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Abstract

The primary goal of this paper is to complete the theory of metric Diophantine approximation initially
developed in Beresnevich et al. (2007) [10] for C3 non-degenerate planar curves. With this goal in mind,
here for the first time we obtain fully explicit bounds for the number of rational points near planar curves.
Further, introducing a perturbational approach we bring the smoothness condition imposed on the curves
down to C1 (lowest possible). This way we broaden the notion of non-degeneracy in a natural direction and
introduce a new topologically complete class of planar curves to the theory of Diophantine approximation.
In summary, our findings improve and complete the main theorems of Beresnevich et al. (2007) [10] and
extend the celebrated theorem of Kleinbock and Margulis (1998) [20] in dimension 2 beyond the notion of
non-degeneracy.
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1. Introduction

Problems about rational points lying near curves and surfaces are widespread in number the-
ory and include, for instance, questions regarding small values of homogeneous polynomials on
the integer lattice. Within this paper we study the distribution of rational points near curves C em-
bedded in R2. With this in mind we now introduce some basic notation. First of all, without loss
of generality, let us agree that the curves we consider are given as a graph Cf = {(x, f (x)): x ∈ I }
of some function f defined on an interval I . Given δ > 0, Q > 1 and a subinterval J ⊂ I , con-
sider the following counting function

Nf (Q, δ, J ) := #

{
(p1/q,p2/q) ∈ Q2:

p1/q ∈ J, 0 < q � Q,

|f (p1/q) − p2/q| � δQ−1

}
,

where #A stands for the cardinality of a set A and q,p1,p2 denote coprime integers. Essentially,
this function counts rational points (p1/q,p2/q) with denominator q � Q lying at a distance
comparable to δ/Q from the arc {(x, f (x)): x ∈ J } of Cf .

To begin with, we give a brief account of known results. Let I ⊂ R be a compact interval,
c2 � c1 > 0 and let F (I ; c1, c2) be the set of C2 functions f : I → R such that

c1 �
∣∣f ′′(x)

∣∣ � c2 for all x ∈ I . (1)

In 1994 Huxley [18, Th. 1] proved that

Nf (Q,δ, I ) �ε C10/3δ1−εQ2 + C1/3Q, where C = max
{
c2, c

−1
1

}
(2)

and the constant implicit in �ε depends on ε but does not depend on δ, Q, C or f . For δ >

Q−2/3 Huxley’s result was improved by Vaughan and Velani [27, Th. 1] on showing that for any
f ∈ F (I ; c1, c2), any Q > 1 and 0 < δ < 1

2

Nf (Q,δ, I ) � δQ2 + δ− 1
2 Q. (3)

Additionally assuming that f ′′ ∈ Lipθ (I ) with 0 < θ < 1 they proved [27, Th. 3] that for any
ε > 0

Nf (Q,δ, I ) � δQ2 + δ− 1
2 Q

1
2 +ε + δ

θ−1
2 Q

3−θ
2 . (4)

Estimates (3) and (4) were also extended to an inhomogeneous case in [11].
When δ = o(Q−1) the quantity Nf (Q,δ, I ) can vary from 0 to Q depending on the choice of

f ∈ F (I ; c1, c2) irrespectively of the actual value of δ – see [5, §2.2] for examples. In the case
δ � Q−1 lower bounds for Nf (Q,δ, I ) were obtained in [10, Th. 6] and in the inhomogeneous
form in [11, Th. 5]. More precisely, it was shown that for any f ∈ F (I ; c1, c2) additionally
satisfying the condition f ∈ C3(I ) there exist constants k1, k2, c,Q0 > 0 such that for any Q >

Q0 and any δ satisfying k1Q
−1 � δ � k2 one has

Nf (Q,δ, I ) � cδQ2. (5)

However, the above undoubtedly remarkable results fall short of providing a complete theory
for the whole class F (I ; c1, c2). Indeed, within (4) and (5) the additional differentiability and
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Lipschitz assumptions are imposed while (2) is not optimal. In this paper we resolve this issue
in full in relation to lower bounds and furthermore expand the results to a genuinely larger,
topologically closed class of functions f introduced in the next paragraph. Furthermore, our
results are fully explicit and uniform in f .

Throughout F (I ; c1, c2) stands for the closure of F (I ; c1, c2) in the C0 (uniform conver-
gence) topology, i.e. the topology induced by the norm ‖f ‖C0 := supx∈I |f (x)|. In order to state
the main counting result of this paper we now gather the definitions of various explicit constants
appearing in the course of establishing this result and depending on c1 and c2 only. These are

Ê := 3625c2

c1 min{1,
√

c1} , c0 := 2−13Ê−6c−1
2 , (6)

C1 := c2

2c1c
2
0

= 225Ê12c3
2

c1
, C2 :=

(
c2C1

2c0

)1/3

. (7)

Theorem 1. Let I be a compact interval, c2 � c1 > 0 and the constants Ê, c0, C1 and C2 be
given by (6) and (7). Let a subinterval J ⊂ I of length |J | � 1

2 , Q > 1 and δ � 1 satisfy the
conditions

δQ2|J | � 8C1 and Qδ � C2. (8)

Assume also that either

Q � 128

c0c
2
1

|J |−3 or
c2

0

c2
δ−2 � Q � 16

c0c
2
1

|J |−2. (9)

Then for any f ∈ F (I ; c1, c2)

Nf (Q, δ, J ) � 1

4C1
δQ2|J |.

Theorem 1 is a consequence of a more general covering result (Theorem 2 below) which will
require the following notation. Let

Rc
f (Q, δ, J ) :=

{
(q,p1,p2) ∈ N × Z2:

p1/q ∈ J, cQ < q � Q,

|f (p1/q) − p2/q| � δ/Q,

gcd(q,p1,p2) = 1

}
,

where Q > 1, δ > 0, c � 0 and J ⊂ I ; and let

�c
f (Q, δ, J,ρ) :=

⋃
(q,p1,p2)∈Rc

f (Q,δ,J )

{
x: |x − p1/q| � ρ

}
.

Also let |A| denote the Lebesgue measure of a measurable set A ⊂ Rn.
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Theorem 2. Let I be a compact interval, c2 � c1 > 0 and the constants Ê, c0, C1 and C2 be
given by (6) and (7). Let a subinterval J ⊂ I of length |J | � 1

2 , Q > 1 and δ � 1 satisfy (8)
and (9). Then for any f ∈ F (I ; c1, c2)

∣∣�c0
f (Q, δ, J,ρ) ∩ J

∣∣ � 1

2
|J |, where ρ := C1

(
δQ2

)−1
. (10)

The proof of Theorem 1 modulo Theorem 2 is easy and left to the reader, but see [10, §4.1]
for a hint.

Since the constant in (2) implied by the Vinogradov symbol is independent of f , this estimate
can also be extended to the class F (I ; c1, c2). We state this formally as

Theorem 3. Let I be a compact interval and c2 � c1 > 0. Then (2) remains true for any f ∈
F (I ; c1, c2), where the implicit constant does not depend on δ, Q, C or f .

We believe that (4) can also be extended to f ∈ F (I ; c1, c2), however this requires techniques
of a very different nature and we plan to return to this issue in a subsequent publication.

For the rest of this section we discuss various consequences of the above results to metric Dio-
phantine approximation. In what follows unless otherwise mentioned we follow the terminology
of Bernik and Dodson [15] and Kleinbock and Margulis [20]. The foundations of a general met-
ric theory of Diophantine approximation for planar curves were laid by Schmidt [24] in 1964
who proved that every non-degenerate planar curve is extremal (in the sense of Sprindžuk [26]).
Recall that a curve Cf defined as a graph of function f : I → R is non-degenerate if for almost
every point x ∈ I we have that f ′′(x) �= 0 and f ∈ C2 on some neighbourhood of x (for the defi-
nition of non-degeneracy in higher dimensions see [4] or [20]). In this case we will also say that
f is non-degenerate. In particular, by definition, any f ∈ F (I ; c1, c2) is non-degenerate for any
choice of c2 � c1 > 0. In the case of approximation by linear forms Baker [3] refined Schmidt’s
theorem with a Hausdorff dimension result and recently Badziahin [1] established the inhomo-
geneous version of Baker’s theorem. Furthermore, non-degenerate curves have been shown to
be of Groshev type [6,14] (see also [4,8,16] for higher dimensional results and the review [19]).
Unlike the dual case, the progress with simultaneous approximation was rather slow. For quite
a while nothing was known apart from Bernik’s Khintchine type theorem for convergence for
parabola [13]. However, in the last 5 years or so a general theory of simultaneous Diophantine
approximation was developed in [10,27], which was subsequently generalised to multiplicative
Diophantine approximation [2,12] and to the inhomogeneous case [11]. In short, the progress was
based on the development of the theory of ubiquitous systems [9] and on the study of the distribu-
tion of rational points near planar curves. In particular, the various results on metric Diophantine
approximation on planar curves inherited the extra smoothness and/or Lipschitz conditions im-
posed within (4) and (5). Theorem 2 enables us to remove these indeed unnecessary constrains
within the divergence results and furthermore broaden them to a genuinely larger class, which is
now introduced.

The curve Cf = {(x, f (x)): x ∈ I } (resp. the function f ) will be called weakly non-degenerate
at x0 ∈ I if there exist constants c2 � c1 > 0 and a compact subinterval J ⊂ I centred at x0 ∈ J

such that f |J ∈ F (J ; c1, c2). We will say that Cf (resp. the function f ) is weakly non-degenerate
if Cf is weakly non-degenerate at almost every point x ∈ I .

Remark 1. Recall that the non-degeneracy of Cf (resp. f ) at x0 ∈ I requires f |J ∈ F (J ; c1, c2)

for some compact subinterval J ⊂ I centred at x0. Therefore, every non-degenerate curve Cf is
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weakly non-degenerate. However the converse is not always true as follows from the example
of Section 2, which shows that a weakly non-degenerate curve may be degenerate everywhere.
More precisely, the weakly non-degenerate function f constructed in the example is such that
the restriction f |J of f on any compact interval J ⊂ I in NOT C2.

Theorem 4 below gathers the various main consequences of Theorems 2 and 3 for the simul-
taneous Diophantine approximation on weakly non-degenerate planar curves. Before stating the
result we introduce some further notation. Given an arithmetic function ψ : N → (0,+∞), let

λψ := lim inf
h→∞

− logψ(h)

logh

denote the lower order of 1/ψ at infinity. Also define the following two sets of ψ -approximable
points:

Sf (ψ) := {
x ∈ I : max

{‖qx‖,∥∥qf (x)
∥∥}

< ψ(q) for i.m. q ∈ N
}
,

S ∗
f (ψ) := {

x ∈ I : ‖qx‖ · ∥∥qf (x)
∥∥ < ψ(q) for i.m. q ∈ N

}
,

where ‖y‖ = min{|y − p|: p ∈ Z} and ‘i.m.’ stands for ‘infinitely many’.

Theorem 4. Let ψ : N → (0,+∞) be monotonic and f : I → R be a weakly non-degenerate
function. Then

(A) Sf (ψ) has full Lebesgue measure in I whenever
∑∞

h=1 ψ(h)2 = ∞;
(B) Hs(Sf (ψ)) = ∞ whenever

∑∞
h=1 h1−sψ(h)s+1 = ∞ and s ∈ ( 1

2 ,1);

(C) dim Sf (ψ) = s0 := 2−λψ

1+λψ
whenever λψ ∈ [1/2,1) and f is weakly non-degenerate every-

where apart from a set of Hausdorff dimension � s0;
(D) dim S ∗

f (ψ) = s∗
0 := 2

1+λψ
whenever λψ > 1 and f is weakly non-degenerate everywhere

apart from a set of Hausdorff dimension � s∗
0 . In particular, Cf is strongly extremal.

The proofs of parts (A), (B) and (C) of Theorem 4 are essentially the same as those of The-
orems 1, 3 and 4 in [10] with the only differences being that we use our Theorem 2 instead of
[10, Theorem 7] and we use Theorem 3 instead of Huxley’s original result (2). Note also that
the proofs make use of continuous differentiability of f – a property that will be shown in the
next section (Theorem 6). The proof of part (D) of Theorem 4 follows the line of argument of
Theorems 6 and 6∗ from [12]. For the modifications are obvious we leave further details out.
Using our Theorem 2 in combination with the ideas of [11] it is also straightforward to state and
prove an inhomogeneous version of Theorem 4.

Weakly non-degenerate curves are characterised by the property that locally they can be per-
turbed into an arbitrarily close ‘properly’ non-degenerate curve with ‘rigid’ bounds on their
curvature. By these we mean that the constants c1 and c2 appearing in (1) are not varying as
we perturb the curve. Considering how Diophantine properties of manifolds are affected by
small perturbations is not absolutely new. For example, Rynne [23] obtained a negative result
by showing that certain Diophantine properties of non-degenerate manifolds are NOT preserved
under small perturbations even in the Ck topology. It is likely that establishing positive results
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will require imposing some kind of rigidity on the geometry of perturbed manifolds, likewise
conditions (1) hold uniformly within F (I ; c1, c2). This gives rise to the following

General problem. Find a ‘reasonable’ generalisation of weak non-degeneracy for manifolds in
higher dimensions and prove that such manifolds are (strongly) extremal and/or satisfy the ana-
logues of the Khintchine–Groshev theorem (see [4,8,10,15,16,20] for appropriate terminology
and related results).

2. The nature of functions in F(I;c1, c2)

In this section we make an attempt to understand the main object we study in this paper –
functions in F (I ; c1, c2). In particular, it is crucial to understand whether this class is any bigger
than F (I ; c1, c2).

Since the functions f ∈ F (I ; c1, c2) are obtained as limits of continuous and even twice
differentiable functions in the uniform convergence topology, they are continuous. As is well
known, differentiability is not preserved by the limit functions in the C0 topology; for example,
any continuous function on a compact interval can be uniformly approximated by a polyno-
mial (Weierstrass’ theorem). However, we shall see that functions in F (I ; c1, c2) are indeed
continuously differentiable. Furthermore, they happen to have the second derivatives almost ev-
erywhere. On the other hand, we shall see that the second derivative may be non-existent on
an everywhere dense set and so may be discontinuous everywhere. The latter fact in particular,
shows that the class F (I ; c1, c2) is genuinely bigger than F (I ; c1, c2) and thus the notion of
weak non-degeneracy is not vacuous (see also Remark 1 in Section 1). Throughout this section,
I = [x1, x2] is a compact interval and c2 � c1 > 0.

We begin by investigating the convexity properties of functions f in F (I ; c1, c2). The func-
tion f : I → R will be called (c1, c2)-convex if for every x ∈ I and every δ > 0 such that x±δ ∈ I

c1 � f (x + δ) − 2f (x) + f (x − δ)

δ2
� c2. (11)

In what follows C(I ; c1, c2) will be the set of (c1, c2)-convex functions.

2.1. Historical note

In the case c2 = +∞ the r.h.s. of (11) imposes no restriction on f . Consequently, f is called
c1-convex or simply strongly convex. The strongly convex functions (also known as uniformly
convex functions) were introduced by Levitin and Poljak [21], and have been widely used over
the past 50 years mostly in optimisation and mathematical finance. Geometrically, the function
f is c1-convex if for every x in the interior of I the radius R of the supporting circle of the graph
Cf is bounded above by c−1

1 (see also [28,29] for other properties of strongly convex functions).
In the case c2 < +∞ the r.h.s. inequality of (11) implies that R is also bounded below by c−1

2 . In
the case f ∈ C2(I ) we have that f ∈ C(I ; c1, c2) if and only if c1 � f ′′(x) � c2 for all x ∈ I . In
fact, the following theorem shows that C(I ; c1, c2) coincides with the topological closure of the
set of functions satisfying the latter condition.

Theorem 5. F (I ; c1, c2) = C±(I ; c1, c2) := {±f : f ∈ C(I ; c1, c2)}.
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We will use well-known properties of convolution. Given φ,ψ : R → R, the convolution of φ

and ψ is the function (φ 
 ψ) : R → R defined by

(φ 
 ψ)(x) :=
+∞∫

−∞
φ(x − t)ψ(t) dt.

There are various assumption ensuring its existence. We will use the following well-known

Lemma 1. If φ ∈ C∞(R),
∫ +∞
−∞ |φ(x)|dx < ∞ and ψ : R → R is bounded and integrable, then

φ 
 ψ ∈ C∞(R).

Proof of Theorem 5. As noted above F (I ; c1, c2) ⊂ C±(I ; c1, c2). In fact, the latter is an easy
consequence of Taylor’s formula. Clearly, taking the limit f → f0, where f ∈ F (I ; c1, c2) and
f0 ∈ F (I ; c1, c2), preserves (11), thus showing the inclusion F (I ; c1, c2) ⊂ C±(I ; c1, c2). The
main substance of the proof is therefore to establish that C±(I ; c1, c2) ⊂ F (I ; c1, c2). Let f ∈
C(I ; c1, c2). Define f̂ : R → R by setting

f̂ (x) :=
{

f (x) if x ∈ I = [x1, x2],
f (x1) if x < x1,

f (x2) if x > x2.

Clearly, f̂ is uniformly bounded and continuous on R and identically equal to f on I . Further,
since I is compact and f̂ is constant outside I , it is easily seen that f̂ is uniformly continuous
on R. Define B : R → R by setting

B(x) :=
{

exp(− 1
(x−1)2 − 1

(x+1)2 ) if |x| < 1,

0 otherwise.
(12)

It is easily verified that B ∈ C∞(R) and is supported on [−1,1]. Then

w :=
+∞∫

−∞
B(x)dx =

1∫
−1

B(x)dx. (13)

Given an ε > 0, define fε : R → R by

fε(x) := 1

wε

+∞∫
−∞

B

(
x − y

ε

)
f̂ (y) dy. (14)

The function fε(x) is 1/(wε) times the convolution of f̂ (x) and B(x
ε
). By Lemma 1, fε(x) ∈

C∞(R). Making the change of variables z = x−y
ε

transforms (14) into

fε(x) = 1

w

+∞∫
B(z)f̂ (x − εz) dz = 1

w

1∫
B(z)f̂ (x − εz) dz. (15)
−∞ −1
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By the uniform continuity of f̂ , for any η > 0 there is an ε > 0 such that

sup
|x′−x|�ε

∣∣f̂ (
x′) − f̂ (x)

∣∣ < η. (16)

Then

sup
x∈R

∣∣fε(x) − f̂ (x)
∣∣ (13), (15)= sup

x∈R

∣∣∣∣∣ 1

w

1∫
−1

B(z)
(
f̂ (x − εz) − f̂ (x)

)
dz

∣∣∣∣∣

� 1

w

1∫
−1

B(z)dz sup
|x′−x|�ε

∣∣f̂ (
x′) − f̂ (x)

∣∣
(13), (16)

< η.

This means that fε converges to f̂ uniformly on R as ε → 0.
Since fε ∈ C∞(R), using Taylor’s formula we verify that for all x ∈ R

lim
δ→0

fε(x + δ) − 2fε(x) + fε(x − δ)

δ2
= f ′′

ε (x). (17)

By (15),

fε(x + δ) − 2fε(x) + fε(x + δ)

δ2

= 1

w

1∫
−1

B(z)
f̂ (x − δz + δ) − 2f̂ (x − δz) + f̂ (x − δz − δ)

δ2
dz. (18)

When x ∈ [x1 + 2δ, x2 − 2δ], where [x1, x2] = I , we have that x − δz ± δ ∈ I for any z ∈
[−1,1]. Then, since f̂ ∈ C(I ; c1, c2), the fraction within the r.h.s. of (18) is bounded between
c1 and c2. Consequently, by (13), the l.h.s. of (18) is bounded between c1 and c2 for all x ∈
[x1 + 2δ, x2 − 2δ]. By (17),

c1 � f ′′
ε (x) � c2 (19)

for all x ∈ [x1 + 2δ, x2 − 2δ]. Since δ can be made arbitrarily small and f ′′
ε (x) is continuous

on I , (19) must hold on I . This means that fε ∈ F (I ; c1, c2) and consequently f belongs to
F (I ; c1, c2) as a uniform limit of fε . In the case −f ∈ C(I ; c1, c2) taking −fε does the job and
completes the proof. �

We now utilise the characterisation of functions in F (I ; c1, c2) given by Theorem 5 to show
that these functions are continuously differentiable.

Theorem 6. C(I ; c1, c2) ⊂ C1(I ).
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Proof. Let f ∈ C(I ; c1, c2). As a convex function f has left and right derivatives f ′+(x) and
f ′−(x) at each point x of the interior of I (to be denoted as int I ) – see e.g. [22, Theorem 1.3.3].
Furthermore, for all x, y ∈ int I such that x < y

f ′−(x) � f ′+(x) � f ′−(y) � f ′+(y). (20)

By definition, f ′−(x) = f ′+(x) if and only if f is differentiable at x. Assume for the moment that
f is not differentiable at some point x0 ∈ int I , that is, by (20),

f ′−(x0) < f ′+(x0). (21)

Define the auxiliary function t : I → R by setting

t (x) :=
{

f ′−(x) if x < x0,

f ′+(x) if x � x0.
(22)

This function is known as a subdifferential for f (see [22, §5] for its definition and basic proper-
ties). By Theorem 1.6.1 of [22], for any a, b ∈ I we have

f (b) − f (a) =
b∫

a

t (x) dx. (23)

The latter equality implies that

f (x0 + δ) + f (x0 − δ) − 2f (x0)

δ2
=

∫ x0+δ

x0
f ′+(x) dx − ∫ x0

x0−δ
f ′−(x) dx

δ2

(20)

�
f ′+(x0)δ − f ′−(x0)δ

δ2

= f ′+(x0) − f ′−(x0)

δ
.

By (21), the latter fraction tends to infinity as δ → 0. This contradicts to the fact that f ∈
C(I ; c1, c2). The contradiction shows that f is differentiable.

To complete the proof we have to verify that f ′ is continuous. Property (20) implies that the
function f ′ is monotonically increasing on I . So, by the Monotone Convergence Theorem, for
any x0 ∈ int I there exist left and right limits of f ′ and furthermore we have that

lim
x→x−

0

f ′(x) � lim
x→x+

0

f ′(x). (24)

By definition,

f ′−(x0) = lim
f (x0) − f (x0 − δ)

. (25)

δ→0+ δ
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By Theorem 1.6.1 of [22], for δ > 0 we have

f (x0) − f (x0 − δ) =
x0∫

x0−δ

f ′(x) dx (26)

and, by the monotonicity of f ′,

x0∫
x0−δ

f ′(x) dx � δ lim
x→x−

0

f ′(x). (27)

Combining (25), (26) and (27) shows that

f ′−(x0) � lim
x→x−

0

f ′(x). (28)

Similarly, we establish that

lim
x→x+

0

f ′(x) � f ′+(x0). (29)

By the differentiability of f , f ′−(x0) = f ′+(x0). Thus (28), (29) together with (24) imply that
limx→x−

0
f ′(x) = limx→x+

0
f ′(x) and complete the proof. �

Since functions in F (I ; c1, c2) are continuously differentiable, we are able to simplify prop-
erty (11) and thus give an alternative description of the class F (I ; c1, c2). With this goal in mind
we now introduce further notation. Let C 1(I ; c1, c2) be the set of C1(I ) functions such that

c1 � f ′(x + δ) − f ′(x)

δ
� c2 (30)

for any x ∈ I and δ > 0 with x + δ ∈ I .

Theorem 7. F (I ; c1, c2) = C 1±(I ; c1, c2) := {±f : f ∈ C 1(I ; c1, c2)}.

Proof. Using the Mean Value Theorem, it is easily seen that F (I ; c1, c2) ⊂ C 1±(I ; c1, c2). By
Theorem 6, we are able to take the limit (in the uniform convergence topology) within (30) as
f → f0, where f ∈ F (I ; c1, c2) and f0 ∈ F (I ; c1, c2). Thus we trivially have that F (I ; c1, c2) ⊂
C 1±(I ; c1, c2). To show the opposite inclusion we use functions fε similarly to the proof of The-
orem 6. The details are easy and are left as an exercise. �
Remark 2. The obvious consequence of Theorem 7, or indeed (30), is that the functions in

F (I ; c1, c2) have bi-Lipschitz derivatives. However, the following example shows that their sec-
ond derivative may be non-existent on an everywhere dense set.
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Example 1. Let A ⊂ (x1, x2) be a countable set (e.g., A = (x1, x2) ∩ Q), where [x1, x2] = I . We
will construct a function f which fails to have the second derivative exactly on A. Since A is
countable, we can fix a bijection φ : A → N. Let (cn) be a sequence of positive numbers such
that

∑∞
n=1 cn < ∞, e.g., cn = n−2. Let T := ∑∞

n=1 cn and

t (x) := 1 +
∑

a∈A,a<x

cφ(a). (31)

The function t (x) is well defined because the sum
∑

cn is absolutely convergent. It is easy to
verify that t (x) is strictly increasing and positive on I . Moreover, t (x) is continuous at any point
of I \ A and discontinuous at any point of A – see e.g. [17, p. 18]. Since T = ∑

cn, t (x) is
bounded above by T + 1 for any x ∈ I . Now define v : I → R by setting

v(x) :=
x∫

x1

t (z) dz for x ∈ I.

The function v is well defined as t is continuous almost everywhere. Also v is strictly increasing
because t (x) � 1 for all x ∈ I . Also, as t is bounded on I , v is continuous at every point of I ,
and as t is continuous at every point A \ I , v is differentiable at every point of this set. On the
contrary, if a ∈ A, by the definition of t , one readily computes that v(a + δ) − v(a − δ) � cφ(a)

for any δ > 0 and therefore v is not differentiable at a. Finally, let

f (x) :=
x∫

x1

v(z) dz for x ∈ I.

As v is continuous, f is continuously differentiable and f ′ = v. However, by what we have seen
above, f fails to have the second derivative on A. Our final goal is to verify that f satisfies (30).
Given the definition of f and v, (30) transforms into

c1 � 1

δ

x+δ∫
x

t (z) � c2

when x ∈ I , δ > 0 and x + δ ∈ I . The latter inequalities are satisfied with c1 = 1 and c2 = T + 1
because 1 � t (x) � 1 + T for all x ∈ I . Thus, f ∈ C 1±(I ; c1, c2) = F (I ; c1, c2).

Remark 3. By Alexandrov’s theorem [22, Theorem 3.11.2], any convex function has the second
derivative almost everywhere. Thus, the functions in F (I ; c1, c2) are twice differentiable almost
everywhere. It is easy to deduce from the fact that C(I ; c1, c2) = F (I ; c1, c2) that if the second
derivative of f ∈ F (I ; c1, c2) exists at some point x0, it necessarily satisfies the inequalities
c1 � |f ′′(x0)| � c2. Although, f ′′ exists at every point except a set A of Lebesgue measure 0,
this exceptional set A can be everywhere dense and so f ′′ may be discontinues everywhere on I .
Note also that the above example can be modified to show that the set of points where the second
derivative does not exist is an uncountable set of Hausdorff dimension 1.
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3. Reduction to C2 functions

The goal of this section is to show that it is sufficient to prove Theorem 2 for F (I ; c1, c2)

only. This follows from the following

Theorem 8. Let F be a set of continuous functions on an interval I and F be the closure of F
in the uniform convergence topology. Let positive numbers c,Q, δ,ρ and a subinterval J ⊂ I be
fixed. Then

inf
f̄ ∈F

∣∣�c

f̄
(Q, δ, J,ρ) ∩ J

∣∣ = inf
f ∈F

∣∣�c
f (Q, δ, J,ρ) ∩ J

∣∣. (32)

Proof. Since F ⊂ F , the l.h.s. of (32) is less than or equal to the r.h.s. of (32). By the definition
of �δ

f (Q, δ, J,ρ), to complete the proof it suffices to verify that for any f̄ ∈ F there exists
f ∈ F such that Rc

f (Q, δ, J ) ⊂ Rc

f̄
(Q, δ, J ).

Let R∗ denote the set of coprime integer triples (q,p1,p2) such that cQ � q � Q, p1/q ∈ J

and |f̄ (p1/q) − p2/q| � 1 + δ/Q. It is easy to see that R∗ is finite and strictly larger than
Rc

f̄
(Q, δ, J ). Therefore

ε∗ := min
{∣∣f̄ (p1/q) − p2/q

∣∣ − δ/Q: (q,p1,p2) ∈ R∗ \ Rc

f̄
(Q, δ, J )

}
is positive and well defined. Let ε = min{1, ε∗}. Take any function f ∈ F such that supx∈I |f (x)−
f̄ (x)| < ε. Since F is the closure of F in the C0(I ) topology, such a function f exists. Using
the definitions of ε and f one readily verifies that Rc

f (Q, δ, J ) ⊂ R∗. Assume for the moment
that there is a (q,p1,p2) ∈ Rc

f (Q, δ, J ) \ Rc

f̄
(Q, δ, J ). Then, by the definition of ε∗, we have

that

∣∣f̄ (p1/q) − p2/q
∣∣ � δ/Q + ε∗. (33)

On the other hand, since (q,p1,p2) ∈ Rc
f (Q, δ, J ), we have that

∣∣f̄ (p1/q) − p2/q
∣∣ �

∣∣f̄ (p1/q) − f (p1/q)
∣∣ + ∣∣f (p1/q) − p2/q

∣∣
< ε + δ/Q � ε∗ + δ/Q.

This contradicts to (33), thus showing the inclusion Rc
f (Q, δ, J ) ⊂ Rc

f̄
(Q, δ, J ) and completing

the proof. �
Similar arguments are applied to Theorem 3. The details are easy and left to the reader.

4. An explicit version of Theorem BKM

Theorem BKM mentioned in the above heading is Theorem 1.4 from [16] due to Bernik,
Kleinbock and Margulis. We will be interested in the case n = 2. The goals of this section are
(i) to generalise it to weakly non-degenerate maps; and (ii) to make it effective and indeed fully
explicit. Our approach to achieving these goals develops the ideas of [5] and [16].
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4.1. Statement of results

We will be interested in maps g = (g1, g2) : I → R2 given by

g1(x) = xf ′(x) − f (x), g2(x) = −f ′(x) (34)

for some function f ∈ F (I ; c1, c2). This definition coincides with the one of [10, §4]. Geomet-
rically, the vector (g1(x), g2(x),1) ∈ R3 is defined to be the cross-product of (1, x, f (x)) and
(0,1, f ′(x)) and thus is orthogonal to the latter two vectors.

Given positive numbers δ, K , T and a subinterval J ⊂ I , let Bg(J, δ,K,T ) denote the set of
x ∈ J for which there exists (q,p1,p2) ⊂ Z3 \ {0} such that

⎧⎪⎨
⎪⎩

∣∣qg1(x) + p1g2(x) + p2
∣∣ � δ,∣∣qg′

1(x) + p1g
′
2(x)

∣∣ � K,

|q| � T .

(35)

Theorem 9. Let c1 and c2 be positive constants, I ⊂ R be a compact interval and

L := max
x∈I

|x|. (36)

Then for any f ∈ F (I ; c1, c2), any interval J ⊆ I and any choice of δ,K,T satisfying

0 < δ � 1, K > 0, T > 1, δKT � 1 (37)

we have that

∣∣Bg(J, δ,K,T )
∣∣ � E(δKT )

1
6 |J |, (38)

where g is given by (34),

E := 648C√
ρ

, (39)

C = max{C0
√

32, 24
√

6C0M}, C0 = 4c2

c1
, M =

√
1 + 4L2, (40)

ρ = min

{
1, c1,

c1|J |θ
32M

max

{
16

δ
,

|J |
K

}
,
c2

1|J |2T
32θ

}
, θ = (δKT )

1
3 . (41)

Remark 4. For T sufficiently large the constant E appearing in (38) is determined by c1, c2
and L only and thus is independent from J, δ,K,T . In order to see this, use the inequality
max(x, y) � (xy)1/2 valid for all positive x, y to get

c1|J |θ
max

{
16

,
|J |} � c1|J |θ (

16|J |)1/2
(41)= c1|J |θ (

16|J |T
3

)1/2

.

32M δ K 32M δK 32M θ
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Then, since θ < 1, it becomes clear that ρ = min{1, c1} and so

E = 648C

min(1,
√

c1)
when T � max

{
64M2|J |−3, 32c−1

1 |J |−2}. (42)

Furthermore, in the case δ � K we have a better estimate for T in terms of |J |. To see this, note
that δ2 � δK = θ3T −1 � θ2T −1 and so δ � θT −1/2. Then

c1|J |θ
32M

max

{
16

δ
,

|J |
K

}
� 16c1|J |θT 1/2

32Mθ
= c1|J |T 1/2

2M

and one readily computes that

E = 648C

min(1,
√

c1)
when T �

max{4M2, 32c−2
1 }

|J |2 and δ � K. (43)

Remark 5. Theorem 9 is the main stepping stone to the proof of Theorem 2. Furthermore, its
value is not limited to this application. For example, Theorem 9 can be used to extended the
main result of [16] (due to Bernik, Kleinbock and Margulis) to the set of weakly non-degenerate
planar curves. Yet another application lies within the results of [7] (due to Beresnevich, Bernik
and Götze) on the distribution of close conjugate algebraic numbers which can now be improved
towards full effectiveness in the case of quadratic and integer cubic algebraic numbers.

Remark 6. Despite the fact that the functions f ∈ F (I ; c1, c2) (and consequently g) are initially
defined on the interval I only, we can always treat them as C2 functions defined on the whole
real line preserving condition (1). Indeed, let T2(z, x) := ∑2

i=0
1
i!f

(i)(z)(x −z) denote the Taylor
polynomial of degree 2 and consider the auxiliary function

f̃ (x) =
{

T2(x1, x) if x < x1,

f (x) if x1 � x � x2,

T2(x2, x) if x2 < x,

where [x1, x2] = I . It is then easily verified that f̃ is C2(R), satisfies (1) for all x ∈ R and
coincides with f on I . Hence the above claim follows.

4.2. (C,α)-good functions

The property of being (C,α)-good introduced in [20] by Kleinbock and Margulis lies at the
heart of the proof of Theorem 9. In this subsection we recall the key definition and various
auxiliary statements from [16] and [20]. We also establish a new lemma that provides sufficient
conditions for a function to be (C,α)-good – Lemma 6 below.

Let C and α be positive numbers and V be a subset of Rd . The function f : V → R is said to
be (C,α)-good on V if for any open ball B ⊂ V and any ε > 0 one has

∣∣∣{x ∈ B:
∣∣f (x)

∣∣ < ε · sup
∣∣f (x)

∣∣}∣∣∣ � Cεα|B|. (44)

x∈B
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Here, as before, |A| denotes the Lebesgue measure of A ⊂ Rd . Within this paper we shall only
use the above definition in the case d = 1. Several elementary properties of (C,α)-good functions
are now recalled.

Lemma 2. (See Lemma 3.1 in [16].)

(a) If f is (C,α)-good on V , then so is λf for any λ ∈ R;
(b) If f1, . . . , fk are (C,α)-good on V , then so is max1�i�k |fi |;
(c) If f is (C,α)-good on V and c1 � |f (x)|

|g(x)| � c2 for all x ∈ V , then g is (C(c2/c1)
α,α)-good

on V ;
(d) If f is (C,α)-good on V , then f is (C′, α′)-good on V ′ for every C′ � C, α′ � α and

V ′ ⊂ V .

Lemma 3. (See Lemma 3.2 in [20].) For any k ∈ N, any polynomial f ∈ R[x] of degree not
greater than k is (2k(k + 1)1/k,1/k)-good on R.

Before presenting the final lemma of this subsection, the following two technical statements
are established.

Lemma 4. Let J be an interval, λ > 0 and θ : J → R be a C1 function such that infx∈J |θ ′(x)| �
λ. Then supx∈J |θ(x)| � 1

2λ|J |.

Proof. Let y1 and y2 be the endpoints of J . Then, by the Mean Value Theorem, for any suf-
ficiently small ε > 0 we have that |θ(y1 + ε) − θ(y2 − ε)| � λ(y2 − y1 − 2ε) = λ(|J | − 2ε).
Therefore, |θ(y1 + ε)| + |θ(y2 − ε)| � λ(y2 − y1 − 2ε) = λ(|J | − 2ε). Hence

2 sup
x∈J

∣∣θ(x)
∣∣ � λ

(|J | − 2ε
)
. (45)

For ε > 0 is arbitrarily, (45) implies supx∈J |θ(x)| � 1
2λ|J |. �

Lemma 5. Let f be a C1 function on an interval B such that

sup
x∈B

∣∣f (x)
∣∣ � 2 inf

x∈B

∣∣f (x)
∣∣. (46)

Then

sup
x∈B

∣∣f (x)
∣∣ � 2

∫
B

∣∣f ′(x)
∣∣dx. (47)

Proof. By the Fundamental Theorem of Calculus, for any y1, y2 ∈ B we have that f (y2) =
f (y1) + ∫ y2

y1
f ′(x) dx. Then, using triangle inequality gives |f (y2)| � |f (y1)| + ∫

B
|f ′(x)|dx.

Further, taking supremum over y2 ∈ B and infimum over y1 ∈ B gives the estimate

sup
x∈B

∣∣f (x)
∣∣ � inf

x∈B

∣∣f (x)
∣∣ +

∫
B

∣∣f ′(x)
∣∣dx

(46)

� 1

2
sup
x∈B

∣∣f (x)
∣∣ +

∫
B

∣∣f ′(x)
∣∣dx

which readily implies (47). �
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Lemma 6. Let κ0, κ1 and κ2 be some positive constants and f be a C1 function on an interval I

such that for any subinterval B ⊂ I

sup
x∈B

∣∣f (x)
∣∣ � κ0|B|2 (48)

and

sup
x∈B

∣∣f ′(x)
∣∣ � κ1 inf

x∈B

∣∣f ′(x)
∣∣ + κ2|B|. (49)

Assume that f ′ has at most r roots in I . Then f is (Cκ, 1
2 )-good on I with

Cκ := max
{
4,4(κ1κ + κ2)κ

−1, (r + 1)

√
2(κ1κ + κ2)κ

−1
0

}
, κ > 0.

Proof. Fix any κ > 0. By definition, in order to prove that f is (Cκ, 1
2 )-good on I we have to

verify that for any interval B ⊂ I the set

Bε :=
{
x ∈ B:

∣∣f (x)
∣∣ < ε · sup

x∈B

∣∣f (x)
∣∣} (50)

satisfies

|Bε| � Cκε
1
2 |B|. (51)

Since Cκ � 4, for any ε � 1
2 the r.h.s. of (51) does not fall below |B| and (51) is a priori true.

Henceforth, we may assume that ε < 1
2 . Consequently, if supx∈B |f (x)| � 2 infx∈B |f (x)| then

the set in the l.h.s. of (51) is empty and (51) is trivially satisfied. Otherwise, by Lemma 5, we
have the inequality

sup
x∈B

∣∣F(x)
∣∣ � 2

∫
B

∣∣F ′(x)
∣∣dx (52)

assumed for the rest of the proof, which will depend upon the magnitude of λ := infx∈B |f ′(x)|.
By (49), supx∈B |f ′(x)| � κ1λ + κ2|B|. Combining the latter inequality with (52) gives

sup
x∈B

∣∣f (x)
∣∣ < 2

(
κ1λ + κ2|B|)|B|. (53)

Case (i). Assume that λ � κ|B|. Then f ′ does not change sign on B and hence f is monotonic.
Therefore, for any τ > 0, the set J = {x ∈ B: |f (x)| < τ } is an interval (possibly empty). Then,
by Lemma 4, τ � 1

2λ|J |, that is |{x ∈ B: |f (x)| < τ }| � 2τ
λ

. Taking τ = ε ·supx∈B |f (x)| ensures
that J = Bε and gives

|Bε| � 2ε · supx∈B |f (x)| (53)
<

4ε(κ1λ + κ2|B|)|B|
.

λ λ
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By the hypothesis that λ � κ|B|, we have that (κ1λ+κ2|B|)
λ

� (κ1κ+κ2)
κ

and further obtain the re-
quired estimate

|Bε| � 4(κ1κ + κ2)

κ
ε|B| (ε< 1

2 )
<

4(κ1κ + κ2)

κ
ε1/2|B| � Cκε1/2|B|.

Case (ii). Assume that λ < κ|B|. Since f ′(x) has at most r roots in B , the interval B can be
split into at most (r + 1) subintervals such that f is monotonic on each of them. Consequently,
for every 0 < ε < 1

2 the set Bε is the union of at most r + 1 intervals. Let B ′ denote the biggest
interval in Bε . Then

|Bε| � (r + 1)
∣∣B ′∣∣. (54)

By (48),

sup
x∈B ′

∣∣f (x)
∣∣ � κ0

∣∣B ′∣∣2
. (55)

On the other hand, by the definition of B ′, we have that

sup
x∈B ′

∣∣f (x)
∣∣ � ε · sup

x∈B

∣∣f (x)
∣∣ (53)

� 2ε
(
κ1λ + κ2|B|)|B| λ<κ|B|

� 2ε(κ1κ + κ2)|B|2. (56)

Comparing (55) and (56) gives a bound on |B ′|, which together with (54) establishes (51) and
thus completes the proof. �
4.3. Properties of certain families of functions

In this subsection we investigate certain families of functions for being (C,α)-good and other
relevant properties. Unless otherwise stated f , g1, g2 and I are the same as at the beginning of
Section 4. Although all the statements are established for f , in view of Remark 6 (on p. 3077)
they are true for f̃ and with I replaced by any interval Ĩ , in particular, for Ĩ = 33I , which is of
greatest interest to us.

Lemma 7. Let f ∈ F (I ; c1, c2) and L be given by (36). Define the constants

M =
√

1 + 4L2, C0 = 4c2c
−1
1 and C1 = 2 max{C0,

√
32C0M }. (57)

Let a, b ∈ R satisfy a2 + b2 � 1 and η : I → R satisfy

η′(x) = (ax + b)f ′′(x), (58)

that is η is an antiderivative of (ax + b)f ′′(x). Then

(a) η′ is (C0,1)-good on I ;

(b) for any interval B ⊂ I sup
∣∣η′(x)

∣∣ � c1|B|
; (59)
x∈B 2M
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(c) η is (C1,
1
2 )-good on I ;

(d) for any interval B ⊂ I sup
x∈B

∣∣η(x)
∣∣ � c1|B|2

32M
. (60)

Proof. Part (a) is readily implied by Lemmas 3 and 2(c). Further, to prove part (b) we distinguish
two cases. If |a| � |b|

2L
then 1 � a2 + b2 � b2( 1

4L2 + 1). Consequently |b| � 2L
M

and therefore

sup
x∈B

|ax + b| � inf
x∈B

|ax + b| � |b| − |a| sup
x∈B

|x| � |b| − |a|L � |b|
2

� L

M
. (61)

By (36), |B| � 2L. Therefore, (61) together with (1) implies (59) in the case |a| � |b|
2L

. Otherwise,

|a| > |b|
2L

and then 1 � a2 + b2 < a2(1 + 4L2) = (aM)2. It follows that |a| > 1
M

. Therefore,

sup
x∈B

|ax + b| = |a| sup
x∈B

∣∣x − (−b/a)
∣∣ � |a| |B|

2
� 1

2M
|B|. (62)

The latter together with (1) implies (59) and completes the proof of part (b).
We now prove part (d). As with the proof of part (b) we distinguish the following two cases:

|a| � |b|
2L

and |a| > |b|
2L

. In the first case, by (61) and the inequality |B| � 2L implied by (36), we

have that |η′(x)| � c1|B|
2M

for all x ∈ B . By Lemma 4, we then obtain (60). In the second case,
split B into three subintervals: Bl , Bm and Br , where Bm is the middle half of B; Bl is the left
quarter of B; and Br is the right quarter of B . Then applying (62) to Bm gives

sup
x∈Bm

|ax + b| � |Bm|
2M

= |B|
4M

. (63)

In the case under consideration a �= 0 and therefore the function ax + b is strictly mono-
tonic. It follows that the supremum in (63) is attained at the endpoints of Bm. Hence, either
infx∈Bl

|ax + b| or infx∈Br |ax + b| is bounded away from 0 by the right-hand side of (63). Then,
by (1) and (58), we have

max
{

inf
x∈Bl

∣∣η′(x)
∣∣, inf

x∈Br

∣∣η′(x)
∣∣} � c1|B|

4M
. (64)

Applying Lemma 4 with J being equal to either Bl or Br , θ = η and λ = r.h.s. of (64) we again
obtain (60).

Finally, in order to prove part (c) we will appeal to Lemma 6 with f = η. In view of
Lemma 2(a), without loss of generality we can assume that a2 + b2 = 1 and so |a| � 1. By (58),
for any y1, y2 ∈ B , we have that η′(y2) = η′(y1)

f ′′(y2)
f ′′(y1)

+a(y2 −y1)f
′′(y2). Then, using the trian-

gle inequality, inequalities (1), |y2 − y1| � |B| and |a| � 1 we get |η′(y2)| � c2
c1

|η′(y1)| + c2|B|.
Taking supremum over y2 ∈ B and infimum over y1 ∈ B gives (49) with κ1 = c2/c1 and κ2 = c2.
Also (60) verifies (48) with κ0 = c1/(32M). It is also easily seen that r = 1. Then, by Lemma 6
with κ = c1 we get the conclusion of part (c). �

If g1 and g2 are given by (34), then η(x) = c + ag1(x) + bg2(x), where a, b, c ∈ R, satisfies
η′(x) = ag′ (x) + bg′ (x) = (ax − b)g′′(x). Therefore, by Lemma 7, we get the following
1 2
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Corollary 1. Let g1 and g2 be given by (34), a, b, c ∈ R and a2 + b2 � 1. Let C0,C1 and M be
the same as in Lemma 7. Then

(a) ag′
1 + bg′

2 is (C0,1)-good on I ;

(b) supx∈B |ag′
1(x) + bg′

2(x)| � c1|B|
2M

for any subinterval B ⊂ I ;
(c) ag1 + bg2 + c is (C1,

1
2 )-good on I ;

(d) supx∈B |ag1(x) + bg2(x) + c| � c1|B|2
32M

for any subinterval B ⊂ I .

Lemma 8. Let a, b ∈ R and η̃(x) := (f (x) + ax + b)f ′′(x) for x ∈ I . Let C2 = C0
√

32. Then

(a) η̃ is (C2,
1
2 )-good on I ;

(b) for any interval B ⊂ I sup
x∈B

|η̃(x)| � c2
1

32
|B|2. (65)

Proof. Let θ(x) = f (x) + ax + b. Clearly θ ′′(x) = f ′′(x). Split B into three subintervals: Bl ,
Bm and Br , where Bm is the middle half of B; Bl is the left quarter of B; and Br is the right
quarter of B . By (1) and Lemma 4, supx∈Bm

|θ ′(x)| � c1
2 |Bm| = c1

4 |B|. In view of (1), θ ′ is
monotonic. Therefore, infx∈B ′ |θ ′(x)| � c1

4 |B| for at least one choice of B ′ from Br and Bl .
Applying Lemma 4 to B ′ further gives the estimate

sup
x∈B ′

∣∣θ(x)
∣∣ � 1

2

∣∣B ′∣∣c1

4
|B| = c1

32
|B|2. (66)

Using the identity η̃(x) = θ(x)f ′′(x) and (1) gives (65).
Further, for any y1, y2 ∈ B we have θ ′(y2) = θ ′(y1) + (f ′(y2) − f ′(y1)). By the Mean Value

Theorem and (1), we have |f ′(y2) − f ′(y1)| � c2|B|. Further, with reference to the former
equality, taking supremum over y2 ∈ B and infimum over y1 ∈ B gives (49) with κ1 = 1 and
κ2 = c2. Also, (66) ensures (48) with κ0 = c1/32. Applying Lemma 6 with κ = c2 gives that θ

is (8
√

2C0,
1
2 )-good on I , where C0 is defined by (57). Finally, since η̃(x) = θ(x)f ′′(x), using

Lemma 2(c) and (1) establishes the statement of part (a). �
Our final statement of this subsection is concerned with the skew-gradient of pairs of functions

u · ĝ(x) with u ∈ Z3 \ {0}, (67)

where ĝ(x) := (g1(x), g2(x),1) and u · ĝ(x) is the scalar product of u and ĝ(x). The skew-
gradient of a pair of functions (γ1, γ2) as defined in [16, §4] is given by

∇̃(γ1, γ2)(x) := γ1(x)γ ′
2(x) − γ ′

1(x)γ2(x).

Lemma 9. Let C2 = C0
√

32 be the same as in Lemma 8. Then for any u,w ∈ Z3 \ {0} with
u ∧ w �= 0 and any subinterval B ⊂ I

(a) ∇̃(u · ĝ,w · ĝ) is (C2,
1
2 )-good on I .

(b) sup
∣∣∇̃(u · ĝ,w · ĝ)(x)

∣∣ � min

{
c2

1|B|2
,
c1|B|}

. (68)

x∈B 32 2M
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Proof. Given any u,w ∈ Z3 \ {0} such that u ∧ w �= 0, by the Laplace identity (see, e.g.,
[25, Lemma 6D, p. 105]),

∇̃(u · ĝ,w · ĝ)(x) :=
∣∣∣∣ u · ĝ(x) w · ĝ(x)

u · ĝ′(x) w · ĝ′(x)

∣∣∣∣ = (
ĝ(x) ∧ ĝ′(x)

) · (u ∧ w). (69)

By (34) and the definition of exterior product, one easily verifies that ĝ(x) ∧ ĝ′(x) =
f ′′(x)(f (x),−x,1). Also u ∧ w = (p, q, r) ∈ Z3 \ {0}. Thus, by (69),

∇̃(u · ĝ,w · ĝ)(x) = f ′′(x)
(
pf (x) − qx + r

)
. (70)

If p = 0 then Lemma 7(a) implies Lemma 9(a) via Lemma 2(d); Lemma 7(b) implies
Lemma 9(b). If p �= 0 then |p| � 1. By this fact and Lemma 2, without loss of generality we
can assume that p = 1 as otherwise we would divide (70) through by p. In this case Lemma 8
with η̃ = ∇̃(u · ĝ,w · ĝ)(x) completes the proof. �
4.4. Proof of Theorem 9

Theorem 9 will be derived from a general result due to Kleinbock and Margulis appearing
as Theorem 5.2 in [20]. In order to state it we recall some notation from [20]. In what follows
C(Zk) will denote the set of all non-zero complete sublattices of Zk . An integer lattice Λ ⊂ Zk

is called complete if it contains all integer points lying in the linear space generated by Λ. Given
a lattice Λ ⊂ Rk and a basis w1, . . . ,wr of Λ, the multivector w1 ∧ · · · ∧ wr is uniquely defined
up to sign since any two basis of Λ are related by a unimodular transformation. Therefore, the
following function on the set of non-zero lattices is well defined:

‖Λ‖ := |w1 ∧ · · · ∧ wr |∞, (71)

where | · |∞ denotes the supremum norm on
∧

(Rk).

Theorem KM. (See Theorem 5.2 in [20].) Let d, k ∈ N, C,α > 0 and 0 < ρ � 1 be given. Let B

be a ball in Rd and h : 3kB → GLk(R) be given. Assume that for any Λ ∈ C(Zk)

(i) the function x �→ ‖h(x)Λ‖ is (C,α)-good on 3kB , and
(ii) supx∈B ‖h(x)Λ‖ � ρ.

Then there is a constant Nd depending on d only such that for any ε > 0 one has

∣∣∣{x ∈ B: min
a∈Zk\{0}

∣∣h(x)a
∣∣∞ � ε

}∣∣∣ � kC
(
3dNd

)k
(

ε

ρ

)α

|B|. (72)

We will use this general result in the case k = 3 and d = 1. Note that the Besicovitch constant
Nd appearing in (72) equals 2 in the case d = 1.

Proof of Theorem 9. Since the right-hand side of (38) is independent of f and F (I ; c1, c2) is
dense in F (I ; c1, c2) (in the uniform convergence topology), it suffices to prove Theorem 9 for
f ∈ F (I ; c1, c2). Let J ⊂ I be an interval and θ = (δKT )1/3. Define
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t1 = θ

δ
, t2 = θ

K
, t3 = θ

T
,

gt = diag(t1, t2, t3) and Gx =
⎛
⎝g1(x) g2(x) 1

g′
1(x) g′

2(x) 0

1 0 0

⎞
⎠ . (73)

It easily follows from the above definitions that

B(J, δ,K,T ) =
{
x ∈ J : min

a∈Z3\{0}
∣∣h(x)a

∣∣∞ � θ
}
, where h(x) = gtGx. (74)

It is also readily seen that detgt = 1 and

deth(x) = detGx = −g′
2(x) = −f ′′(x)

(1)�= 0. (75)

Therefore, h(x) ∈ GL3(R). In view of Remark 6 we will regard h as a map defined on 33J .
Our next goal is to verify conditions (i) and (ii) of Theorem KM for the specific choice of h

made by (74). Fix a Γ ∈ C(Z3). Let r = dimΓ > 0. We will consider the three cases r = 1,2,3
separately. It is easily seen that C defined by (40) satisfies C = max{C0,C1, C̃2}, where C0
and C1 are defined by (57) and C̃2 is defined in the same way as C2 within Lemma 8 but with M

replaced by 27M .

Case (1). Let r = 1. Then the basis of Γ consists of just one integer vector, say w =
t (w1,w2,w3) �= 0 (here and elsewhere t denotes transposition). Consequently, h(x)w is a ba-
sis of h(x)Γ and ‖h(x)Γ ‖ = |h(x)w|∞. Using (73) we get

h(x)w =
⎛
⎝ t1w · ĝ(x)

t2w · ĝ′(x)

t3w1

⎞
⎠ , (76)

where w · ĝ(x) = w1g1(x) + w2g2(x) + w3 is the scalar product of w and ĝ(x) = t (g1(x),

g2(x),1).

Subcase (1a). Assume that w1 = w2 = 0. Then h(x)w = t (1,0,0) and it is easily verified using
(44) and Lemma 2(b) that ‖h(x)Γ ‖ is (C,1/2)-good on 33J . It is also clear that∥∥h(x)Γ

∥∥ = 1 if w2
1 + w2

2 = 0. (77)

Subcase (1b). Assume that (w1,w2) �= 0. Since w1,w2 ∈ Z, we have w2
1 + w2

2 � 1. Then using
Corollary 1(a)+(c) and Lemma 3 we verify that every coordinate function in (76) is (C, 1

2 )-
good on 33J . Consequently, by Lemma 2(b), ‖h(x)Γ ‖ is (C, 1

2 )-good on 33J . Further, applying
Corollary 1(b)+(d) to the first and second coordinate functions in (76) gives

sup
x∈J

∥∥h(x)Γ
∥∥ � max

{
t1c1|J |

2M
,

t2c1|J |2
32M

}
if w2

1 + w2
2 �= 0. (78)

Case (2). Let r = 2. Then the basis of Γ consists of two integer vectors, say u = (u1, u2, u3)

and w = (w1,w2,w3) with u ∧ w �= 0. Consequently, h(x)u and h(x)w is a basis of h(x)Γ and
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‖h(x)Γ ‖ = |h(x)u∧h(x)w|∞. Using (76) and a similar expression for h(x)u one readily verifies
that

h(x)u ∧ h(x)w =
⎛
⎝ t1t2∇̃(u · ĝ,w · ĝ)(x)

t1t3(w1u − u1w) · ĝ(x)

t2t3(w1u − u1w) · ĝ′(x)

⎞
⎠ . (79)

Using Corollary 1(a)+(c) and Lemma 9(a) we immediately verify ‖h(x)Γ ‖ is (C, 1
2 )-good on

33J . Further, by Lemma 9(b),

sup
x∈J

∥∥h(x)Γ
∥∥ � sup

x∈J

∣∣t1t2∇̃(u · ĝ,w · ĝ)(x)
∣∣ � t1t2

c2
1

32
|J |2. (80)

Case (3). Let r = 3. Then, Γ = Z3. Consequently,∥∥h(x)Γ
∥∥ = ∣∣deth(x)

∣∣ = |detGx | =
∣∣g′′(x)

∣∣ � c1. (81)

Completion of the proof. The upshot of (77), (78), (80) and (81) is that supx∈J ‖h(x)Γ ‖ � ρ,
where ρ is given by (41). Thus Theorem KM is applicable with this value of ρ, α = 1

2 and C

given by (40). Then, by (72) with k = 3 and d = 1 and (74), we get (38). �
5. Proof of Theorem 2

We follow the proof of Theorem 7 in [10] replacing the use of Lemma 6 of [10] with our
Theorem 9. Recall that, by Theorem 8, it suffices to consider functions in F (I ; c1, c2) only. Thus
we fix any f ∈ F (I ; c1, c2) and fix any non-empty interval J ⊆ I of length |J | � 1

2 . Since the set
of rational points and their denominators is invariant under translations by integer points, without
loss of generality we can assume that J ⊂ [− 1

2 ; 1
2 ]. Consequently, M �

√
2 and C � 36c2/c1,

where M and C are defined by (40). Then

648C

min(1,
√

c1 )
� Ê

where Ê is the constant defined by (6). Furthermore, (9) ensures that either (42) or (43) is appli-
cable. Henceforth,

E � Ê. (82)

Let δ and Q satisfy (8) and (9). Let g be given by (34) and let Bg(. . .) be defined in the same
way as in Theorem 9, that is the set of x ∈ J such that there exists a non-zero integer solution
(q,p1,p2) to (35). By Theorem 9 and inequality (82),

∣∣Bg
(
J, c0δ, c2(c0Qδ)−1,2c0Q

)∣∣ � Ê|J |(2c0c2)
1
6

(6)= 1

4
|J |. (83)

Therefore the set G := 3
4J \ Bg(J, c0δ, c2(c0Qδ)−1,2c0Q) satisfies

|G| � 1 |J |, (84)

2
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where 3
4J is the interval J scaled by 3

4 . Take x ∈ G. By Minkowski’s linear forms theorem, there
is a coprime triple (q,p1,p2) ∈ Z3 \ {0} satisfying the system of inequalities

⎧⎪⎨
⎪⎩

∣∣qg1(x) + p1g2(x) + p2
∣∣ � c0δ,∣∣qg′

1(x) + p1g
′
2(x)

∣∣ � c2(c0Qδ)−1,

0 � q � Q.

(85)

By the definition of G,

q > 2c0Q. (86)

By (34) and the second inequality of (85), we have that |qxf ′′(x) − p1f
′′(x)| < c2(c0Qδ)−1.

This together with (86) and (1) implies that

∣∣∣∣x − p1

q

∣∣∣∣ � c2

2c1c
2
0Q

2δ
= C1

Q2δ

(8)

� 1

8
|J |. (87)

Since x ∈ 3
4J , p1

q
∈ J . By Taylor’s formula,

f

(
p1

q

)
= f (x) + f ′(x)

(
p1

q
− x

)
+ 1

2
f ′′(x̃)

(
p1

q
− x

)2

(88)

for some x̃ between x and p1/q . Thus x̃ ∈ J . Using (34) and (88) we transform the first inequality
of (85) into

∣∣∣∣p2 − qf

(
p1

q

)
+ q

2
f ′′(x̃)

(
x − p1

q

)2∣∣∣∣ � c0δ (89)

(see [10, p. 391] for details). Thus

∣∣∣∣qf
(

p1

q

)
− p2

∣∣∣∣ �
∣∣∣∣p2 − qf

(
p1

q

)
+ q

2
f ′′(x̃)

(
x − p1

q

)2∣∣∣∣ +
∣∣∣∣q2 f ′′(x̃)

(
x − p1

q

)2∣∣∣∣.
In view of (1), (87) and (89), |qf (

p1
q

) − p2| � c0δ + Q
2 c2(

C1
Q2δ

)2. By (8), this further transforms

into |qf (
p1
q

) − p2| � 2c0δ. This inequality and (86) imply |f (
p1
q

) − p2
q

| � δ
Q

. Thus, we have

shown that (q,p1,p2) ∈ Rc0
f (Q, δ, J ). Therefore, in view of (87) we have that

G ⊂ �
c0
f (Q, δ, J,ρ) =

⋃
(q,p1,p2)∈Rc0

f (Q,δ,J )

{
x: |x − p1/q| � ρ

}
when ρ = C1

δQ2
.

By (84), this shows (10) and completes the proof.
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