∈ ob(Γ ). Hence the homomorphism ωL agrees with the composite D ◦ω(2), where
ω(2) is defined in (6.29) and D is the isomorphism given by the diagonal matrix with entry
|aut(y)| at (y, y) for y ∈ ob(Γ ). Since D ◦ ω(2) maps χ

(2)
f (Γ ) to 1 because of Theorem 6.35 (ii)

and because of χ(2)(aut(x)) = 1/|aut(x)|, Lemma 7.3 follows. We need Γ to be free in the sense
of Definition 6.6 in order to apply Theorem 6.35 (ii). �
Remark 7.4. The condition in Lemma 7.3 that Γ is free is necessary as the following example
shows. Let H and G be finite groups and S be a finite G-H -biset. Let Γ (S) be the associ-
ated finite EI-category of Example 6.36. We conclude from Example 6.36 and the definition of
χL(Γ (S)) that

χ(2)
(
Γ (S)

)= 1

|H | + 1

|G| − |G\S|
|H | ;

χ
(
Γ (S)

)= 2 − |G\S/H |;
χ
(
BΓ (S)

)= 2 − |G\S/H |;

χL

(
Γ (S)

)= 1

|H | + 1

|G| − |S|
|G| · |H | .

Hence χ(2)(Γ (S)) = χL(Γ (S)) holds if and only if |G\S| = |S|
|G| . The latter is equivalent to the

condition that Γ (S) is free.
Notice that χ(Γ (S)) and χ(BΓ (S)) are always integers and are in general different from both

χ(2)(Γ (S)) and χL(Γ (S)).

Remark 7.5 (Homotopy colimit formula). In [12], we prove the compatability of various Euler
characteristics of categories with homotopy colimits. There we compare our homotopy colimit
results with Leinster’s results on Grothendieck fibrations.

7.4. Passage to the opposite category and initial and terminal objects

Leinster’s Euler characteristic χL(Γ ) and the topological Euler characteristic χ(BΓ ) do not
see a difference between Γ and Γ op. We have discussed in detail in Section 6.5 that Γ and
Γ op can be distinguished by the finiteness obstruction o(Γ ;R), the functorial Euler character-
istic χf (Γ ;R), the functorial L2-Euler characteristic χ

(2)
f (Γ ), and the L2-Euler characteristic

χ(2)(Γ ).
Suppose that Γ has a terminal object x. Let i : {∗} → Γ be the inclusion of the trivial category

with value x. Then the finiteness obstruction is the image of [R] under i∗ :K0(R) → K0(RΓ )

by Example 2.11. The functorial Euler characteristic χf (Γ ;R) ∈ U(Γ ) and the functorial L2-

Euler characteristic χ
(2)
f (Γ ) ∈ U(1)(Γ ) agree and are given by the element 1 · x. The Euler

characteristic χ(Γ ;R), the L2-Euler characteristic χ(2)(Γ ) ∈ U(1)(Γ ), and topological Euler
characteristic χ(BΓ ;R) are all equal to 1. Since Γ has a terminal object, it admits a weighting,
see Leinster [13, Example 1.11.c]. If Γ additionally admits a coweighting, then Leinster’s Euler
characteristic χL(Γ ) is equal to 1.

If Γ has an initial object, we cannot predict the values of o(Γ ;R), χf (Γ ;R), χ
(2)
f (Γ ), and

χ(2)(Γ ) in general, as the results in Sections 6.4 and 6.5 illustrate. In particular, χ(2)(Γ ) is not
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necessarily 1 if Γ has an initial object. For instance, Example 6.36 yields for H = 1, S = {∗}, and
G any finite group χ(2)(Γ (S)) = 1/|G|. If Γ has an initial object, then Γ admits a coweighting.
If Γ additionally admits a weighting, then Leinster’s Euler characteristic χL(Γ ) is equal to 1.

The topological Euler characteristic χ(BΓ ;R) is of course equal to 1 if Γ has an initial or a
terminal object.

7.5. Relationship between weightings and free resolutions

Theorem 7.6 (Weighting from a free resolution). Let Γ be a finite category. Suppose that the
constant RΓ -module R admits a finite free resolution P∗. If Pn is free on the finite ob(Γ )-set Cn,
that is

Pn = B(Cn) =
⊕

y∈ob(Γ )

⊕
C

y
n

R mor(?, y), (7.7)

then the function k• : ob(Γ ) → Q defined by

ky :=
∑
n�0

(−1)n · ∣∣Cy
n

∣∣
is a weighting on Γ .

Proof. At each object x of Γ , the R-chain complex P∗(x) has Euler characteristic 1, since it is
a resolution of R. Further, calculating the Euler characteristic of P∗(x) using Eq. (7.7) yields

1 = χ
(
P∗(x)

)=∑
n�0

(−1)n rkR Pn(x)

=
∑
n�0

(−1)n
( ∑

y∈ob(Γ )

∣∣Cy
n

∣∣ · ∣∣mor(x, y)
∣∣)

=
∑

y∈ob(Γ )

∣∣mor(x, y)
∣∣(∑

n�0

(−1)n
∣∣Cy

n

∣∣)
=

∑
y∈ob(Γ )

∣∣mor(x, y)
∣∣ky. �

In [12], we recall the Γ -CW -complexes of Davis and Lück [11] in the context of Euler char-
acteristics and homotopy colimits.

Corollary 7.8 (Construction of a weighting from a finite Γ -CW -model for the classifying Γ -
space). Let Γ be a finite category. Suppose that Γ admits a finite Γ -CW -model X for the
classifying Γ -space EΓ . Then the function k• : ob(Γ ) → Q defined by

ky :=
∑
n�0

(−1)n(number of n-cells of X based at y)

is a weighting on Γ .
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Proof. The composite of the cellular R-chain complex functor with X is a finite free resolution
of the constant RΓ -module R. The number of n-cells of X based at y is |Cy

n |. �
Remark 7.9. We may think of k• in Corollary 7.8 as the Γ -Euler characteristic of the Γ -CW -
space X. If R = C and Γ is skeletal and directly finite, then the function k• is just χf (Γ ;C) =
χ

(2)
f (Γ ) by Lemma 4.10(ii) and Theorem 5.25. The role of direct finiteness is to guarantee that

the splitting functors Sx are defined.

Example 7.10. Let Γ = {1 ← 0 → 2} be the category with objects 0, 1, and 2 and only two
non-trivial morphisms, one from 0 to 1 and one from 0 to 2. A finite Γ -CW -model for EΓ

has two zero-cells mor(?,1) and mor(?,2) and one 1-cell mor(?,0) × D1 whose attaching map
mor(?,0)× S0 → mor(?,1)� mor(?,2) is the disjoint union of the canonical maps mor(?,0) →
mor(?,1) and mor(?,0) → mor(?,2). This finite model produces the weighting (k0, k1, k2) =
(−1,1,1) by Corollary 7.8. This is the same weighting as in Leinster [13, 1.11.a].

Example 7.11. Let Γ = {a ⇒ b} be the category consisting of two objects and a single pair of
parallel arrows between them. A finite Γ -CW -model for EΓ has a single 0-cell based at b and
a single 1-cell based at a. The gluing map mor(−, a) × S0 → mor(−, b) is induced by the two
parallel arrows a ⇒ b. Corollary 7.8 then produces the weighting (ka, kb) = (−1,1), the same
weighting as in Leinster [13, 3.4.b].

Example 7.12. Let Γ be the category with objects the non-empty subsets of [q] = {0,1, . . . , q}
and a unique arrow J → K if and only if K ⊆ J . In [12], we construct a finite Γ -CW -model with
precisely one |J | − 1 cell based at J for each non-empty J ⊆ [q]. By Corollary 7.8, we obtain a
weighting k• on Γ by defining kJ := (−1)|J |−1. This is the same weighting as in Leinster [13,
3.4.d].

Remark 7.13. For a finite group G, there is no finite model. So it appears the above method of
finding the weighting does not work. However, if we use the L2-rank, something similar does.
Every finite group G has a finite projective resolution of Q, namely Q itself. Then we obtain for
the weighting

k∗ =
∑
n�0

(−1)n dimN (G) Q∗ = dimN (G) Q = 1/|G|,

precisely as by Leinster.

8. The proper orbit category

The principal virtue of the finiteness-obstruction approach to Euler characteristics is the wide
variety of examples and familiar notions it encompasses. We have already seen the topological
Euler characteristic of a category and the classical L2-Euler characteristic of a group [18, Chap-
ter 7] as special cases. We turn now to another special case: the equivariant Euler characteristic
of the classifying space EG for proper G-actions. Recall from Definition 6.7 that the proper
orbit category Or(G) has as objects the homogeneous spaces G/H with H a finite subgroup
of G, and as morphisms the G-equivariant maps. We have shown in Lemma 6.11 that Or(G) is
a quasi-finite and free EI-category. We will explain in this section that the finiteness obstructions



T.M. Fiore et al. / Advances in Mathematics 226 (2011) 2371–2469 2441
and Euler characteristic notions for Γ = Or(G) correspond to established notions in equivariant
topology for the classifying space EG for proper G-actions. This gives in particular the possi-
bility to compute and relate the invariants for Or(G) to more geometric notions.

In Section 8.1 we recall G-CW -complexes, the classifying space for proper G-actions, and
the relationship between equivariant invariants of EG and our category-theoretic invariants of
Or(G). In Section 8.2 we discuss Möbius inversion for Or(G) in the case where EG admits a
finite model. If G0 is a subgroup of G1 and G2, then the Euler characteristics of Or(G1 ∗G0 G2)

are computed additively from those of Or(G0), Or(G1), and Or(G2) in Section 8.3. In Sec-
tion 8.4 we derive the Burnside congruences from an integrality condition involving (μ(2),ω(2)).
We work everything out explicitly for G the infinite dihedral group in Section 8.5. Fundamental
groupoids are considered in Section 8.6.

8.1. The classifying space for proper G-actions

Definition 8.1 (G-CW -complex). A G-CW -complex X is a G-space X together with a filtration
by G-spaces X−1 = ∅ ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X =⋃n�0 Xn such that X = colimn→∞ Xn and for
each n there is a G-pushout, that is, a pushout in the category of G-spaces

∐
i∈In

G/Hi × Sn−1

∐
i∈In

qn
i

Xn−1

∐
i∈In

G/Hi × Dn

∐
i∈In

Qn
i

Xn.

For more information about G-CW -complexes we refer to Lück [15, Chapters 1 and 2]. A G-
CW -complex is proper if and only if all its isotropy groups are finite (see Lück [15, Theorem 1.23
on page 18]).

A G-CW -complex is finite, i.e., is built out of finitely many equivariant cells G/Hi × Dn if
and only if it is cocompact, i.e., G\X is compact. A G-CW -complex X is finitely dominated if
and only if there exists a finite G-CW -complex Y and G maps i :X → Y and r :Y → X with
r ◦ i �G idX .

Definition 8.2 (Classifying space for proper G-actions). A model for the classifying space for
proper G-actions is a G-CW -complex EG such that the subspace of H -fixed points EGH is
contractible for every finite subgroup H ⊆ G and is empty for every infinite subgroup H ⊆ G.

For much more information about EG than presented here we refer the reader to the survey
article [19] of Lück. We have EG = EG if and only if G is torsion-free. We can choose G/G as
a model for EG if and only if G is finite.

Remark 8.3. The classifying space for proper G-actions has the following universal property. If
X is a proper G-CW -complex, then there is up to G-homotopy precisely one G-map from X to
EG. In other words, a model for EG is a terminal object in the G-homotopy category of proper
G-CW -complexes. In particular, two models for EG are G-homotopy equivalent.

Recall from Notation 4.4 that U(Γ ) := Z iso(Γ ) for any category Γ .
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Definition 8.4 (Equivariant Euler characteristic). Let X be a finite G-CW -complex (see Defini-
tion 8.1). The equivariant Euler characteristic of X

χG(X) ∈ U
(
Or(G)

)
is

χG(X) :=
∑
n�0

(−1)n ·
∑
i∈In

G/Hi

for any choice of G-pushout appearing in Definition 8.1.

Theorem 8.5 (The relation between EG and Or(G)).

(i) If there exists a finite G-CW -model for EG, then the EI-category Or(G) is of type (FFR)
for any ring R;

(ii) If there exists a finitely dominated G-CW -model for EG, then Or(G) is of type (FPR) for
any ring R;

(iii) Suppose that G contains only finitely many conjugacy classes of finite subgroups and for
every finite subgroup H ⊂ G its Weyl group WGH := NGH/H is finitely presented. Sup-
pose that R = Z. Then the converses of assertions (i) and (ii) are true;

(iv) If EG is a finitely dominated G-CW -complex, then the equivariant finiteness obstruction of
Lück [15, Definition 14.4 on page 278] agrees with the finiteness obstruction o(Or(G);Z)

of Definition 2.7;
(v) Suppose that there is a finite G-CW -complex model for EG. Then its equivariant Eu-

ler characteristic χG(EG) ∈ U(Or(G)) agrees with the functorial Euler characteristic
χf (Or(G);Z) and the functorial L(2)-Euler characteristic χ

(2)
f (Or(G)). Moreover, its

finiteness obstruction o(Or(G);R) is the image of χf (Or(G);Z) under the composite

U
(
Or(G)

) ι−→ K0
(
ZOr(G)

) c−→ K0
(
ROr(G)

)
where ι has been defined in (4.8) and c is the obvious change of coefficients homomorphism.

Proof. (i) The cellular ZOr(G)-chain complex C∗(X) of a proper G-CW -complex X sends
G/H to the cellular chain complex of the CW -complex mapG(G/H,X) = XH . It is always
free, and it is finite free if and only if X is finite (see Lück [15, Section 18A]).

Since EGH is contractible, the cellular ZOr(G)-chain complex C∗(EG) is a free and hence
projective resolution of the constant ZOr(G)-module R.

(ii) This follows from Lück [15, Proposition 11.11 on page 222].
(iii) This follows from Lück and Meintrup [21, Theorem 0.1].
(iv) This follows now from the definitions.
(v) This follows for χf (Or(G);Z) from the definitions. For χ

(2)
f (Or(G)) apply Theo-

rem 5.25. �
Remark 8.6. The classifying spaces for proper G-actions EG play a prominent role in the
Baum–Connes Conjecture (see Baum, Connes and Higson [6, Conjecture 3.15 on page 254])
and they have been intensively studied in their own right.
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Given a group G, there are often nice geometric models for EG which are finite. If there is a
finitely dominated model for BG, then G must be torsion-free. This is not the case for EG.

Example 8.7 (Groups with finite EG). If G is a hyperbolic group in the sense of Gromov, then
its Rips complex (for an appropriate parameter) is a finite model for EG (see Meintrup and
Schick [23]).

If the group G acts simplicially cocompactly and properly by isometries on a CAT(0)-
space X, i.e., a complete Riemannian manifold with non-positive sectional curvature or a tree,
then X is a finite G-CW -model for EG. This follows from Bridson and Haefliger [8, Corol-
lary II.2.8 on page 179].

Further groups admitting finite models for EG are mapping class groups, the group of outer
automorphisms of a finitely generated free group, finitely generated one-relator groups, and co-
compact lattices in connected Lie groups.

8.2. The Möbius inversion for the proper orbit category

Next we take a closer look at Theorem 6.34 in the case of Γ = Or(G) for a group G with a
finite model for EG.

Given an object G/H , we obtain by Lemma 6.8 an isomorphism of groups

WGH := NGH/H
∼=−→ aut(G/H) (8.8)

by sending the class gH ∈ NGH/H to the G-automorphism G/H → G/H,g′H 	→ g′g−1H .
We obtain a bijection

{
(H)

∣∣H ⊆ G, |H | < ∞} ∼=−→ iso
(
Or(G)

)
, (H) 	→ G/H (8.9)

where (H) denotes the conjugacy class of the subgroup H . Define a partial ordering on {(H) |
H ⊆ G, |H | < ∞} by

(H) � (K) ⇔ H is conjugate to a subgroup of K. (8.10)

Then the bijection (8.9) is compatible with the partial orderings of (6.4) and (8.10).
Given two elements G/H,G/K ∈ iso(Or(G)), an l-chain c ∈ chl(G/K,G/H) in the sense

of Definition 6.20 is, under the bijection (8.9), the same as a sequence of conjugacy classes
of subgroups (H0) < (H1) < · · · < (Hl) with (H0) = (K) and (Hl) = (H). The aut(G/H)-
aut(G/K)-biset S(c) becomes under this identification and the identification (8.8) the WGH -
WGK-biset

S(c) = mapG(G/Hl−1,G/H) ×WGHl−1 mapG(G/Hl−2,G/Hl−1) ×WGHl−2

· · · ×WGH1 mapG(G/K,G/H1)

= (G/H)Hl−1 ×WGHl−1 (G/Hl−1)
Hl−2 ×WGHl−2 · · · ×WGH1 (G/H1)

K

where we can arrange K � H1 � H2 � · · · � Hl−1 � H .
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The commutative diagram appearing in Theorem 6.34 becomes the following diagram

K0(QOr(G))

S

Res⊕
(H),|H |<∞ K0(QWGH)

E

ω

⊕
(H),|H |<∞ rk(2)

WGH

⊕
(H),|H |<∞ K0(QWGH)

I

μ

⊕
(H),|H |<∞ rk(2)

WGH

⊕
(H),|H |<∞ Q

ω(2)

⊕
(H),|H |<∞ Q

μ(2)

where rk(2)
WGH :K0(QWGH) → Q sends [P ] to dimN (WGH)(P ⊗QWGH N (WGH)), the map ω

is given by the collection of homomorphisms

ω(H),(K) :K0(QWGH) → K0(QWGK), [P ] 	→ [
P ⊗QWGH Q mapG(G/K,G/H)

]
,

the map μ is given by the collection of homomorphisms

μ(H),(K) :K0(QWGH) → K0(QWGK),

[P ] 	→
∑
l�0

(−1)l ·
∑

c∈chl ((K),(H))

[
P ⊗QWGH QS(c)

]
,

the map ω(2) is given by the matrix (ω
(2)
(H),(K)) over Q, where

ω
(2)
(H),(K) =

r∑
i=1

1

|Li |

if the right WGK-set mapG(G/K,G/H) = (G/H)K is the disjoint union
∑r

i=1 Li\WGK , and

the map μ(2) is given by the matrix (μ
(2)
(H),(K)

) over Q, where

μ
(2)
(H),(K) =

∑
l�0

(−1)l ·
∑

c∈chl ((K),(H))

r∑
i=1

1

|Li(c)|

if the right WGK-set

S(c) = (G/K)Hl−1 ×WGHl−1 (G/Hl−1)
Hl−2 ×WGHl−2 · · · ×WGH1 (G/H1)

H

is the disjoint union
∑r

Li(c)\WGK .
i=1
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8.3. Additivity of the finiteness obstruction and the Euler characteristic for the proper orbit
category

Theorem 8.11 (Additivity of the finiteness obstruction and the Euler characteristic for the proper
orbit category). Consider two groups G1 and G2 with a common subgroup G0. Let G be the
amalgamated product G = G1 ∗G0 G2. Then:

(i) We obtain a G-pushout of G-CW -complexes

G ×G0 EG0
j1

j2

G ×G1 EG1

G ×G2 EG2 EG

where j1 and j2 are inclusions of G-CW -complexes;
(ii) If Or(Gk) is of type (FPR) for k = 0,1,2, then Or(G) is of type (FPR) and we get for the

finiteness obstruction

o
(
Or(G);R)= (i1)∗

(
o
(
Or(G1);R

))+ (i2)∗
(
o
(
Or(G2);R

))
− (i0)∗

(
o
(
Or(G0);R

)) ∈ K0
(
ROr(G)

)
,

where (ik)∗ :K0(ROr(Gk)) → K0(ROr(G)) is the homomorphism induced by the functor
(ik)∗ :Or(Gk) → Or(G) coming from induction associated to the inclusion ik :Gk → G for
k = 0,1,2;

(iii) If Or(Gk) is of type (FPR) for k = 0,1,2, then Or(G) is of type (FPR) and we get for the
functorial Euler characteristic

χf

(
Or(G);R)= (i1)∗

(
χf

(
Or(G1);R

))+ (i2)∗
(
χf

(
Or(G2);R

))
− (i0)∗

(
χf

(
Or(G0);R

)) ∈ U
(
Or(G)

)
,

where (ik)∗ :U(Or(Gk)) → U(Or(G)) is the homomorphism induced by the functor
(ik)∗ :Or(Gk) → Or(G) coming from induction associated to the inclusion ik :Gk → G

for k = 0,1,2, and we get for the Euler characteristic

χ
(
Or(G);R)= χ

(
Or(G1);R

)+ χ
(
Or(G2);R

)− χ
(
Or(G0);R

) ∈ Z.

If R is additionally Noetherian, then χ(BOr(Gk);R) = χ(Or(Gk);R) and we get for the
topological Euler characteristic

χ
(
BOr(G);R)= χ

(
BOr(G1);R

)+ χ
(
BOr(G2);R

)− χ
(
BOr(G0);R

) ∈ Z;

(iv) If Or(Gk) is of type (L2) for k = 0,1,2, then Or(G) is of type (L2) and we get for the
functorial L2-Euler characteristic
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χ
(2)
f

(
Or(G)

)= (i1)∗
(
χ

(2)
f

(
Or(G1)

))+ (i2)∗
(
χ

(2)
f

(
Or(G2)

))
− (i0)∗

(
χ

(2)
f

(
Or(G0)

)) ∈ U(1)
(
Or(G)

)
,

where (ik)∗ :U(1)(Or(Gk)) → U(1)(Or(G)) is the homomorphism induced by the functor
(ik)∗ :Or(Gk) → Or(G) coming from induction associated to the inclusion ik :Gk → G for
k = 0,1,2, and we get for the L2-Euler characteristic

χ(2)
(
Or(G)

)= χ(2)
(
Or(G1)

)+ χ(2)
(
Or(G2)

)− χ(2)
(
Or(G0)

) ∈ R.

Proof. (i) Associated to G = G1 ∗G0 G2 there is a 1-dimensional contractible G-CW -complex T

which is obtained as a G-pushout

G/G0 × S0
pr1 �pr2

G/G1 � G/G2

G/G0 × D1 T

where prk :G/G0 → G/Gk is the projection (see Serre [25, Theorem 7 in I.4 on page 32]).
Since for every finite subgroup H ⊆ G the H -fixed point set T H is a non-empty subtree, by

Serre [25, Proposition 19 in I.4 on page 36], and thus contractible, the product with the diagonal
G-action T × EG is again a model for EG. Note that resGk

G EG is a model for EGk and

G/Gk × EG
∼=G−−→ G ×Gk

resGk

G EG, (gGk, x) 	→ (
g,g−1x

)
is a G-equivariant homeomorphism. Combining everything, we obtain the following G-pushout
by crossing the G-pushout for T above with EG

G ×G0 EG0 × S0 G ×G1 EG1 � G ×G2 EG2

G ×G0 EG0 × D1 EG.

We can write the preceding G-pushout equivalently as

G ×G0 EG0 × D1
j1

j2

G ×G1 EG1

G ×G2 EG2 EG

where j1 and j2 are inclusions of G-CW -complexes. Furthermore, EG0 × D1 is just another
model of EG0.
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(ii) For k = 0,1,2 we get

indik C∗(EGk) ∼= C∗(G ×Gk
EGk)

where C∗(EGk) is the cellular ZOr(Gk)-chain complex of the Gk-CW -complex EGk ,
C∗(G ×Gk

EGk) is the cellular ZOr(G)-chain complex of the G-CW -complex G ×Gk
EGk .

From the G-pushout of assertion (i) we obtain a short exact sequence of ZOr(G)-chain com-
plexes

0 → indi0 C∗(EG0) → indi1 C∗(EG1) ⊕ indi2 C∗(EG2) → C∗(EG) → 0.

Now apply Lück [15, Theorem 11.2 on page 212], Theorem 4.15, and Theorem 8.5.
(iii) This follows from the definition of χf (Or(G);R) since rkRΓ :K0(ROr(G)) →

U(Or(G)) is compatible with induction homomorphisms induced from group homomorphisms.
The category Or(G) is directly finite by Lemma 3.13, so Theorem 4.20 applies.

(iv) We obtain for any object G/H in Or(G) a short exact sequence of ZOr(G)-chain com-
plexes

0 → SG/H

(
indi0 C∗(EG0)

)→ SG/H

(
indi1 C∗(EG1)

)⊕ SG/H

(
indi2 C∗(EG2)

)
→ SG/H

(
C∗(EG)

)→ 0.

For every finite subgroup H ⊂ Gk and k = 0,1,2 the inclusion Gk → G induces an injec-
tion WGk

H → WGH . The splitting functor is compatible with induction. Now apply Theo-
rem 5.7. �
8.4. The Burnside integrality relations and the classical Burnside congruences

Let G be a group and let X be a finite proper G-CW -complex. We have defined its equivariant
Euler characteristic χG(X) ∈ U(Or(G)) in Definition 8.4. The map

ω(2) :
⊕

(H),|H |<∞
Q →

⊕
(H),|H |<∞

Q

defined in Section 8.2 sends

χG(X) ∈ U
(
Or(G)

)⊆ U
(
Or(G)

)⊗Z Q =
⊕

(H),|H |<∞
Q

to the collection (χ(2)(XH ; N (WGH)))(H),|H |<∞ of the L2-Euler characteristics of the
N (WGH)-chain complexes C∗(XH ) ⊗ZWGH N (WGH). If X = EG, then χ(2)(XH ;
N (WGH)) = χ(2)(WGH). Notice that we get for the map

μ(2) :U
(
Or(G)

)⊗Z Q → U
(
Or(G)

)⊗Z Q

defined in Section 8.2

μ(2)
((

χ(2)
(
XH ; N (WGH)

))
(H),|H |<∞

)= χG(X).
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Lemma 8.12. Consider η = (η(H))(H),|H |<∞ ∈∏(H),|H |<∞ R. Then there is a finite proper G-

CW -complex X with χ(2)(XH ; N (WGH)) = η(H) for every finite subgroup H ⊆ G if and only
if η ∈ U(Or(G)) ⊗Z Q =⊕(H),|H |<∞ Q and μ(2)(η) lies in U(Or(G)).

Proof. The direction “⇒” was proved in the sentences preceding the lemma. For the direction
“⇐”, we first note that every element of U(Or(G)) can be realized as χG(X) for some G-CW -
complex X. Namely, G/H is realized by the 0-dimensional G-CW -complex G/H , and −G/H

is realized by the 1-dimensional G-CW -complex given by two G-1-cells G/H ×D1 attached to
a single G-0-cell G/H . All other elements of U(Or(G)) arise from finite disjoint unions of G-
CW -complexes of these two forms. If η ∈ U(Or(G)) ⊗Z Q and μ(2)(η) ∈ U(Or(G)), then we
realize μ(2)(η) as χG(X) and apply ω(2) with Theorem 6.31 to obtain χ(2)(XH ; N (WGH)) =
η(H) for every finite subgroup H ⊆ G. �
Lemma 8.13. Let G be a group such that Or(G) is of type (FPQ).

(i) If Or(G) satisfies condition (I), then

χ
(2)
f

(
Or(G)

)= μ(2)
((

χ(2)(WGH)
)
(H),|H |<∞

);
(ii) If there is a finite model for EG, then the following integrality condition is satisfied

μ(2)
((

χ(2)(WGH)
)
(H),|H |<∞

) ∈ U
(
Or(G)

)
.

Proof. This follows from Theorem 6.35, Theorem 8.5, and Lemma 8.12. �
Example 8.14 (Burnside congruences). These considerations are already interesting in the case
of a finite group G. Since we assume G is finite in this example, we refrain here from writing
|H | < ∞ when summing over conjugacy classes (H) of subgroups of G. For every finite G-
CW -complex X, the map

ω(2) :
⊕
(H)

Q →
⊕
(H)

Q

sends the equivariant Euler characteristic χG(X) to the collection (χ(XH )/|WGH |)(H), where
χ(XH ) is the classical Euler characteristic of the H -fixed point set. We conclude from
Lemma 8.12 that for an element η = (η(H))(H) ∈⊕(H) Q there exists a finite G-CW -complex X

such that χ(XH )/|WGH | = χ(2)(XH ; N (WGH)) agrees with η(H) for any subgroup H ⊆ G, if
and only if μ(2)(η) ∈ U(Or(G)). The latter is a kind of integrality condition. In the case of a
finite group G it can be transformed into equivalent congruence conditions for integers.

Let

ch = chG :U
(
Or(G)

)→⊕
(H)

Z

be the map uniquely determined by the property that it sends χG(X) to the collection
(χ(XH ))(H) for every finite G-CW -complex X. Under the obvious identification of U(Or(G))
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with the Burnside ring A(G), the map ch corresponds to the character map which sends a finite
G-set S to the collection (|SH |)(H). We have

i ◦ ch = D ◦ ω(2) ◦ i,

if i :U(G) → U(G) ⊗Z Q is the obvious inclusion and the map D :U(G) ⊗Z Q → U(G) ⊗Z Q
is given by the diagonal matrix whose entry at (H) is |WGH |. Let

ν :
⊕
(H)

Z →
⊕
(H)

Z

be the map uniquely determined by i ◦ ν = D ◦ μ(2) ◦ D−1 ◦ i. One easily checks that it is given
by the integer matrix whose entry at ((H), (K)) is

∑
l�0

(−1)l ·
∑

(H0)<···<(Hl)∈chl ((K),(H))

l∏
i=1

∣∣WGHi+1\mapG(G/Hi,G/Hi+1)
∣∣.

Notice that i ◦ ν ◦ χ = D ◦ i. We conclude that an element ξ ∈⊕(H) Z lies in the image of ch
if and only if, for every conjugacy class (H) of subgroups of the finite group G, the following
congruence of integers holds:

ν(ξ)(H) ≡ 0 mod |WGH |.

These are the Burnside ring congruences. For more information about the Burnside ring we refer
for instance to tom Dieck [26, Chapter 1].

If G is the cyclic group Z/p of order p for a prime p, then U(Or(Z/p)) = Z2,

ch =
(

p 1
0 1

)
:U
(
Or(Z/p)

)= Z2 → U
(
Or(Z/p)

)= Z2,

and

ν =
(

1 −1
0 1

)
:U
(
Or(Z/p)

)= Z2 → U
(
Or(Z/p)

)= Z2.

The Burnside ring congruences reduce to one congruence, namely

η(Z/p)/{1} − η(Z/p)/(Z/p) ≡ 0 mod p.

The latter reflects the fact that the cardinality of S −SZ/p is a multiple of p for a finite Z/p-set S.

Example 8.15 (Amenable G). Let G be an amenable group. Suppose that Or(G) is of type (FPQ).
Then χ(2)(Or(G)) is the image of η = (η(H))(H),|H |<∞ under

μ(2) :U
(
Or(G)

)⊗Z Q → U
(
Or(G)

)⊗Z Q

where η(H) = 0 if WGH is infinite and η(H) = 1/|WGH | if WGH is finite.



2450 T.M. Fiore et al. / Advances in Mathematics 226 (2011) 2371–2469
In particular, if WGH is infinite for every finite subgroup H ⊆ G, then χ(2)(Or(G)) vanishes.
This follows from Theorem 6.35, Lemma 8.13, and the result of Cheeger and Gromov that all

the L2-Betti numbers of any infinite amenable group G vanish (see Cheeger and Gromov [10]
and Lück [18, Theorem 7.2 on page 294]).

8.5. The infinite dihedral group

Consider the infinite dihedral group

D∞ = 〈t, s ∣∣ s2 = 1, sts = t−1〉∼= Z � Z/2 ∼= Z/2 ∗ Z/2.

As an illustration we want to make all the material of this section explicit for this easy special
case.

The infinite dihedral group D∞ has three conjugacy classes of finite subgroups (C1), (C2),
and (T ), where C1 = 〈s〉 and C2 = 〈ts〉 have order two and T is the trivial group.

One easily checks that WD∞Ci is trivial for i = 1,2 and WD∞T = D∞. Hence we get

SplitK0
(
QOr(D∞)

)= K0(QD∞) ⊕ K0(Q) ⊕ K0(Q) = K0(QD∞) ⊕ Z ⊕ Z

by the discussion in Section 8.2.
The WD∞Ci -WD∞T -biset mapD∞(D∞/T ,D∞/Ci) is given by the right D∞-set Ci\D∞ for

i = 1,2. The WD∞T -WD∞T -biset mapD∞(D∞/T ,D∞/T ) is D∞ regarded as D∞-D∞-biset.
The WD∞Cj -WD∞Ci -biset mapD∞(D∞/Ci,D∞/Cj ) is empty for i �= j and is the {1}-{1}-biset
consisting of one point for i = j . The WD∞T -WD∞Ci -biset mapD∞(D∞/Ci,D∞/T ) is empty
for i = 1,2. There are exactly two 1-chains in Or(D∞), namely (T ) < (C1) and (T ) < (C2).

Hence we get

ω :K0(QD∞) ⊕ Z ⊕ Z → K0(QD∞) ⊕ Z ⊕ Z,

(x, n1, n2) 	→ (
x + n1 · [QC1\D∞] + n2 · [QC2\D∞], n1, n2

)
,

μ :K0(QD∞) ⊕ Z ⊕ Z → K0(QD∞) ⊕ Z ⊕ Z,

(x, n1, n2) 	→ (
x − n1 · [QC1\D∞] − n2 · [QC2\D∞], n1, n2

)
,

ω(2) =
(1 1/2 1/2

0 1 0
0 0 1

)
: Z3 → Z3, (n0, n1, n2) 	→ (n0 + n1/2 + n2/2, n1, n2),

and

μ(2) =
(1 −1/2 −1/2

0 1 0
0 0 1

)
: Z3 → Z3, (n0, n1, n2) 	→ (n0 − n1/2 − n2/2, n1, n2).

The map

rk(2)
Or(D∞)

:K0(QD∞) ⊕ Z ⊕ Z → Z ⊕ Z ⊕ Z

sends ([P ], n1, n2) to (dimN (D )(P ⊗QD∞ N (D∞)), n1, n2).
∞
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There is the isomorphism

Z ⊕ Z ⊕ Z
∼=−→ K0(QD∞), (n0, n1, n2) 	→ n0 · [QD∞] + n1 · [QC1\D∞] + n2 · [QC2\D∞]

(see for example the Mayer–Vietoris sequence for amalgamated products in Waldhausen [28,
Corollary 2.15 on page 216] and the subsequent remarks there). Under this identification

rk(2)
Or(D∞)

=
(1 1/2 1/2 0 0

0 0 0 1 0
0 0 0 0 1

)
: Z5 → Z3,

ω =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ : Z5 → Z5,

and

μ =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ : Z5 → Z5.

The infinite dihedral group D∞ = Z�Z/2 acts on R by the action of Z on R given by addition
and the action of Z/2 in R given by multiplication with (−1). There is a D∞-CW -structure
on R such that there are three equivariant cells of the type D∞/C1 × D0, D∞/C2 × D0, and
D∞/T × D1. One easily checks that this is a model for ED∞. Hence we get for the equivariant
Euler characteristic of ED∞

χD∞(ED∞) = D∞/C1 + D∞/C2 − D∞/T ∈ U
(
Or(D∞)

)
.

By Theorem 6.22(ii) and Theorem 8.5(v) the image of the finiteness obstruction o(Or(D∞))

under the isomorphism

S :K0
(
QOr(D∞)

) ∼=−→ SplitK0
(
QOr(D∞)

)= K0(QD∞) ⊕ Z ⊕ Z = Z5

is (−1,0,0,1,1). The image of this element under ω is (−1,1,1,1,1). All this is consistent
with Theorem 8.11 applied to D∞ = Z/2 ∗ Z/2.

The trivial QD∞-module Q has a finite projective QD∞-resolution of the form 0 → QD∞ →
QD∞/C1 ⊕QD∞/C1 → Q → 0 coming from the QD∞-chain complex of R. This implies that
the homomorphism

Res :K0
(
QOr(D∞)

) ∼=−→ SplitK0
(
QOr(D∞)

)= K0(QD∞) ⊕ Z ⊕ Z = Z5

sends o(Or(D∞);Q) to (−1,1,1,1,1) (see Theorem 6.35(i)). This is consistent with the fact
that ω sends the image of the finiteness obstruction o(Or(D∞)) under S, which is given by
(−1,0,0,1,1) ∈ Z5, to the element (−1,1,1,1,1) ∈ Z5 (see Theorem 6.22).
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We have χ
(2)
f (Or(D∞);Q) = (−1,1,1) ∈ U(Or(D∞)) = Z3. The composite

rk(2)
Or(D∞)

◦Res :K0
(
QOr(D∞)

)→ U
(
Or(D∞)

)= Z3

sends o(Or(D∞);Q) to (χ(2)(D∞),χ(2)({1}),χ(2)({1})). Since the L2-Euler characteristic of
an infinite amenable group vanishes (see Cheeger and Gromov [10]) and the L2-Euler char-
acteristic of the trivial group is 1, we get (χ(2)(D∞),χ(2)({1}),χ(2)({1})) = (0,1,1). This is
consistent with the fact that ω(2) sends (−1,1,1) to (0,1,1) and with Example 8.15.

8.6. The fundamental category

Let X be a G-space. Consider the functor

F :Or(G) → GROUPOIDS, G/H 	→ Π
(
mapG(G/H,X)

)
,

which sends G/H to the fundamental groupoid of XH = mapG(G/H,X). Its homotopy colimit
is by definition the fundamental groupoid Π(G,X) which plays an important role in transforma-
tion groups (see Lück [15, Definition 8.13 on page 144]).

Denote by Π(G,X) the homotopy colimit of the functor F above restricted to Or(G). If all
isotropy groups of X are finite, then Π(G,X) and Π(G,X) agree.

Suppose that there is a finite G-CW -model for EG. Let In be the set of equivariant n-cells
c = G/Hc × (Dn − Sn−1). Consider a G-CW -complex X. Suppose that for every finite sub-
group H ⊆ G each groupoid Π(XH ) is of type (FPQ). This is equivalent to requiring that for
every finite subgroup H ⊆ G the set π0(X

H ) is finite and at each base point x ∈ XH the fun-
damental group π1(X

H ,x) is of type (FPQ). This follows from Brown [9, Exercise 8 in VIII.6
on page 205] using the facts that WGH is of type (FPQ) because Or(G) is of type (FPQ) (see
Theorem 8.5(i) and Lemma 6.15(i)) and for every object x :G/H → X in Π(G,X) there exists
an exact sequence

1 → π1
(
XH ,x

)→ aut(x :G/H → X) → WGH(x) → 1 (8.16)

for the subgroup WGH(x) ⊆ WGH of finite index which is the isotropy group of the component
in XH determined by x under the WGH -action on π0(X

H ) (see Lück [15, Proposition 8.33 on
page 150]). Hence the homotopy colimit formula of Fiore, Lück and Sauer [12] applies. For
instance we get

χ(2)
(
Π(G;X)

)=∑
n�0

(−1)n ·
∑
c∈In

∑
C∈π0(X

Hc )/WGHc

χ(2)
(
aut
(
x(C)

));
χ
(
Π(G;X);Q

)=∑
n�0

(−1)n ·
∑
c∈In

∑
C∈π0(X

Hc )/WGHc

χ
(
B aut

(
x(C)

);Q
)
,

where for a component C ∈ π0(X
Hc) we denote by x(C) :G/Hc → X an object in Π(G,X) such

that x(C)(eHc) lies in the component C and aut(x(C)) is its automorphism group in Π(G,X)

which fits into the exact sequence (8.16).
If we take X = {•} itself, we get back Theorem 8.5(v).
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One can define for a functor μ :Or(G) → GROUPOIDS its equivariant Eilenberg–
Mac Lane space E(μ,1) which is a G-CW -complex such that μ can be identified with the
functor Or(G) → GROUPOIDS sending G/H to Π(E(μ,1)H ) and we have πn(E(μ,1)H , x)

is trivial for all n � 2, H ⊆ G and x ∈ E(μ,1)H (see Lück [14]). There is a natural equivalence
hocolimOr(G) μ → Π(G;E(μ,1)) which induces an isomorphism

K0(Z hocolimOr(G) μ) → K0
(
ZΠ
(
G;E(μ,1)

))
.

Under this isomorphism the finiteness obstruction of hocolimOr(G) μ in the sense of Defini-
tion 2.7 corresponds to the finiteness obstruction of E(μ,1) in the sense of Lück [15, Defini-
tion 14.4 on page 278].

9. An example of a finite category without property EI

For the remainder of this section we will consider the following category Γ . It has precisely
two objects x and y. There is precisely one morphism u :x → y and precisely one morphism
v :y → x. There are precisely two endomorphisms of x, namely, v◦u and idx . There are precisely
two endomorphisms of y, namely, u ◦ v and idx . We have vuv = v and uvu = u. Obviously Γ is
a free finite category. It has two idempotents which are not the identity, namely, vu and uv. It is
directly finite but it is not Cauchy complete and not an EI-category. In this section we compute
the homomorphisms S, E, and Res for K0(RΓ ) and determine the finiteness obstruction.

Given an R-module M , we define three RΓ -modules IxM , IyM , and IcM as follows. The
contravariant functor IxM sends x to M and y to {0} and every morphism except idx to the zero
homomorphism. The contravariant functor IyM sends y to M and x to {0} and every morphism
except idy in Γ to the zero homomorphism. The contravariant functor IcM sends both x and y

to M and every morphism in Γ to the identity idM .

Lemma 9.1. Let M be an RΓ -module. Then there is an isomorphism of RΓ -modules, natural
in M

f : Ix

(
ker
(
M(vu)

))⊕ Iy

(
ker
(
M(uv)

))⊕ Ic

(
im(vu)

) ∼=−→ M.

Proof. The transformation f is given at the object x by the direct sum of the obvious inclusions

ix ⊕ jx : ker
(
M(vu)

)⊕ im
(
M(vu)

) ∼=−→ M(x).

This is an isomorphism since M(vu)2 = M((vu)2) = M(vu). The transformation f is given at
the object y by the direct sum of the inclusion iy and the map induced by M(v)

iy ⊕ M(v)|im(M(uv)) : ker
(
M(uv)

)⊕ im
(
M(vu)

) ∼=−→ M(y).

This is an isomorphism of R-modules, an inverse is given by(
id − M(uv)

)× M(u) :M(y) → ker
(
M(uv)

)⊕ im
(
M(vu)

)
.

It remains to check that f is a transformation. We check this for the morphism v, the proof for u

is analogous. We have to show that the following diagram is commutative.
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ker(M(vu)) ⊕ im(M(vu))
0⊕id

ix⊕jx

ker(M(uv)) ⊕ im(M(vu))

iy⊕M(v)|im(M(uv))

M(x)
M(v)

M(y)

This is equivalent to showing that M(v)|ker(M(vu)) = 0. This follows from M(v) = M(vuv) =
M(v) ◦ M(vu). �
Lemma 9.2. Let M be an R-module.

(i) The functors Resx and Resy respectively from MOD-RΓ to MOD-R, which are given by
evaluation at x and y respectively, are exact and send finitely generated projective RΓ -
modules to finitely generated projective R-modules;

(ii) The following assertions are equivalent:
(a) M is a finitely generated projective R-module;
(b) IxM is a finitely generated projective RΓ -module;
(c) IyM is a finitely generated projective RΓ -module;
(d) IcM is a finitely generated projective RΓ -module.

Proof. (i) Obviously Resx and Resy are exact. Hence it remains to show that they send both
R mor(?, x) and R mor(?, y) to a finitely generated projective R-module. This is obviously true.

(ii) Suppose that IxM is a finitely generated projective RΓ -module. Then M is a finitely
generated R-module because of assertion (i) since Ix(M)(x) = M . Analogously one shows that
M is finitely generated projective if IyM or IcM is a finitely generated projective RΓ -module.

Suppose that M is a finitely generated projective R-module. We want to show that IxM ,
IyM , and IcM are finitely generated projective RΓ -modules. Since the functors Ix , Iy , and Ic

are exact, it suffices to check this in the special case M = R. This follows from Lemma 9.1 since
R mor(?, x) and R mor(?, y) are free RΓ -modules and IxR, IyR, and IcR are direct summands
in R mor(?, x) or R mor(?, y). �
Corollary 9.3. The constant functor R :Γ op → R-MOD with value R defines a projective RΓ -
module. In particular, R admits a finite projective resolution and Γ is of type (FPR).

Lemma 9.4. We obtain isomorphisms, inverse to one another,

α :K0(R) ⊕ K0(R) ⊕ K0(R)
∼=−→ K0(RΓ ),([P1], [P2], [P3]

) 	→ [
Ix(P1)

]+ [Iy(P2)
]+ [Ic(P3)

]
and

β :K0(RΓ )
∼=−→ K0(R) ⊕ K0(R) ⊕ K0(R), [P ] 	→ ([SxP ], [SyP ], [Resx P ] − [SxP ]),

where the functors Sx and Sy are the splitting functors defined in (3.3).
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Proof. This follows from Lemma 9.1 and Lemma 9.2. �
Consider the following commutative diagram

SplitK0(RΓ )

K0(RΓ )

S

Res

SplitK0(RΓ )

rkR

SplitK0(RΓ )

id

ω

E

rkR

U(Γ ) U(Γ )
ω

where the homomorphisms S and E have been defined in (3.7) and in (3.8) and satisfy S ◦E = id
by Lemma 3.9, the homomorphism Res sends [P ] to ([Resx P ], [Resy P ]), the homomorphism ω

has been defined in (6.18), the map rkR is given by the direct sum of the homomorphisms
K0(R) → Z sending [P ] to rkR(P ) and ω is given by the matrix

( 2 1
1 2

)
. Under the identifica-

tion α of Lemma 9.4 and the definitions SplitK0(RΓ ) := K0(R) ⊕ K0(R) and U(Γ ) = Z ⊕ Z,
where the first summand corresponds to x and the second to y, this diagram becomes

K0(R) ⊕ K0(R)

K0(R) ⊕ K0(R) ⊕ K0(R)

S=
( id 0 0

0 id 0

)

( id 0 id
0 id id

)
Res

K0(R) ⊕ K0(R)

rkR=
( rkR 0

0 rkR

)
K0(R) ⊕ K0(R)

( id 0
0 id

)
=id

(2·id id
id 2·id

)ω

( id 0
0 id
id id

)

E

( rkR 0
0 rkR

)
=rkR

Z ⊕ Z Z ⊕ Z.(2 1
1 2

)ω

The finiteness obstruction o(Γ ;R) ∈ K0(RΓ ) of Definition 2.7 corresponds under the
identification α of Lemma 9.4 to the element (0,0, [R]) ∈ K0(R) ⊕ K0(R) ⊕ K0(R). Its
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image under S :K0(RΓ ) → SplitK0(RΓ ) = K0(R) ⊕ K0(R) is (0,0). Its image under
Res :K0(RΓ ) → SplitK0(RΓ ) = K0(R) ⊕ K0(R) is ([R], [R]). Its image under the composite
rkR ◦Res :K0(RΓ ) → U(Γ ) = Z ⊕ Z is (1,1). An inverse μ of the isomorphism induced by
ω :U(Γ ) ⊗Z Q → U(Γ ) ⊗Z Q is given by

(
2/3 −1/3

−1/3 2/3

)
: Q ⊕ Q → Q ⊕ Q.

The Euler characteristic in the sense of Leinster [13] is 2/3 + (−1/3) + (−1/3) + 2/3 = 2/3.
We see that the Euler characteristic in the sense of Leinster [13] is the image of the finiteness
obstruction under the composite

K0(RΓ )
Res−−→ SplitK0(RΓ )

rkR−−→ U(Γ )
i−→ U(Γ ) ⊗Z Q

μ−→ U(Γ ) ⊗Z Q ε−→ Q

where i is the obvious inclusion and ε is the augmentation homomorphism.

10. A finite category without property (FPR)

In this section we investigate the finite category A appearing in Leinster [13, Example 1.11.d],
recalled below. Leinster showed that A has no weighting. Obviously A is Cauchy complete but
not directly-finite and in particular not an EI-category. We will show that it is not of type (FPR),
give a full classification of the finitely generated projective RA-modules, and compute K0(RA),
G0(RA), and Hn(BA;R) = Hn(A;R).

The non-trivial morphisms of Leinster’s example A are drawn in the diagram below.

a1

f12,g12

f11

f13

f14

a2

f21,g21

f22

f23

f24
g24

a3
f31 f32

f34

a4

He also defines f33 := ida3 and f44 := ida4 . Composition in the category A is: for any compos-
able pair ai

p−→ aj
q−→ ak in A for which neither p nor q is an identity we have q ◦ p = fik .

Lemma 10.1. The space |NA| is homotopy equivalent to a point.

Proof. We consider the subcategory U of A which does not contain g24, but otherwise is the
same as A. The object a4 is a terminal object for U, so |NU| � ∗.
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But |NU| � |NA|. We have the inclusion i : U → A. The functor r : A → U is the identity
functor, except on g24, which r maps to f24. Then ri = idU and we also have a natural transfor-
mation α : ir ⇒ idA defined by

α(a1) = ida1 ,

α(a2) = f22,

α(a3) = ida3 ,

α(a4) = ida4 .

The continuous maps |Nr| and |Ni| are homotopy inverses. �
Although A has the homotopy type of a point, A is not equivalent to the trivial category, for

the unique functor A → ∗ is not fully faithful. Alternatively, we note that the trivial category is
of type (FPR) while A is not of type (FPR), as we now show.

10.1. Property (FPR)

Theorem 10.2. The above finite category A appearing in Leinster [13, Examples 1.11.d] is not
of type (FPR) for any associative, commutative ring R with identity.

Proof. In the sequel we use the notation in A appearing in Leinster [13, Examples 1.11.d],
recalled above. Let M be the RA-module M which is uniquely determined by M(ai) = {0}
for i = 1,3,4, M(a2) = R, and M(f22) = 0. Such an RA-module M exists since ida2 = a ◦ b

implies a = b = ida2 . Let u0 :R mor(?, a4) → R be the RA-homomorphism uniquely defined by
the property that it sends ida4 to 1 ∈ R. Let u1 :M → R mor(?, a4) be the RA-homomorphism
uniquely determined by the property that its evaluation at a2 sends 1 ∈ R = M(a2) to f24 − g24.
Let v1 :R mor(?, a2) → M be the RA-homomorphism uniquely determined by the property that
it sends ida2 to 1 ∈ R = M(a2). Let v2 :R mor(?, a1) → R mor(?, a2) be the RA-homomorphism
uniquely determined by the property that it sends ida1 to g12 ∈ R mor(a1, a2). Let v3 :M →
R mor(?, a1) be the RA-homomorphism uniquely determined by the property that its evaluation
at a2 sends 1 ∈ R = M(a2) to f21 − g21. Then we obtain exact sequences of RA-modules

0 → M
u1−→ R mor(?, a4)

u0−→ R → 0, (10.3)

and

0 → M
v3−→ R mor(?, a1)

v2−→ R mor(?, a2)
v1−→ M → 0. (10.4)

The first exact sequence and Lück [15, Lemma 11.6 on page 216] imply that R has a finite-
dimensional projective RA-resolution if and only if M has. By concatenating copies of 10.4 we
obtain an exact sequence

0 → M → Fn → ·· · → F0 → M → 0

with free RA-modules Fi of arbitrarily long length n. Thus, using Brown [9, Lemma (2.1) on
page 184], M has a finite-dimensional projective RA-resolution if and only if M is projective.
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Hence R has a finite-dimensional projective RA-resolution if and only if M is projective. Since
v1 is surjective, M is projective only if v1 has a section. Hence it suffices to show that v1 has no
section.

Let s :M → R mor(?, a2) be any RA-homomorphism. Consider the homomorphism
g∗

12 :R mor(a2, a2) → R mor(a1, a2) given by composition with g12. It sends the R-basis
{ida2, f22} bijectively to the R-basis {g12, f12} and is hence an isomorphism. The compos-
ite g∗

12 ◦ s(a2) :M(a2) → R mor(a1, a2) factorizes through M(a1) and hence is trivial since
M(a1) = {0}. Hence the RA-morphism s :M → R mor(?, a2) is trivial and cannot be a section
of v1. �
10.2. Finitely generated projective modules

We want to classify all finitely generated projective RA-modules. Let P be a finitely generated
projective R-module. For i = 1,2 let K1(P ) be the RA-module whose evaluation at both a1
and a2 is P and whose evaluation at both a3 and a4 is {0}. We require that g21 for i = 1 and
that g12 for i = 2 induces the identity id :P → P , whereas all other morphisms in A besides the
identity morphisms of the objects a1 and a2 induce the zero homomorphism. Then

Theorem 10.5. Let P be an RA-module.

(i) P is finitely generated projective if and only if there exist finitely generated projective R-
modules P1, P2, P3, and P4 such that

P ∼= K1(P1) ⊕ K2(P2) ⊕ Ea3(P3) ⊕ Ea4(P4),

where Ea3 and Ea4 denote the extension functors defined in (3.4);
(ii) Suppose that there exist finitely generated projective R-modules P1, P2, P3, and p4 such

that

P ∼= K1(P1) ⊕ K2(P2) ⊕ Ea3(P3) ⊕ Ea4(P4).

Then

P1 ∼= Sa1P ;
P2 ∼= Sa1P ;
P3 ∼= coker

(
P(f34) :P(a4) → P(a3)

);
P4 ∼= P(a4),

where Sai
is the splitting functor defined in (3.3);

(iii) P is finitely generated free if and only if there exist finitely generated free R-modules F1,
F2, F3, and F4 such that

P ∼= K1(F1) ⊕ K2(F2) ⊕ Ea3(F1 ⊕ F2 ⊕ F3) ⊕ Ea4(F4).
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Proof. (i) Recall that the extension functor Eaj
satisfies Eaj

(R) = R mor(?, aj ), is compatible
with direct sums, and sends finitely generated projective modules to finitely generated projective
modules (see Lemma 3.5(i)). In particular Ea3(P3) and Ea4(P4) are finitely generated projective
RA-modules if P is a finitely generated projective R-module.

Given a category Γ and an endomorphism u :x → x of an object in Γ and an R[x]-module Q,
we obtain a morphism of RΓ -modules u∗ :ExQ → ExQ as follows. Its evaluation at an object y

is given by

Q ⊗R[x] R mor(y, x) → Q ⊗R[x] R mor(y, x), q ⊗ v 	→ q ⊗ uv.

Obviously (idx)∗ = idExQ and (u1)∗ ◦ (u2)∗ = (u1 ◦ u2)∗ for two endomorphisms u1 and u2.
Consider a finitely generated projective R-module P . Consider i ∈ {1,2}. The construction

above applied to the idempotent fii :ai → ai yields an idempotent endomorphism of RA-
modules (fii)∗ :Eai

P → Eai
P . We obtain a direct sum decomposition of finitely generated

projective RA-modules

Eai
P ∼= im

(
(fii)∗

)⊕ ker
(
(fii)∗

)
. (10.6)

Next we show for i = 1,2

im
(
(fii)∗

)∼= Ea3P ; (10.7)

ker
(
(fii)∗

)∼= Ki(P ). (10.8)

We only treat the case i = 1, the case i = 2 is completely analogous. Let

α :Ea3P → Ea1P (10.9)

be the RΓ -homomorphism which is the adjoint under the adjunction of Lück [15, Lemma 9.31 a)
on page 171] of the R-homomorphism P → Ea1P(a3) = P ⊗R R mor(a3, a1) sending p to
p ⊗ f31. Explicitly the evaluation of α at an object aj is given by

P ⊗R R mor(aj , a3) → P ⊗R R mor(aj , a1), p ⊗ u 	→ p ⊗ (f31 ◦ u).

One easily checks that α is injective. The image of α(aj ) is {0} for j = 4 and is {p⊗fj1 | p ∈ P }
for j = 1,2,3. This is the same as the image of (f11)∗ :Ea1P → Ea1P and (10.7) follows. The
cokernel of α is isomorphic to ker((f11)∗) since (f11)∗ is an idempotent. Obviously the cokernel
evaluated at a4 and a3 is {0}. The cokernel evaluated at the objects a1 and a2 is isomorphic
to R. The element ida1 projects down to a generator in coker(α)(a1) and the element g21 projects
down to a generator in coker(α)(a2). Hence the morphism g21 induces a map coker(α)(a1) to
coker(α)(a2) that respects these generators. The morphisms f11, f12, f22 and g12 induce the
trivial homomorphism on the cokernel of α. Now (10.8) follows.

In particular we see that Ki(P ) is a finitely generated projective RA-module if P is a finitely
generated projective R-module.

Now consider a finitely generated projective RA-module P . Choose a finitely generated free
RΓ -module F together with RΓ -maps i :P → F and r :F → P . Let
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σa4(P ) :Ea4P(a4) → P

be the adjoint of the adjunction of Lück [15, Lemma 9.31 on page 171] of the R-homomorphism
ida4 :P(a4) → P(a4). Explicitly its evaluation at aj is given by

P(a4) ⊗R R mor(aj , a4) → P(aj ), p ⊗ u 	→ P(u)(p).

The map σa4(P ) is natural in P . Let P and F respectively be the cokernel of σa4(P ) and σa4(F )

respectively. Denote by pr(P ) :P → P and pr(F ) :P → F the canonical projections.
Choose non-negative integers m1, m2, m3, and m4 such that

F ∼=
4⊕

j=1

R mor(?, aj )
mj .

Since the are no morphisms from a4 to the other objects a1, a2 and a3, one easily checks that the
sequence

Ea4F(a4)
σa4−−→ F

pr(F )−−−→ F

can be identified with the obvious split exact sequence

R mor(?, a4)
m4 →

4⊕
j=1

R mor(?, aj )
mj →

3⊕
j=1

R mor(?, aj )
mj .

We obtain a commutative diagram

0 0 0

Ea4(P (a4))
Ea4 (i(a4))

σa4 (P )

Ea4(F (a4))
Ea4 (r(a4))

σa4 (F )

Ea4(P (a4))

σa4 (P )

P
i

pr(P )

F
r

pr(F )

P

pr(P )

P
i

F
r

P

0 0 0

where i and r are the maps induced by i and r . We know already that the middle row is exact.
We conclude Ea4(r(a4)) ◦Ea4(i(a4)) = id and r ◦ i = id from r ◦ i = id. An easy diagram shows
that all rows are exact.
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Hence P is a finitely generated projective RA-module, we have the isomorphisms

P ∼= Ea4

(
P(a4)

)⊕ P ;

F ∼=
3⊕

j=1

R mor(?, aj )
mj ,

and RA-homomorphisms i :P → F and r :F → P with r ◦ i = id. The R-module P(a4) is a
finitely generated projective R-module since it is a direct summand in the finitely generated free
R-module F(a4) = Rm4 . Hence it suffices to prove the claim for P .

Now we more or less repeat the argument above, but nor replacing a4 by a3. So we define

σa3(P ) :Ea3P(a3) → P ,

σa3(P ) :Ea3F(a3) → F

as above. Denote by P and F respectively the cokernel of σa3(P ) and σa3(F ) respectively.

Let pr(P ) :P → P and pr(F ) :F → F be the canonical projections. Denote by i :P → F and

r :F → P the maps induced by i and r . The maps σa3(P ) are natural in P and compatible
with direct sums. One easily checks that the RA-homomorphism σa3(R mor(?, a3)) is an iso-
morphism. Hence also the RA-homomorphism

σa3

(
R mor(?, a3)

m3
)

:Ea3R mor(a3, a3)
m3 → R mor(?, a3)

m3

is an isomorphism. The map σa3(R mor(?, a1)) :Ea3R mor(a3, a1) → R mor(?, a1) is the same
as the map α defined in (10.9). Hence it is injective and its cokernel is K1(R). This implies that

σa3

(
R mor(?, a1)

m1
)

:Ea3R mor(a3, a1)
m1 → R mor(?, a1)

m1

is injective with the finitely generated projective RA-module K1(R
m1) as cokernel. Analogously

one shows that

σa3

(
R mor(?, a2)

m2
)

:Ea3R mor(a3, a2)
m2 → R mor(?, a2)

m2

is injective with the finitely generated projective RA-module K2(R
m2) as kernel. This implies

F ∼= K1
(
Rm1

)⊕ K2
(
Rm2

)
.

As above we obtain a commutative diagram with exact rows.
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0 0 0

Ea3(P (a3))
Ea3 (i(a3))

σa3 (P )

Ea3(F (a3))
Ea3 (r(a3))

σa3 (F )

Ea3(P (a3))

σa3 (P )

P
i

pr(P )

F
r

pr(F )

P

pr(P )

P
i

F
r

P

0 0 0

Hence P is a finitely generated projective RA-module which is a direct summand in F ∼=
K1(R

m1) ⊕ K2(R
m2) and we obtain an isomorphism

P ∼= Ea3

(
P(a3)

)⊕ P .

Since P(a3) is a direct summand in the finitely generated free R-module F(a3) ∼= Rm1+m2+m3 ,

it is finitely generated projective R-module. Hence it remains to prove the claim for P .

Since P is a direct summand in K1(R
m1) ⊕ K2(R

m2), one easily checks that we have exact
sequences of finitely generated projective R-modules

0 → im
(
P(g12)

) i1−→ P (a1)
P (g21)−−−−→ im

(
P (g21)

)→ 0,

and

0 → im
(
P(g21)

) i2−→ P (a2)
P (g12)−−−−→ im

(
P (g12)

)→ 0,

where i1 and i2 are the inclusions. Choose R-maps

r1 :P (a1) → im
(
P (g12)

)
,

r2 :P (a2) → im
(
P (g21)

)
,

satisfying r1 ◦ i1 = id and r2 ◦ i2 = id. Next we define an RA-isomorphism

β :P
∼=−→ K1

(
im
(
P (g21)

))⊕ K2
(
im
(
P(g12)

))
.

Its evaluation at a1 is given by the R-isomorphism

P(g21) ⊕ r1 :P (a1)
∼=−→ im

(
P (g21)

)⊕ im
(
P (g12)

)
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and its evaluation at a2 by the R-isomorphism

r2 ⊕ P(g12) :P(a2)
∼=−→ im

(
P(g21)

)⊕ im
(
P(g12)

)
.

This finishes the proof of assertion (i) of Theorem 10.5.
(ii) Recall that Ki(Pi) is a direct summand in Eai

(Pi) for i = 1,2 (see (10.8)). Using
Lemma 3.5(ii) one easily checks

Sai
(P ) ∼= Sai

(
Ki(Pi)

)∼= Pi for i = 1,2;
P(a4) ∼= P4.

A direct computation shows

coker
(
P(f34) :P(a4) → P(a3)

)
∼=

2⊕
i=1

coker
(
Ki(pi)(f34)

)⊕ coker
(
Ea3(P3)(f34)

)⊕ coker
(
Ea4(P4)(f34)

)
∼= coker

(
Ea3(P3)(f34)

)
∼= P3.

This finishes the proof of assertion (ii).
(iii) This follows from assertions (i) and (ii) and the isomorphism for i = 1,2 (see (10.6),

(10.7) and (10.8))

R mor(?, ai) ∼= R mor(?, a3) ⊕ K1(R).

This finishes the proof of Theorem 10.5. �
Remark 10.10. Notice that the decomposition of Theorem 10.5(i) is not natural in P . However,
the cofiltration by epimorphisms

P → P → P

and the identifications

P ∼= K1
(
Sa1(P )

)⊕ K2
(
Sa2(P )

);
ker(P → P/P ) ∼= Ea3

(
coker

(
P(f34) :P(a4) → P(a3)

));
ker(P → P ) ∼= Ea4

(
P(a4)

)
are natural in P .
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Let K
f

0 (RA) be the Grothendieck group of finitely generated free RA-modules. Let

ι :U(Γ ) → K
f

0 (RA)

be the homomorphism which sends a basis element x ∈ iso(A) to the class of R mor(?, x).

Theorem 10.11 (K0(RA)).

(i) The maps

ξ :K0(R)4 ∼=−→ K0(RA),

η :K0(RA)
∼=−→ K0(R)4,

defined by

ξ
([P1], [P2], [P3], [P4]

)= [K1(P1)
]+ [K2(P2)

]+ [Ea3(P3)
]+ [Ea4(P4)

]
,

η
([P ])= ([Sa1P ], [Sa2P ], [coker

(
P(f34) :P(a4) → P(a3)

)]
, [Sa4P ]),

are isomorphisms, inverse to another.
(ii) The map

ι :U(A)
∼=−→ K

f

0 (RA)

is bijective. If R is a principal domain, then the forgetful map

Ff :Kf

0 (RA)
∼=−→ K0(RA)

is bijective.

Proof. (i) This follows from Theorem 10.5(i) and (ii).
(ii) The map ι is obviously surjective. The composite

U(Γ )
ι−→ K

f

0 (RA)
Ff−−→ K0(RA)

η−→ K0(R)4 rkR−−→ Z4

can be identified with the injection

Z4 ∼=−→ Z4, (m1,m2,m3,m4) 	→ (m1,m2,m1 + m2 + m3,m4)

by Theorem 10.5(iii). The forgetful map Ff :Kf

0 (RA) → K0(RA) is surjective by Theo-
rem 10.5(iii) provided that R is an integral domain and hence Z → K0(R), n 	→ [Rn] is an
isomorphism. This finishes the proof of Theorem 10.11. �
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10.3. K0 versus G0

Let R be a commutative Noetherian ring and let Γ be a finite category (see Definition 6.6).
Denote by G0(QΓ ) the Grothendieck group of finitely generated QΓ -modules. Since Γ is finite,
an RΓ -module is finitely generated if and only if for every object x the Q-module M(x) is
finitely generated as an R-module. In particular the category of RΓ -modules is Noetherian, i.e.,
a submodule of a finitely generated RΓ -module is finitely generated (see Lück [15, Lemma 16.10
on page 327]).

Remark 10.12. Notice that the constant R-module R defines an element [R] in G0(RΓ ) which
may be viewed as a kind of analogue of the finiteness obstruction. Only if Γ is of type (FPR),
then we get also an element o(Γ ;R) := [R] in K0(RΓ ) which is mapped under the forgetful
homomorphism

FRΓ :K0(RΓ ) → G0(RΓ )

to [R] ∈ G0(RΓ ).

Notice that FRΓ is bijective if Γ is a finite EI-category and the order aut(x) is invertible in R

for every object x in Γ (see Lück [15, Proposition 16.28 on page 332]). This is not true in general
as the following example shows.

Example 10.13. We conclude from (10.4) that

[
R mor(?, a1)

]= [R mor(?, a2)
] ∈ G0(RA). (10.14)

This together with Theorem 10.11(ii) implies that

F :K0(RA) → G0(RA)

is not injective.

Define a map

Res :G0(RΓ ) →
⊕

x∈iso(Γ )

G0
(
R[x]), [P ] 	→ {[

P(x)
] ∣∣ x ∈ iso(Γ )

}
. (10.15)

Provided that the order aut(x) is invertible in R for every object x in Γ , we also obtain a map

Res :K0(RΓ ) →
⊕

x∈iso(Γ )

K0
(
R[x]), [P ] 	→ {[

P(x)
] ∣∣ x ∈ iso(Γ )

}
, (10.16)

and we get a commutative diagram
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K0(RΓ )
FRΓ

Res

G0(RΓ )

Res⊕
x∈iso(Γ ) K0(R[x])

⊕
x∈iso(Γ ) FR[x]

∼=
⊕

x∈iso(Γ ) G0(R[x])

whose lower horizontal arrow is an isomorphism.
Now we consider the special case Γ = A and R = Q. For a Q-module P and k ∈ {1,2,4}

denote by Ik(P ) the QA-module for which Ik(Q)(ak) = Q, Ik(Q)(aj ) = {0} for j �= k and all
morphisms except idak

induce the trivial homomorphism. One easily checks that this is a well-
defined Q-module. (Notice that this definition does not make sense for the object a3.)

Theorem 10.17 (G0(QA)). The homomorphisms

ω : Z4 → G0(RA),

(n1, n2, n3.n4) 	→ n1 · [I1(Q)
]+ n2 · [I2(Q)

]+ n3 · [R mor(?, a3)
]+ n4 · [I4(Q)

]
and the composite

G0(QA)
Res−−→

4⊕
i=1

G0(Q)

⊕4
i=1 rkQ−−−−−→ Z4

are isomorphisms.

Proof. The composite

Z4 ω−→ G0(RA)
Res−−→

4⊕
i=1

G0(Q)

⊕4
i=1 rkQ−−−−−→ Z4

sends (m1,m2,m3,m4) to (m1 +m3,m2 +m3,m3,m4) and is hence an isomorphism. Therefore
it suffices to show that ω is surjective.

Consider a finitely generated QA-module M . There is the epimorphism of QA-modules M →
I4(M(a4)) whose evaluation at a4 is the identity. Let N be its kernel. Then we get [M] = [N ] +
[I4(M(a4))] in G0(QA) and N(a4) = {0}. Hence it suffices to prove that [N ] lies in the image
of ω.

Consider the QA-homomorphism f :E3(N(a3)) → N uniquely determined by the property
that its evaluation at a3 is the isomorphism N(a3) ⊗Q Q mor(a3, a3)

∼=−→ N(a3) sending x ⊗ ida3

to x. Let K be its kernel and L be its cokernel. We get in [N ] = [E3(N(a3))] + [L] − [K] in
G0(QA) and K(a3) = K(a4) = L(a3) = L(a4) = {0}. Hence it suffices to show that K lies in
the image of ω if K is a finitely generated QA-module with K(a3) = K(a4) = 0.

Notice that the all morphisms in A possibly except g12 and g21 and the identity morphisms for
a1 and a2 induce the trivial homomorphism on K since they factor through the object a3 or a4
and K(a3) = K(a4) = 0. Consider the QA-homomorphism

g : I1
(
ker
(
N(g21)

))→ K
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given by the inclusion ker(N(g21)) → N(a1). Let P be its cokernel. By construction the map
P(g21) :P(a1) → P(a2) is injective. Since P(a3) = 0, we get

P(g21) ◦ P(g12) = P(g12 ◦ g21) = P(f11) = P(f31 ◦ f13) = P(f13) ◦ P(f31) = 0.

Since P(g21) is injective, P(g12) = 0. Hence the identity on P(a2) induces an injection
Ia2(P (a2)) → P . Let Q be its cokernel. Then Q(a2) = Q(a3) = Q(a4). This implies Q =
Ia1(Q(a1)). Hence we get in G0(QA)

[K] = [Ia1

(
ker
(
N(g21)

))]+ [Ia2

(
P(a2)

)]+ [Ia1

(
Q(a1)

)]
.

This finishes the proof of Theorem 10.17. �
Example 10.18. Put R = Q and Γ = A. Then the following diagram commutes

U(A) = Z4 ι

∼=

A

K0(QA)
FQA

Res

G0(QA)

Res∼=⊕4
i=1 K0(Q)

⊕4
i=1 rkQ

∼=

⊕
x∈iso(A) FQ

∼=
⊕4

i=1 G0(Q)

⊕4
i=1 rkQ

∼=

Z4
id

∼= Z4

where A is given by the matrix ⎛⎜⎝
2 2 1 1
2 2 1 2
1 1 1 1
0 0 0 1

⎞⎟⎠ .

Notice that (1,1,1,1) is not in the image of A : Z4 → Z4. Obviously [Q] ∈ G0(QA) is sent under
the composite

4⊕
i=1

rkQ ◦Res :G0(QA) → Z4

to (1,1,1,1). Hence we see again that A is not of type (FPR), since otherwise [R] ∈ G0(QA)

lies in the image of FQA and hence (1,1,1,1) lies in the image of A : Z4 → Z4.

10.4. Homology of A

We obtain from the short exact sequence (10.4) the following periodic projective resolution P∗
of the RA-module M
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· · · v3◦v1−−−→ R mor(?, a1)
v2−→ R mor(?, a2)

v3◦v1−−−→ R mor(?, a1)
v2−→ R mor(?, a2)

v1−→ M.

Recall that v2 sends ida1 to g12 and v3 ◦v1 sends ida2 to f21 −g21. The R-chain complex P∗ ⊗RA

R looks like

· · · 0−→ R
id−→ R

0−→ R
id−→ R.

Hence we get for n � 0

HR
n (A;M) := Hn(P∗ ⊗RA M) = {0}. (10.19)

We conclude from R ⊗RA R ∼= R, from (10.19), and the short exact sequence (10.3) that

Hn(BA;R) = Hn(A;R) = HR
n (A;R) =

{
R if n = 0,

{0} if n > 0,

as we may expect from the contractibility of BA.
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