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Abstract 

An extension of Euler's beta function, analogous to the recent generalization of Euler's gamma function and Riemann's 
zeta function, for which the usual properties and representation are naturally and simply extended, is introduced. It is 
proved that the extension is connected to the Macdonald, error and Whittaker functions. In addition, the extended beta 
distribution is introduced. 
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1. Introduction 

A generalization of a well-known special function, which extends the domain of that function, 
can be expected to be useful provided that the important properties of the special function are 
carried over to the generalization in a natural and simple manner. Of course, the original special 
function and its properties must be recoverable as a particular case of the generalization. Thus 
Euler (1707-1983) generalized the factorial function from the domain of natural numbers to the 
gamma function 

F(c0 = fo  t~ - l e - ' d t ,  Re(~) > 0, (1.1) 

defined over the right half of the complex plane. This led Legendre (in 1811) to decompose the 
gamma function into the incomplete gamma functions, 7(x, x) and F(~t, x), which are obtained from 
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(1.1) by replacing the upper  and lower limits by x, respectively. These functions develop singular- 
ities at the negative integers. 

Two of us (MAC and SMZ) extended the domain  of these functions to the entire complex plane 
[5] by inserting a regularization factor e -b't in the integrand of (1.1). For  Re(b) > 0, this factor 
clearly removes the singularity coming from the t = 0 limit and for b = 0 reduces to the original 
gamma function. It turns out that this generalized gamma function, Fb(~), is related to the 
Macdonald  function, K~(2 x/~), by 

Ft,(~) = fo ta- 1e-t-bit  dt = 2b~/2K~(2V~), Re(b) > 0, (1.2) 

and satisfies thc recursion relation and reflection formula 

Fb(~ + 1) = :~Fb(,~) + bFb(~ - 1), (1.3) 

rb(--~x) = b-~Fb(:¢). (1.4) 

Note  that the relationships between the generalized gamma and Macdonald  functions could not 
have becn apparent  in the original gamma function. These generalized gamma functions proved 
very useful in diverse engineering and physical problems [4-7,  18]. 

The regularizer e-b/' also proved very useful in extending the domain  of Riemann's  zeta function 
[3], thereby providing relationships that  could not have been obtained with the original zeta 
function. 

In view of the effectiveness of the above regularizer for gamma  and zeta functions, it seems 
worthwhile to look into the possibility that the domains  of other special functions could be usefully 
extended in a similar manner.  In particular, Euler's beta function, B(x, y), has a close relationship to 
his gamma  function, 

r(x)r(y) 
B(x, y) = B(y,  x) - r ( x  + y) '  (1.5) 

and could be expected to be usefully extendable in a similar manner.  It has the integral representa- 
tion 

B(x, y) = f~  t x-  l(l - t) r -  1 dr, Re(x) > 0, Re(.},) > 0. (1.6) 

It is clear that  the simple regularizer given above would destroy the symmetry property so essential 
for the beta function. Since for the x y symmetry to be preserved there must  be symmetry of the 
integrand in t and 1 - t, we try the extension 

r.l 

B(x ,y;  b) = | t x-~(l - t ) r - l e  -b/Et{l-'jdt, Re(b) > 0. (1.7) 
d o 

This extension will be seen to be extremely useful, in that most  properties of the beta function 
carry over naturally and simply for it and it provides connections with the error and Whit taker  
functions, and even new representations for special case of these functions. Clearly, when b = 0 it 
reduces to the original beta function. 
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This paper is divided into seven sections. Different integral representations of the extended beta 
function are given in Section 2. Some properties of the function are proved in Section 3. Section 4 
deals with the relation of some special cases of the function with some known special functions. The 
Mellin t ransform representation of our  extended beta function is given in Section 5. We introduce 
the extended beta distr ibution in Section 6. Some concluding remarks about  the function are given 
in Section 7. 

2. Integral representations of the extended beta function 

It is impor tan t  and useful to look for other integral representations of the extended beta function, 
both as a check that  the extension is natural  and simple and for use later. It is also useful to look for 
relationships between the original beta function and its extension. In this connection,  we first 
provide a relationship between them. 

Theorem 2,1. 

fo " y; F(s )B(x  s, y + Re(s) > + s) > Re()' + s) (2.1) I B ( x ,  b) db + S), 0, Re(x 0, > 0. 

Proof. Mult iplying (1.7) by b ~- 1 and integrating with respect to b from b = 0 to b = vc, we get 

b ~ - I B ( x , y ; b ) d b =  b ~-1 t x - t ( 1 - - t ) r - l e - h / [ " l - ' ~ l d t  db. (2.2) 
) 

The order of integration in (2.2) can be interchanged because of the uniform convergence of the 
integral. Therefore, we have 

f f (fO ) b ~ - l B ( x , y ; b )  d b =  t x- l ( 1 - t )  ~'-1 b ~-l e-"/ t 'c l - t ) jdb dr. (2.3) 
) 

However, the integral in (2.3) can be simplified in terms of the gamma function to give 

f j  b"- le-b/i'll-'~1 db = t'(1 - t)~F(s), Re(s) > 0, 0 < t < 1. (2.4) 
) 

From (2.3) and (2.4), our  proof  follows. [] 

By put t ing s = 1, in (2.1), we get the interesting relation 

f " B(x, b) d b = B ( x +  1, + 1), R e ( x ) > - l ,  R e ( y ) >  - 1 ,  (2.5) Y; Y 
) 

between the original and the extended beta functions. 
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R e m a r k  2.2. It is interesting to note  that  all the derivatives of  the extended beta  function with 
respect to the paramete r  b can be expressed in terms of  the function to give 

Ob" B(x, y; b) = ( -  l )"B(x - n, y - n; b), n = 0, 1,2 . . . . .  (2.6) 

Relat ions (2.1) and (2.6) may  be helpful to derive a partial  differential equa t ion  for the function. 

Remark  2.3. The usual integral representa t ions  of  the beta  funct ion carry  over  natural ly  to our  
extension and can be recovered from them by taking b = 0. 

Theorem 2.4. (Integral representations).  

S B(x ,y ;b )  = 2 (cos 0) 2~- l(sin 0 ) 2 r - l e - b ~ ° " a ° d 0 ,  

,f; Hx - 1 B(x, y; b) = e -2b  (1 + u )  -x+>' e-b '"+"  '~ du, 

B(x ,y;  b) = 2 I - ~ - y  (1 + 0~-1(1 - t ) Y - l e - 4 b / ~ l - ~ d t ,  
-1 

fO~c U x-  1 ijy- I B(x, y; b) = ½ e -  2b " ~ -  - b~,, + u-') du, (1 + u) "+y e 

B(x, y; b) = (c - a) 1 - ~ - '  (u - a) ~- i (c - up'- 1 exp - b (u --- ~-(c - u) 

Re(b) > 0. For  b = 0, Re(x) > 0, Re(y) > 0, 

B(cq fl; b) = 21 -~-~ ~ exp((.~ - fl)x - 4b cosh 2 x) (cosh x) ~÷p' 

B(~, fl; b) = 2 2 -~-t~ f ;  cosh ((~ - fl)x) ~ - ~ N x - ~ -  p e x p ( - 4 b  cosh 2 x )dx ,  

B ( ~ , f l ; b ) = 2  ~-~-~ - ~ e x p  ( ~ - f l ) x - 2 b c o s h x  (cosh½x)~+ p,  

B(~t, fl; b) = 22 -~-0  fo X cosh(½(~ - fl)x) x " e pt-2bcosh )dx, 

Re(b) > 0. For  b = 0, Re(0t) > 0, Re(fl) > 0. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Proof.  The proofs  of  (2.7)-(2.15) are s t raightforward.  In particular,  (2.7) follows when we use the 
t ransformat ion  t = c o s 2 0  in (1.7) and (2.8) follows from (1.7) when we use the t rans format ion  
t = u / ( 1  + u ) .  Similarly, (2.11) follows from (1.7) when we use the t ransformat ion  t = 
(u - a ) l ( c -  a). [ ]  
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A useful inequality 

[B(x, y; b)l ~ e-4bB(x, y), x > 0, y > 0, b >~ 0, (2.16) 

follows from the integral representation (2.8). Since the function e-b(u + u-,) attains its maximum at 
u = l ,  

fO ~ t/x- 1 [B(x, y; b)l <~ e -4b du. (2.17) 
(1 + u) x+~ 

Hence the inequality. 
It is worth remarking that this property already foreshadows the regularization of the beta 

function for negative x and/or y seen in Section 7, in that it shows how the extended beta function 
has an exponentially damped magnitude compared with the original beta function. 

3. Properties of the extended beta function 

In this section, we consider the analogue of(1.3) for the extended beta function and the extension 
of(1.5). While the former comes very naturally, it must be admitted that the extension of(1.5) is not 
so simple. 

Theorem 3.1 (Functional relation). 

B(x, y + 1; b) + B(x + 1, y; b) = B(x, y; b). (3.1) 

Proof. The left-hand side of (3.1) equals 

{t x-1(1 - t) >' + tx(1 - tV-~}e -b/I'(~-')jdt, (3.2) 

which, after simple algebraic manipulation, yields 

f i t  x- - tV- dt, 1(1 l e - b/[t( l 

which is equal to the right hand side of (3.1). [] 

As a direct corollary, on putting b = 0 in (3.1), we get the usual relation for the beta function. 
Since the generalized gamma function (1.2) extends the Euler gamma function in a natural way, it 

seems worthwhile to extend the classical relationship (1.5) proved by Euler. 

Theorem 3.2 (Product formula). Let Fb(x) be the generalized gamma function as defined in (1.2). 
Then 

fo Fh(x)Fb(y)=2 r2(X+Y)-le-'2B x , y ; ~  dr, Re(b)>0. F o r b = 0 ,  Re(x)>0,  Re(y)>O. 

(3.3) 
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Proof. Substituting t = r/2 in (I.2), we get 

Fdx) = 2 r/2x- le-"2-b~ :dr/. 

Therefore, 

fofo Fdx) Fdy) = 4 r/2x- l~2y- le-~,2+¢~le-b{, 2+¢-:1 dr/d~. 

The substitutions 17 = r cos 0, ~ = r sin 0 in (3.5) yield ;2;: 
Fdx)Fdy) -- 4 r2~+y~ - i e-,~(cos O)2X- 1(sin O)2r-1 

(3.4) 

(3.5) 

exp - r 2 sin 2-0 cos 2 0 dr dO. 

(3.6) 

Interchanging the order of integration on the left-hand side in (3.6), we get 

,fi~ ( ; / 2  [ b/r2 1 )  Fb(x)Fb(y) = 2 r2tX+r)-le-'~ 2 (cosO)2X-l(sin 0) 2r-1 exp s in20cos  20 dO dr. 

(3.7) 

From (2.7) and (3.7), the proof of the theorem is complete. []  

Again we see that putting b = 0 in (3.3) gives the classical relation (1.5). 

4. Connection with other special functions 

As mentioned in the Introduction, this extension of the beta function is justified not only by the 
fact that most properties of the beta function are carried over simply, but also by the fact that this 
function is related to other special functions for particular values of the variables. In this section, we 
demonstrate this fact for the cases y = - x and y = x. There may well be other such relations to be 
discovered for other special cases. 

Theorem 4.1. 

B(~t, - ~ ;  b) = 2e-2bK,(2b), Re(b) > 0. (4.1) 

Proofi The substitutions x = :~ and y = - ~  in (2.8) yield 

B(:~, - ~ ;  b) = f :  u ~- le-b~u~u '~du. (4.2) 

The integral on the right-hand side of (4.2) is the Mellin transform of e -b~÷u-'~ in c¢ that can be 
solved in terms of Macdonald and exponential functions [I 1, p. 384] to give (4.1). []  
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According  to [13, p. 978 (8.468)] 

~ z  L (n + k)!(2z) -~ Kn_I;2(z)= e -z  n = 0,1,2, Re(z) > 0. 
k=O k!(n - k)! . . . . .  

Therefore,  the ex tended beta funct ion B(n + ½, - n  - ½; b)  can be wri t ten as the funct ion 

" (n + k)! 
B(n + ½, - n  - ½; b) = ~ e-4b ~" k!(n - k)!(4b) k' Re(b) > 0. 

k=O 

In part icular ,  for n = 0, this yields 

B ( ½ , - z ~ ; b ) = / ~ e  -4h, R e ( b ) > 0 .  

Theorem 4.2. The  extended beta funct ion is related to the Whi t taker  funct ion by 

B(~, ~; b) = ~//-~2-:~b(:~- l)'2e- 2hW_~/2.~/E(4b), Re(b) > O. 

Proof.  The  subst i tut ion y = x in (2.9) yields 

B ( x , x ; b )  = 2 I-2x (1 - t2)~-Xe-4b/( l - ' : )dt .  
- 1  

Since the in tegrand on the r ight -hand side is even, it follows that  

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

B ( x , x ; b )  = 2 2 - 2 x j O  (1 - t2) x -  1 e - 4 b / ( I  (4.8) 

The  subst i tut ion ~ = 1 - t 2 in (4.8) yields 

B (x, x; b) = 2 x - 2 ~ f~  ~ ~ - 1 ( l - ~) l., 2 - I e - 4b/~ d 3. (4.9) 

The integral on the r ight -hand side of (4.9) is a special case of the result [13, p. 384 (3.471) (2)] (see 
[12, p. 187 (18)]) 

f~ x , - , ( u _  x ) ~ - ' e - a ; ~  dx = f l ( " - l ' / Z u ( Z , - " - " / 2 e x p ( - ~ u ) F ( # ) W ( , _ 2 , _ , . , / z . v ; 2 ( ~ )  

( (Re)# > 0, Re(fl)  > 0, u > 0). 

With fl = 4b, u = 1, v = x and # = ½, this gives 

B(x, x; b) = w/-~2- ~b (x- I)/2e-2bW-x/2.x/21t4b ~*, Re(b) > 0. 

Replacing x by :~ in (4.10) completes  the proof  of (4.6). [ ]  

In particular,  taking :~ = ½ and using [10, p. 432] we obtain  

B(12, 1.2, h) = x Erfc(2,v/b), Re(b) > 0, 

(4.10) 

(4.11) 
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and  t ak ing  :t = 0, we ob t a in  

B(0, 0; b) = 2e-2bKo(2b),  Re(b) > 0. (4.12) 

R e m a r k .  The  re la t ionsh ip  [ l ,  p. 317] m a y  be explo i ted  to express  (4.6) in te rms  of  the conf luen t  
h y p e r g e o m e t r i c  func t ion  ~(a ,  c; z), 

B(~t, ~; b) = x / ~ 2  ~ -2~e-4b~(½, 1 - ~t; 4b), Re(b) > 0, (4.13) 

which  inc ident ly  aga in  gives (4.11). 

W e  can  use the above  t h e o r e m s  to express  o the r  ex t ended  be ta  func t ions  as series of  W h i t t a k e r  
or  M a c d o n a l d  func t ions  p rov ided  x - y or  x + y are integers.  This  fact is s h o w n  in the  fo l lowing  
two  theorems .  

T h e o r e m  4.3. 

B(e, - ~  - n; b) = 2e -2b ~ K~+k(2b). (4.14) 
k=O 

Proof .  O n  set t ing x = ~ a n d  y = - ~  - n in (3.1), we get 

B ( e ,  - ~  - n; b) = B ( ~ ,  - : ~  - n + 1; b) + B(:c + 1, - : ¢  - n; b).  ( 4 .15 )  

We can  wri te  this f o r m u l a  recursively,  s t a r t ing  wi th  n = 1, to  o b t a i n  

B(~, - ~  - 1; b) = B(~, - ~ ;  b) + B(~ + 1, - ~  - 1; b), 

B(~t, -~ t  - 2; b) = B(~, -~t;  b) + 2B(~t + 1, -~ t  - 1; b) + B(ct + 2, - a  - 2; b), (4.16) 

B(~t, -~ t  - 3; b) = B(~, -~t;  b) + 3B(~ + 1, -~ t  - 1; b) + 3B(~ + 2, - ~  - 2; b) 

+ B(ct + 3, - : t  - 3; b), 

a n d  so on. The  series arises exac t ly  as the  b inomia l  series does  and  so we can  guess t ha t  

• ,417,  

This  result  can  be s imply  p roved  by induc t ion ,  a s s u m i n g  it t rue  for some  n and  wr i t ing  
B(:c, - :~  - n - 1; b) by us ing (4.15). It i m m e d i a t e l y  fol lows tha t  (4.17) ho lds  for (n + 1). N o w  (4.1) 
a n d  (4.17) d i rec t ly  yield (4.14). [ ]  

T h e o r e m  4 .4 .  

[n/2] ( _ l ) k ( n _ k )  
B(~,~t + n; b) = (x /~e -2b )½n  ~ 2 - ~ - k b  c~+k-I)/2 k=0 n --  k k W-la+k)/2,(a+k)/2(4b ). (4.18) 

Proof .  Se t t ing  x = ~ a n d  y = a + n - 1 in (3.1), we o b t a i n  

B(~, ~t + n; b) = B(0t, ~t + n - 1; b) - B(~t + l, ~t + n - 1; b). (4.19) 
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Also, taking x = y = ~ in (3.1) and using the symmetry property of the extended beta function gives 

B(.~, :~ + I; b) = ½B(:~, ~; b). (4.20) 

Using (4.19) recursively with n = 2, 3 . . . .  yields 

B ( ~ ,  :( + 2; h) = ½B(:~, ,~; b) - ZB(~ + 1, ~ + I; b), 

B(:~, :¢ + 3; b) = ½B(~, x; b) - ~B(~  + 1, ~ + 1; b), 
(4.21) 

B(~, :¢ + 4; b) = ½B(u, u; b) - ~2 B(:~ + 1, u + 1; b) + ZB(a + 2, u + 2; b), 

B(u, :~ + 5; b) = ½B(~, u; b) - ~ B ( ~  + 1, :~ + 1; b) + ~B(u + 2, :~ + 2; b), 

and so on. Constructing the sequence of coefficients ofB(~ + k, x + k; b) for different values of k, on 
the right-hand side of (4.21), we can fit constant, linear, quadratic, cubic, quartic, etc. polynomials 
for k = 0, 1,2, 3, 4 , . . . ,  respectively. We find that they satisfy the formula 

[~l(--1)k 
B(:~, ~ + n; b) = ~n B(:~ + k, ~ + k; b). (4.22) 

- k = o n - - k  k 

We prove this formula by induction. Let us assume that it holds for some n and use (4.19) to write 
the coefficient of a typical term in the right hand side of the resulting equation. B(7 + p, :~ + p; b) 
has the coefficient 

n ( - I F ( n - p )  n - I  ( - 1 ) '  ( n - l - p + l )  

n - p  p 2 n - i ~ S p +  1 p 1 " 

Using the usual formula for addition of binomial coefficients and simplifying, this coefficient 
reduces to 

(--  1) p (rt -- p)! ( n  2 - -  n p  + n - -  p ) ,  

2(n - p) (n -- 2p - 1)IpI 

which further reduces to 

n +  1 1 ( n - p + l ) !  
- - ( - 1 F  

2 n + l  - p ( n - 2 p +  l)!p!" 

This is the coefficient of the corresponding term in (4.22) with n replaced by (n + 1). Hence (4.22) 
holds for all n. Now, using (4.6) and (4.22), we obtain (4.18). []  

Not only can we express the extended beta functions as finite series of Macdonald and Whittaker 
functions (when the sum or difference of the arguments is an integer) we can express the Whittaker, 
Macdonald,  error and exponential functions as an infinite series of extended beta functions. This 
fact follows as a direct consequence of the following theorem. 

T h e o r e m  4.5. 

~'~ (Y)" B(x + n, l" b), B(x, 1 - y; b) = ~ -~. 
n = O  

Re(b) > 0. (4.23) 
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Here (y),, the factorial function, is the coefficient arising in the binomial series for arbitrary Proof. 
powers 

~c tn 
(1 - t)-" = y, (y). n~" (4.24) 

n = 0  

Using (4.24) in (1.6), we obtain 

Jr1 ,~o- (y)" ,x+.-  ,e-b/[, ,  -,)1 d,. B(x,  1 - y; b) = -~. (4.25) 
0 = 

Now the summation could be divergent at the end points of integration for particular values of 
x and y. However, for Re(b) > 0, the regularizing factor damps the singularity arising there. Thus 
we can interchange the order of integration and summation to obtain 

(Y), 11 tx+.-le-b/t ,1-t)]  dt. B(x,  1 - y; b) = Y, -~. (4.26) 
3o n=O 

Using (1.6), we obtain (4.23). []  

Corollary. 

oc 

K~(2b) = ½e 2h y. (1 + :~), ,=o n! B(:~ + n, 1; b), (4.27) 

1_~)/2e2 b ~ ( 1 -  a). .=o n-----~ B(a + n, 1; b). (4.28) 
1 

W - a , , 2 . a / 2 ( 4 b )  = - - ~  2~b ~ 
, / , t  

Proof. These results follow directly by taking y - x = 1 and y + x = 1, respectively, with x = ~. 
Notice that both reduce to the Macdonald function, Ko, in the case, a = 0. Further, with ~ = ½ in 
(4.28), the Whittaker function reduces to Erfc(2x//-b). []  

Remark. Notice that, with a negative integer x in (4.27) or a positive integer x in (4.28), the series 
terminates and thus reduces to a finite series instead of an infinite series. With a negative integer 
y in (4.23), the series will, of course, again terminate (as would have been anticipated by the 
symmetry of the extended beta function in its arguments). 

5. Mellin transform representation of the extended beta function 

Theorem 5.1. 

1 I ~+i~' F ( s ) F ( x  + s ) F ( y  + s) b_ ~ ds, Re(b) > 0. 
B(x ,  y; b) = ~ ,]c-i~ F ( x  + y + 2s) (5.1) 
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Proof. Let ,///be the Mellin transform operator as defined by [11, p.305]. Then, we can write (2.1) 
in operational form to give 

.... / t ' {B(x ,y ;b) ;b~s}  = F ( s ) B ( x + s , y + s ) ,  Re(s )>0 ,  R e ( x + s ) > 0 ,  R e ( y + s ) > 0 .  

Taking the inverse Mellin transform of both sides of (5.2), we get 

1 f c+i  = F(s)B(x  + s, y + s)b-~ ds, Re(b) > 0. B(X, y; [9) ~ "--i,:t. 

The substitution for B(x + s, y + s) in (5.3) from (1.5) completes the proof of (5.1). [] 

(5.2) 

(5.3) 

Note that we cannot recover a corresponding formula for the original beta function by taking the 
limit as b --, 0. 

The substitutions x = v and y = - v  in (5.1), using the Legendre duplication formula and 
replacing h by ¼b yields (see [11, p. 350, Eq. (25)]) 

1 f,...i~ F(s + v)F(s - v) b_ s ds = x -  1/2e-h'2K~.(½b), Re(b) > 0. (5.4) 
2rti -i~ F ( s + ½ )  

Further, the substitutions x = y = :~ and b = ¼~ in (5.1) yield 

1 ('"+~:~ F(s)F(s + ~) 
2hi Jc_ix F(s + :( + ½) ¢ - " d s  = ~(a-I)/2e-¢/2W_.a/2.:~;2(~), Re(b) > 0. (5.5) 

Remark. It is important to note that the representation (5.1) proves closed form evaluation of the 
inverse Mellin transform of a class of products of gamma functions in terms of the extended beta 
function. Only one of its special cases, namely (5.4) seems to be known in the literature. The special 
case (5.5) appears to be new. This is clear evidence of the usefulness of the extended beta function. 

6. The extended beta distribution 

It is expected that there will be many applications of the extended beta function, like there were 
of the generalized gamma function. One application that springs to mind is to Statistics. For 
example, the conventional beta distribution can be extended, by using our extended beta function, 
to variables p and q with an infinite range. It appears that such an extension may be desirable for 
the project evaluation and review technique used in some special cases. 

We define the extended beta distribution by 

t 1 tP-~(1 - t)q-te -~/t"l-')l 0 < t <  1, 
f ( t )  = B(p, q; b) ' (6.1) 

O, otherwise. 
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A random variable X with probability density function (pdf) given by (6.1) will be said to have the 
extended beta distribution with parameters p and q, - zo < p < oo, - oc < q < oc and b > 0. If 
v is any real number then [17] 

B(p + v, q; b) 
E(X ~) = (6.2) 

B(p, q; b) 

In particular, for v = 1, 

12 = E(X)  = B(p + 1, q; b) 
B(p, q; b) (6.3) 

represents the mean of the distribution and 

a 2 = E ( X  2) --  (E(X) )  2 

B(p, q; b)B(p + 2, q; b) - B2(p + 1, q; b) 
= B2(p, q; b) (6.4) 

is the variance of the distribution. 
The moment  generating function of the distribution is 

M(t) = ~. E(X ~) 
n = O  

_ 1 B(p  + n, q; b) ~ .  (6.5) 
B(p, q; b) ,=o 

The cumulative distribution of (6.1) can be written as 

Bx(p, q; b) 
F ( x )  - (6.6) 

B(p, q; b) ' 

where 

B x ( p , q ; b ) = f ~ t P - l ( 1 - t ) q - a e - b l [ t ~ l - t H d t ,  b > 0 , - o o < p < o o , - o o < q < o o ,  (6.7) 

is the extended incomplete beta function. For  b = 0, we must have p > 0 and q > 0 in (6.7) for 
convergence, and then, Bx(p, q; O) = Bx(p, q), where B,,(p, q) is the incomplete beta function [13, 
p. 960] given by 

x p 
Bx(p, q) = - -  2F~(p, 1 - q; p + 1; x). (6.8) 

P 

It is to be noted that the problem of expressing B,,(p, q; b) in terms of other special functions 
remains open. 

Presumably, this distribution should be useful in extending the statistical results for strictly 
positive variables to deal with variables that can take arbitrarily large negative values as well. 
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7. Discussion and conclusion 

The classical beta function B(x, y) is defined in the first quadrant of the x - y  plane. The extra 
exponential factor in the extended beta function plays the role ofa regularizer and allows us to state 
the Euler beta function as the limit of a function defined in the whole plane. The extension also 
meets the requirement that the previous results for the beta function are naturally and simply 
extended. Of course, some results analogous to previous ones would hold for any extension of the 
function. What we have required and obtained is that the results for the extension should be no less 
elegant, or more cumbersome, than those for the original function. 

The numerical values of B(x, y; b) can easily be obtained by most mathematical software 
packages. Using QDAGI [14, 15] we have provided a graph of B(x, y; b) against x for different 
values of b, see Fig. 1. By the symmetry between x and y the general behaviour can be easily 
visualized. Note how b "pulls the function down". 

A more exciting feature that emphasizes the importance of the extension is its relationship with 
the Macdonald, error and Whittaker functions. This leads us to believe in the wide applications of 
the extended beta function in different areas of statistics, engineering and applied mathematics. 
One of us (MAC) intends to pursue these relationships and extensions further [2]. 
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i b . O  , 

i ~  t, = o.oo--k 
• 2.5 . . . .  = 0.01 --'~\ . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

j \ = o.o2-3\ \ : : 
o.o \ = : " 

T 7.si = o . l o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

5 .0  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  ? 

2.5"4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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I E - C l  2 3 z, 5 5 iE+DP-, x z. 5 6 " E + 0 1  

J t  

Fig. 1. G r a p h i c a l  r e p r e s e n t a t i o n  of  B(x, y; b) for  y = 0.25 a n d  b = 0, 0.01, 0.02, 0.05, 0.1. N o t e  t ha t  b = 0 s imp ly  g ives  the  

u sua l  be ta  f u n c t i o n  a n d  we c a n  see, here,  h o w  i n c r e a s i n g  b " 'pulls the  g r a p h  d o w n " .  



32 M.A. Chaudhry et al./Journal of Computational and Applied Mathematics 78 (1997) 19--32 

References 

[1] L.C. Andrews, Special Functions.for Engineers and Applied Mathematicians, (Macmillan, New York, 1985). 
[2] M. Aslam Chaudhry, On an extension of Euler's beta function with applications, Sabbatical proposal submitted to 

KFUPM, 1995. 
[3] M. Aslam Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of Riemann's zeta function, Technical 

Report No. 181. Dept. of Mathematical Sciences. KFUPM, 1995; Proc. Roy. Soc. Edinburgh, submitted. 
[4] M. Aslam Chaudhry and S.M. Zubair, Analytic study of temperature solution due to gamma type moving 

point-heat sources, lnternat. J. Heat Mass TransJer 36 (6) (1993) 1633 1637. 
[5] M. Aslam Chaudhry and S.M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. 

Appl. Math. 55 (1994) 99 -124. 
[6] M. Aslam Chaudhry and S.M. Zubair, On the decomposition of generalized incomplete gamma functions with 

applications to Fourier transforms, J. Comput. Appl. Math. 59 (1995) 253-284. 
[7] M. Aslam Chaudhry and S.M. Zubair, On a generalization of the Euler gamma function with applications, 

J. Comput. Appl. Math., submitted. 
[8] M. Aslam Chaudhry and S.M. Zubair, On the family of generalized incomplete gamma functions with applications 

to heat condition problem, Research Project No. MS/GAMMA/171 sponsored by King Fahd University of 
Petroleum and Minerals, Dhahram, Saudi Arabia, in progress. 

[9] B.C. Carlson, Special Functions of Applied Mathematics (Academic Press, New York, 1977). 
[10] A. Erd61yi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. II (McGraw- 

Hill, New York, 1953). 
[I 1] A. Erd61yi. W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables qflntegral Tran,sfi~rms, Vol. I (McGraw-Hill. 

New York, 1954). 
[12] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transfi~rms, Vol. 1I (McGraw-Hill, 

New York, 1954). 
[13] I.S. Gradshteyn and I.M. Ryzhik, Table of lntegrals, Series, and Products, (English translation edited by Alan 

Jeffrey) 5th ed., (Academic Press, New York, 1994). 
[14] IMSL Math/Library, Vol. 2 (IMSL, Houston. TX, 1991). 
[15] R.E. Piessens, E. deDoncker, C.W. Uberhubcr and D.K. Kahaner, QUADPACK (Springer, New York, 1983). 
[16] A.P. Prudnikov. Yu. A. Brychkov and O.I. Marichev, Integrals and Series, Vol. 1 (translated by N.M. Queen) 

(Gordon and Breach, New York, 1986). 
[17] V.K. Rohatgi. An Introduction to Probability Theory and Mathematical Statistics (Wiley, New York, 1976). 
[18] S.M. Zubair and M. Aslam Chaudhry, Temperature solutions due to continuously operating gamma type heat 

sources in an intinite medium, in: G.P. Peterson et al. Eds., Fundamental Problems in Conduction Heat Transfer. 
ASME-HTD 207 ("American Society of Mechanical Engineers Heat Transfer Division, Volume 207 (1992) pp. 
63 68. which is published from New York." This information may be represented by the modified version above, 
1992) 63-68. 


