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Abstract

Itô’s theory of excursion point processes is reviewed and the following topics are discussed: Application
of the theory to one-dimensional diffusion processes on half-intervals satisfying Feller’s boundary
conditions, and its multi-dimensional extension, i.e., the application of the theory to multi-dimensional
diffusion processes satisfying Wentzell’s boundary conditions.
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1. Introduction

In this paper, dedicated to the memory of Professor Kiyosi Itô, we shall review Itô’s theory
of excursion point processes and some of its further developments. As Itô himself remembered
in the Foreword of [13], this theory is a natural outgrowth of his joint work with Henry McKean
[14,15] on one-dimensional diffusion processes: in order to understand better the class of
diffusion processes on a linear interval satisfying Feller’s boundary conditions, Itô introduced
in [11,12] the notion of excursion point processes, which are point processes with values in a
function space (i.e. path space).

On the other hand, we know well that the notion of Poisson point processes has been
introduced and it has played a key role in Lévy–Itô theory on the structure of sample paths
of Lévy processes [8,10]. This class of Poisson point processes has been defined by the size of
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jumps of path functions, and so point processes take their values in a finite dimensional Euclidean
space. However, the notion of point processes is defined generally with state spaces which can be
rather arbitrary. Itô’s idea in [11,12] is that, for a strong Markov process, the totality of excursions
away from a recurrent state can be formulated as a stationary Poisson point process with values in
a function space. This is indeed a breakthrough in the study of boundary problems for diffusion
processes. We quote here a recollection of Itô’s given in the Foreword of [13] in his study of the
description of all possible extensions of a minimal diffusion up to the hitting time of the boundary
point: After several years it became my habit to observe even finite dimensional facts from the
infinite dimensional viewpoint. This habit led me to reduce the problem above to a Poisson point
process with values in the space of excursions.

A most typical and important example is the case of the Poisson point process of Brownian
excursions which is treated, e.g., in Chap. III, Subsection 4.3 of [7], Chap. 6 of [17], Chap. VI,
Section 8 of [21], Chap. XII of [20]. The Poisson point process of Brownian excursions is a
correct and precise mathematical realization of the decomposition of Brownian sample functions
into pieces called excursions. Once this is correctly formulated, not only Brownian sample
functions but also their functionals, like local times, the maximum process, down-crossing
numbers, occupation times, etc., can be recovered and represented in terms of the point process
of Brownian excursions. Many facts concerning these functionals and their limit theorems can
be deduced from such representations. Even if the facts considered thereby may not be new,
this approach can often provide us with a deeper and better understanding of such facts and can
produce sometimes a remarkable progress of the theory. Some such examples are the Williams
formula for the occupation times on the positive half-line of Brownian paths which proves the
arcsine law without appealing to the Feynman–Kac theorem, Lévy’s down-crossing theorem,
asymptotic laws of planar Brownian motion due to Pitman and Yor, among many others.

As was stated above, the motivation of Itô in the study of point processes with values in a
function space originated from the joint work with McKean on analyzing and constructing path
functions of linear diffusions satisfying the most general Feller boundary conditions. I could
never forget those hot days in the summer of 1969, when Professor Itô returned to his home in
Kyoto, on vacation from his regular work at Aarhus, and gave us a series of lectures on excursion
point processes (which was a source of [11]). I remember that he told us then that his theory
was motivated by a question raised by Lamperti, “What are all possible boundary conditions at
an exit boundary of a linear diffusion, typically the case of the boundary 0 of Feller’s diffusion
on [0,∞) with the generator x d2

dx2 , which is a typical scaling limit of critical Galton–Watson
branching processes?” We shall review this topic in Section 3.

A main objective of the present paper is to extend Itô’s idea to the same problem in multi-
dimensional cases, in particular, to the problem of constructing and analyzing multi-dimensional
diffusion processes in a domain with the boundary satisfying the most general Wentzell boundary
conditions. This was a problem which, after the success of the Itô–McKean theory, was attacked
by many people by various approaches. In Section 4, we shall show that Itô’s approach by Poisson
point processes of excursions can still be applied well to this problem.

We shall discuss the problem in Section 4, going from a simpler case to more general cases.
As we see there, the problem can be solved by determining and constructing two stochastic
processes. The first one, denoted by (ξ(t)), is a process moving on the boundary. The second
one, denoted by (A(t)), is an increasing process.

A simple case of the problem is when the generator, which describes the behavior of the
diffusion inside the domain before hitting the boundary, and the boundary condition, which
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describes the behavior of the diffusion on the boundary, are both of constant coefficients. In this
case, both processes (ξ(t)) and (A(t)) are Lévy processes and they can be given directly by non-
canonical representations of Lévy–Itô type, as in Example 2.1 of Section 2, from two Poisson
point processes with values in certain function spaces. So, in Section 4, we first set up these two
Poisson point processes from the given data for the generator and the boundary condition.

In more complicated cases of the data given by variable coefficients, we start again with the
same two Poisson point processes with values in function spaces. In this case, however, the
processes (ξ(t)) and (A(t)) are no longer Lévy processes, but are semimartingales and should
be determined as unique solutions of stochastic differential equations (SDE’s) of the jump type
based on these Poisson point processes. So far, a SDE of the jump type has usually been consid-
ered only in the case when the SDE is based on a point process with values in a Euclidean space,
as discussed, e.g., by Itô [9] and Gihman and Skorohod [5]. In the present problem, we need and
use essentially SDE’s based on Poisson point processes with values in function spaces.

2. Point processes and Poisson point processes

Let (U,BU ) be a measurable space. In this paper, we always assume that U is a standard
Borel space in the sense of [19] and BU is the topological σ -field on U (equivalently, U is a
Lusin space in the sense of [2] and BU is the totality of Borel subsets of U ). By a point function
on U , we mean a mapping

p : (0,∞) ⊃ Dp 3 t 7→ p(t) ∈ U

where the domain Dp of the mapping p is a countable subset of (0,∞). p defines a counting
measure Np(ds, du) on (0,∞)×U with σ -field B(0,∞)⊗ BU via

Np((0, t] × A) =
∑

s∈Dp,s≤t

1A(p(s)), t > 0, A ∈ BU . (2.1)

Let ΠU be the totality of point functions on U and B(ΠU ) be the smallest σ -field on ΠU
with respect to which the mappings ΠU 3 p 7→ Np((0, t] × A) ∈ {0, 1, . . . ,∞}, for each
t > 0 and A ∈ BU , are all measurable. By a point process p, we mean a (ΠU ,B(ΠU ))-valued
random variable, i.e., a map p : Ω 3 ω→ p(ω) ∈ ΠU , which is F/B(ΠU )-measurable, defined
on a probability space (Ω ,F , P). A point process p is called σ -finite if there exist An ∈ BU ,
n = 1, 2, . . . , such that An ⊂ An+1,

⋃
n An = U and Np((0, t]× An) <∞ a.s. for all t > 0 and

n. A general theory of point processes is developed in the framework of semimartingale theory
(cf., e.g., [7,16,18]). In this paper, we treat mainly the notion of Poisson point processes.

Definition 2.1. A point process p is called a stationary Poisson point process if the following
holds:

E

(
exp

{
−

l∑
k=1

λk Np((s, t] × Ak)

}
|F p

s

)
= exp

{
−(t − s)

l∑
k=1

n(Ak)(1− e−λk )

}
(2.2)

for every t > s ≥ 0, λk > 0 and Ak ∈ BU such that {Ak} are mutually disjoint, where n is a
positive measure on (U,BU ) defined by

n(A) = E{Np((0, 1] × A)}, A ∈ BU ,
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and F p
s is the sub-σ -field of F generated by the family {(r,p(r)); r ∈ Dp, r ≤ s} of random

points in (0, s] ×U .

Thus, the law of a stationary Poisson point process p is uniquely determined by the measure n.
We call n the characteristic measure of p.

When the underlying probability space is endowed with a filtration (Ft ), a point process p
is called an (Ft )-stationary Poisson point process if Np((0, t] × A) is Ft -measurable for every
t > 0 and A ∈ BU , and (2.2) holds with F p

s replaced by Fs .
Itô [12] characterized a stationary Poisson point process as a point process having the

following two properties:

(i) It is stationary in the sense that, for every t > 0, θt (p)
d
= p, where θt (p) is the point process

defined by

Dθt (p) = {s; t + s ∈ Dp} and θt (p)(s) = p(t + s), s ∈ Dθt (p).

(ii) It is a renewal in the sense that, for every t > 0, the point process θt (p) is independent of the
family {(s,p(s)); s ∈ Dp, s ≤ t} of random points in (0, t] ×U .

A characterization of an (Ft )-stationary Poisson point process in the semimartingale
framework is as follows (cf. e.g. [7,16]): An (Ft )-adapted point process is an (Ft )-stationary
Poisson point process if and only if its compensator N̂p((0, t] × A), A ∈ BU , is given by the
deterministic measure t · n(A).

A stationary Poisson point process is σ -finite if and only if its characteristic measure n is a
σ -finite measure on (U,BU ). In the following, we treat only σ -finite stationary Poisson point
processes.

The most basic existence theorem is stated as follows: Given a σ -finite measure n on U ,
there exists a (law unique) stationary Poisson point process p with characteristic measure n. A
standard construction of p from families of i.i.d. exponential times and i.i.d. U -valued random
variables is explained in, e.g., [12,11,7].

Consider a point process p on a standard Borel space U . Let V be another standard Borel
space and suppose we are given a Borel map T : U → V . Then a point process q on V is defined
by setting Dq = Dp and q(t) = T (p(t)) for t ∈ Dp. We define q = T (p) and call it the image
point process of p under the map T .

When p is a stationary Poisson point process with characteristic measure n and if we suppose
that the image measure T (n) := n ◦ T−1 of n under the map T is a σ -finite measure on (V,BV ),
then it is obvious that T (p) is a stationary Poisson point process on V with characteristic measure
T (n).

Now we review the important notion of stochastic integrals based on Poisson point processes.
This is usually treated in the framework of semimartingale theory, and so we assume that the
underlying probability space (Ω ,F , P) is endowed with a filtration (Ft ).

Let p be an (Ft )-stationary Poisson point process with values in a standard Borel space
U and with characteristic measure n. A (real or Rn-valued) function f (t, u, ω) defined on
[0,∞)×U×Ω is called predictable if the map f : ([0,∞)×Ω)×U 3 ((t, ω), u) 7→ f (t, u, ω)
is P ⊗ BU -measurable, where P is the (Ft )-predictable σ -field on [0,∞)× Ω .

First, if a predictable function f (s, u, ω) satisfies the condition∫
(0,t]×U

| f (s, u, ·)|Np(ds, du) <∞ a.s., for every t > 0, (2.3)
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then we have, obviously,∫
(0,t]×U

f (s, u, ·)Np(ds, du) =
∑

s∈Dp,s≤t

f (s,p(s), ·), (2.4)

the sum in the right-hand side (RHS) being absolutely convergent almost surely. If f (s, u, ω)
satisfies the condition∫ t

0
ds
∫

U
E (| f (s, u, ·)|) n(du) <∞, for every t > 0, (2.5)

then (2.3) holds and we have the identity

E

(∫
(0,t]×U

f (s, u, ·)Np(ds, du)

)
=

∫ t

0
ds
∫

U
E( f (s, u, ·))n(du). (2.6)

Next, if a predictable function f (s, u, ω) satisfies the condition∫ t

0
ds
∫

U
E
(
| f (s, u, ·)|2

)
n(du) <∞, for every t > 0, (2.7)

then the stochastic integral
∫
(0,t]×U f (s, u, ·)Ñp(ds, du), which is also often denoted by∫ t+

0

∫
U f (s, u, ·)Ñp(ds, du), is defined as a square-integrable (Ft )-martingale: here, we define,

formally, Ñp(ds, du) = Np(ds, du) − ds n(du) and the previous stochastic integral is defined
as a limit of compensated sums (cf. e.g. [7] for details). If g(s, u, ω) has the same property as
f (s, u, ω), then we have the identity

E

(∫
(0,t]×U

f (s, u, ·)Ñp(ds, du) ·
∫
(0,t]×U

g(s, u, ·)Ñp(ds, du)

)
=

∫ t

0
ds
∫

U
E[ f (s, u, ·) · g(s, u, ·)]n(du). (2.8)

(In the case of Rn-valued integrands, · is understood as the inner product.)
Let U0 ∈ BU be such that

n(U \U0) <∞. (2.9)

Then, for an Rn-valued predictable function f (s, u, ω), the function f (s, u, ω) · 1U\U0 satisfies
condition (2.3) because Np((0, t] × (U \U0)) is finite a.s. for every t > 0. Suppose further that
f (s, u, ω) satisfies the condition∫ t

0
ds
∫

U0

E
(
| f (s, u, ·)|2

)
n(du) <∞, for every t > 0. (2.10)

Under these conditions, both∫
(0,t]×U

f (s, u, ·)1U\U0(u)Np(ds, du)

and ∫
(0,t]×U

f (s, u, ·)1U0(u)Ñp(ds, du)
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are well-defined, and so an n-dimensional (Ft )-semimartingale ξ(t) is defined by

ξ(t) =
∫
(0,t]×U

f (s, u, ·)1U\U0(u)Np(ds, du)

+

∫
(0,t]×U

f (s, u, ·)1U0(u)Ñp(ds, du). (2.11)

We shall meet many examples of semimartingales represented in this form in Section 4.

Example 2.1 (Canonical and Non-canonical Lévy–Itô Representations of Lévy Processes). In
the case when f (s, u, ·) is given by f (s, u, ·) = φ(u), where φ is a Borel map φ : U 3 u →
φ(u) ∈ Rn satisfying∫

U0

|φ(u)|2n(du) <∞,

the above (Ft )-semimartingale ξ(t) given by (2.11) is a stationary (Ft )-Lévy process in the sense
that, for every t > s ≥ 0, the increment ξ(t) − ξ(s) is independent of Fs and its law depends
only on t − s. Thus, the very definition

ξ(t) =
∫
(0,t]×U

φ(u)1U\U0(u)Np(ds, du)+
∫
(0,t]×U

φ(u)1U0(u)Ñp(ds, du) (2.12)

is a representation of the Lévy–Itô type for ξ(t). Let Ũ = {u ∈ U ; |φ(u)| > 0}. If q is the
image point process, under the map φ, of the point process p restricted to Ũ , then q is an (Ft )-
stationary Poisson point process with values in Rn

\ {0} and with characteristic measure ν, which
is the image measure, under the map φ, of the measure n restricted to Ũ . It is easy to verify that∫

Rn\{0}(1 ∧ |x |
2)ν(dx) <∞. It is also easy to deduce the following formula:

ξ(t) =
∫
(0,t]×(Rn\{0})

x1{|x |>1}Nq(ds, dx)+
∫
(0,t]×(Rn\{0})

x1{|x |≤1} Ñq(ds, dx)+ bt (2.13)

where b ∈ Rn is given by

b =
∫
(U\U0)∩{|φ(u)|≤1}

φ(u)n(du)−
∫

U0∩{|φ(u)|>1}
φ(u)n(du). (2.14)

This is the canonical Lévy–Itô representation of the Lévy process ξ(t) and the Lévy measure in
the Lévy–Khinchin canonical form of the law of ξ(1) coincides with the characteristic measure
ν of the point process q.

When f (s, u, ·) is not a function of u only, the semimartingale ξ(t) given by (2.11) is no
longer a Lévy process. An important special case is when (2.11) defines a stochastic differential
equation. An important result along these lines is summarized in the following theorem which
will play a crucial role in Section 4. We set up, as above, a probability space (Ω ,F , P) with a
filtration (Ft ) and suppose an (Ft )-stationary Poisson point process p with values in a standard
Borel space U and with characteristic measure n to be given. Let U0 ∈ BU be given as above
such that

n(U \U0) <∞. (2.15)

Suppose we are given the following:
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(i) A Borel map σ(x) = (σ i
k (x)): Rn

3 x 7→ σ(x) ∈ Rn
⊗ Rr .

(ii) A Borel map b(x) = (bi (x)): Rn
3 x 7→ b(x) ∈ Rn .

(iii) A Borel map f (x, u) = ( f i (x, u)): Rn
×U 3 (x, u) 7→ f (x, u) ∈ Rn .

We set σk(x) = (σ i
k (x))

n
i=1 ∈ Rn and assume that these functions satisfy (for some constant

K > 0)

r∑
k=1

|σk(x)|
2
+ |b(x)|2 +

∫
U0

| f (x, u)|2n(du) ≤ K (1+ |x |2) (2.16)

and
r∑

k=1

|σk(x)− σk(y)|
2
+ |b(x)− b(y)|2 +

∫
U0

| f (x, u)− f (y, u)|2n(du)

≤ K |x − y|2. (2.17)

Theorem 2.1 (Cf. [7]). Given an r-dimensional (Ft )-Brownian motion (Bk(t)) and an F0-
measurable and Rn-valued random variable ξ , the following SDE for an Rn-valued (Ft )-
semimartingale (ξ(t)) such that ξ(0) = ξ has a pathwise unique solution:

ξ(t) = ξ(0)+
r∑

k=1

∫ t

0
σk(ξ(s))dBk(s)+

∫ t

0
b(ξ(s))ds

+

∫ t+

0

∫
U

f (ξ(s−), u) · 1U\U0(u) Np(ds, du)

+

∫ t+

0

∫
U

f (ξ(s−), u) · 1U0(u) Ñp(ds, du). (2.18)

Finally, we give an example of Poisson point processes with values in a function space. As
was explained in the Introduction, the study of such point processes has been a main motivation
of Itô’s works in [11,12]. Also, this example plays a fundamental role in the following sections.

Example 2.2 (Excursion Point Process of Brownian Excursions). Let B = (B(t)) be a reflecting
Brownian motion on the half-line [0,∞), with B(0) = 0, and let l(t) be the local time at 0 of B,
that is,

l(t) = lim
ε→0

1
2ε

∫ t

0
1[0,ε)(B(s))ds.

We introduce the following notation for path spaces:

W0 =

{
ω : [0,∞) 3 t 7→ ω(t) ∈ [0,∞); continuous, ω(0) = 0, 0 < ∃σ(ω) <∞

such that ω(t) > 0 if t ∈ (0, σ (ω)) and ω(t) = 0 if t ≥ σ(ω)
}
, (2.19)

and, more generally, for x ∈ [0,∞),

Wx =

{
ω : [0,∞) 3 t 7→ ω(t) ∈ [0,∞); continuous, ω(0) = x, 0 < ∃σ(ω) <∞

such that ω(t) > 0 if t ∈ (0, σ (ω)) and ω(t) = 0 if t ≥ σ(ω)
}
. (2.20)
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These spaces are all standard Borel spaces (cf. [21], p. 413).
Let l−1(t) := A(t) be the right-continuous inverse of t 7→ l(t). Then t 7→ A(t) is strictly

increasing and limt→∞ A(t) = ∞ almost surely. Then a random set in (0,∞) is defined by
D = {s > 0; A(s) > A(s−)}. For s ∈ D, we define a path ps ∈ W0 by setting

ps(t) =

{
B(A(s−)+ t)− B(A(s−)), if 0 ≤ t < A(s)− A(s−),
0, if t ≥ A(s)− A(s−),

(2.21)

so σ(ps) = A(s)− A(s−).
By setting Dp = D and p(s) = ps for s ∈ Dp, we have a point process p with values in

the path space W0 and Itô proved that this is a stationary Poisson point process. It is called
the excursion point process of Brownian positive excursions. The excursion point process of
Brownian negative excursions is defined similarly, from a reflecting Brownian motion on the
negative half-line (−∞, 0].

For the excursion point process of Brownian positive excursions p, its characteristic measure
n+ is a σ -finite measure on W0, which we call the Brownian (positive) excursion measure. This
can be described in several different ways: a standard one is to define it as a Markovian measure
associated with the law of absorbing Brownian motion on (0,∞) having an entrance law from
the origin. (An entrance law is determined up to a multiplicative constant, which corresponds to
a normalization of the local time.)

We give here a description in terms of BES(3)-diffusion process: BES(3) (denote it as
BESa(3) when it starts at a) is a conservative diffusion on the half-line [0,∞) with the generator
1
2

(
d2

dx2 +
2
x

d
dx

)
and the boundary 0 as an immediate entrance state. The transition probability

density p(t, x, y), t > 0, x, y ∈ [0,∞), with respect to the measure m(dy) = y2dy is given by

p(t, x, y) = p(t, y, x) =


1

xy
(g(t, x − y)− g(t, x + y)), if x, y > 0

2
t

g(t, x), if x ≥ 0 and y = 0,

where g(t, x) = 1
√

2π t
exp

(
−

x2

2t

)
.

Since p(t, x, y) is strictly positive and continuous on (0,∞) × [0,∞) × [0,∞), we can
precisely define, for each fixed T > 0, the pinned or tied down BES0(3)-diffusion X T

0 = (X (t)),
0 ≤ t ≤ T , with the condition X (0) = 0 and X (T ) = 0 almost surely. It is obtained from
BES0(3), (X (t)), by a Girsanov–Maruyama transformation (a change of the drift) defined by the
following positive martingale (M(t)) with expectation 1:

M(t) =
p(T − t, X (t), 0)

p(T, 0, 0)
, 0 ≤ t < T .

The law of X T
0 defines a probability measure on W0 ∩ {σ(ω) = T }, which we denote by

PT
0 . Then, we have the following representation of the positive Brownian excursion measure (cf.

e.g. [7], p. 125): For A ∈ B(W0),

n+(A) =
∫
∞

0
PT

0 (A ∩ {ω; σ(ω) = T })
dT
√

2πT 3
.

There is another beautiful description of n+ due to Williams using two independent BES0(3)
(cf. e.g. [7], p. 144): Let {X1(t)} and {X2(t)} be mutually independent BES0(3)’s and, for a > 0,
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let σ a
i = inf{t; X i (t) = a}, for i = 1, 2. Set σ a

= σ a
1 + σ

a
2 and define {Y (t)} by

Y (t) =

X1(t), if 0 ≤ t < σ a
1 ,

X2(σ
a
− t), if σ a

1 ≤ t < σ a,

0, if t ≥ σ a .

Then, the path t 7→ Y (t) is in W0. We denote its law on W0 by Ra . Then it holds that, for
A ∈ B(W0),

n+(A) =
∫
∞

0
Ra(A)

da

a2 .

Starting from the Brownian excursion measure n+, which is an infinite but σ -finite measure
on W0, we have a stationary Poisson point process p on W0. Then, from p, we can recover the
path function of the reflecting Brownian motion t 7→ B(t) and its local time l(t) at 0 in the
following way (cf. e.g., [7], Chap. III, Subsection 4.3).

First, set

A(t) =
∫
(0,t]×W0

σ(ω)Np(ds, dω) =
∑

s∈Dp,s≤t

σ(p(s)).

As we saw in Example 2.1 above, this is a stationary Lévy process which is obviously increasing,
so it is a subordinator. By rewriting it in canonical Lévy–Itô form as we did above, we can
identify it as a stable subordinator of exponent 1/2. t 7→ A(t) is strictly increasing and
limt→∞ A(t) = ∞ a.s.. Then, setting A(0−) = 0, we see that, for every t ∈ [0,∞), there
is a unique s ∈ [0,∞), denoted by s = l(t), such that A(s−) ≤ t ≤ A(s). If A(s−) < A(s), this
implies that s ∈ Dp and we set B(t) = [p(s)](t − A((s−))). If A(s−) = A(s), we set B(t) = 0.
We can identify t 7→ B(t) and t 7→ l(t) so defined with the reflecting Brownian sample function
and its local time at 0.

From a Poisson point process of Brownian positive excursions p+ and a Poisson point
process of Brownian negative excursions p− which are mutually independent, their sum p =
p+ + p−, defined in an obvious way, is a Poisson point process with values in the disjoint union
W0 ∪ {−W0} and with the domain given by the disjoint union of Dp+ and Dp− . Then a sample
function of Brownian motion on the real line starting at the origin and its local time at the origin
can be defined from the point process p by the same procedure as above. If, in this construction,
the point processes p+ and p− are modified so that, for a given constant p with 0 < p < 1, their
characteristic measures are replaced by p · n+ and (1 − p) · n−, respectively, then we obtain a
sample function of the skew Brownian motion with the skew parameter p.

3. Excursion point processes associated with diffusion processes on the half-line satisfying
Feller’s boundary conditions

3.1

Here we give a typical example of Itô’s excursion point process and thereby the construction
of sample functions in the case of diffusion processes on the half-line [0,∞) satisfying Feller’s
boundary conditions. First, we consider the case when the diffusions are Brownian motions.

Let X = (X t , Px ), x ∈ [0,∞), be a diffusion process (i.e., a strong Markov process with
continuous paths) on the half-interval [0,∞)which behaves as a Brownian motion inside (0,∞);
however, we allow a discontinuity of the sample path when it is on the boundary x = 0, and so
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a jump may take place from the boundary to inside. Also, we attach an extra state point ∆ as
the terminal point and allow some extinction (i.e., the jump to the terminal point ∆) when the
process is on the boundary. As is shown in p. 194 of [14], such a diffusion is described by the
following parameters: Three nonnegative numbers p1, p2, p3 and a nonnegative Borel measure
p4(dx) on (0,∞) subject to the normalization

p1 + p2 + p3 +

∫
(0,∞)

(1 ∧ x)p4(dx) = 1 (3.1)

and also having the property that

if p1 < 1 and p2 + p3 = 0, then p4((0, 1]) = ∞. (3.2)

So the local generator G inside (0,∞) is given by Gu(x) = 1
2

d2u
dx2 (x) and Feller’s boundary

condition is given by

p1u(0)+ p3(Gu)(0) = p2
du

dx
(0)+

∫
(0,∞)

(u(x)− u(0))p4(dx) (3.3)

for C 2 functions u(x) on [0,∞) which are bounded together with the derivatives. We always
extend u to [0,∞) ∪ {∆} so that u(∆) = 0. We denote by C 2

b([0,∞)) the class of all such
functions. Set, for u ∈ C 2

b([0,∞)),

(Lu)(0) = −p1u(0)+ p2
du

dx
(0)− p3(Gu)(0)+

∫
(0,∞)

(u(x)− u(0))p4(dx). (3.4)

One way of stating that the local generator G and Feller’s boundary condition (3.3) determine
the diffusion X is the following: X is a stochastic process on [0,∞) ∪ {∆} with ∆ as a
trap uniquely characterized by the following property: for any u ∈ C 2

b([0,∞)), the process
t 7→ [u(X (t)) − u(X (0))] is a semimartingale with the semimartingale decomposition given
by

u(X (t))− u(X (0)) = a martingale+
∫ t

0
(Gu)(X (s))ds + (Lu)(0)φ(t),

where φ(t) is a continuous increasing process such that

φ(t) =
∫ t

0
1{0}(X (s))dφ(s) and

∫ t

0
1{0}(X (s))ds = p3φ(t). (3.5)

The constant p1 and the measure p4(dx) can be put together to define a nonnegative Borel
measure p5(dx) on the extended half-line (0,∞) ∪ {∆} so that

the restriction p5(dx)|(0,∞) = p4(dx) and 1{∆}(x)p5(dx) = p1δ{∆}(dx), (3.6)

where δ{∆}(dx) is the unit measure at the point ∆. Obviously, conversely p1 and p4 can be
recovered from p5. We can also rewrite (3.3) in the form

p3(Gu)(0) = p2
du

dx
(0)+

∫
(0,∞)∪{∆}

(u(x)− u(0))p5(dx), x ∈ [0,∞) (3.7)

for any function u(x) ∈ C 2
b([0,∞)). The rewriting (3.7) of (3.3) corresponds, in a probabilistic

language, to the identification of the absorption (i.e., the extinction or killing) with the jump to
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the terminal state ∆. Note also that, when p1 = 1, the point 0 and ∆ must be identified so that
our diffusion X is strong Markov and right-continuous.

We are now going to construct the path functions of X by Itô’s method; for a given starting
point a ∈ [0,∞), we construct the path function Xa(t) of X such that Xa(0) = a. We disregard
the trivial case p1 = 1; in this case, X starting from inside is a Brownian motion before it hits the
boundary 0 and is killed at once on hitting 0, so we need to identify 0 and ∆. Thus, we assume
that p1 < 1 from now on.

First of all, we take a sufficiently large probability space (Ω ,F , P) with a filtration (Ft ) on
which we can realize the following objects:

(i) A filtration (Gt ) on Ω such that Gt ⊂ F0 for every t > 0 and a one-dimensional (Gt )-
Brownian motion B̂a

= (B̂a(t)) such that B̂a(0) = a.
(ii) A stationary (Ft )-Poisson point process p1 on W0 with characteristic measure n+, i.e. a

Poisson point process of Brownian positive excursions (cf. Example 2.2).
(iii) A stationary (Ft )-Poisson point process p2 with values in the product space [0,∞) × W1

with characteristic measure given by the product measure p4(dx)× P1, P1 being the Wiener
measure on W1 := {w ∈ C([0,∞)→ R);w(0) = 1}.

(iv) An exponential time e such that P(e > t) = e−p1t , t ≥ 0, which is independent of B̂a , p1
and p2.

Remark 3.1. In the same spirit as combining p1 and p4 to obtain p5, the above point process
p2 and the exponential time e can be combined together to obtain a point process p3 with values
in the product space ([0,∞) ∪ {∆}) × W0. Though such an approach may be more elegant
mathematically, we shall follow a more elementary and standard route here.

We recall the notation for the spaces of paths of excursions. For x ∈ [0,∞),

Wx = {ω : [0,∞) 3 t 7→ ω(t) ∈ [0,∞); continuous, ω(0) = x, 0 < ∃σ(ω) <∞

such that ω(t) > 0 if t ∈ (0, σ (ω)) and ω(t) = 0 if t ≥ σ(ω)}. (3.8)

Note that, if x > 0, then for ω ∈ Wx , σ(ω) = min{s ≥ 0|ω(s) = 0}; while, for ω ∈ W0,
ω(0) = 0 and σ(ω) = min{s > 0|ω(s) = 0} > 0. Also, we introduce the following notation:

W++ =
⋃
x>0

Wx .

We introduce the following two operations on path spaces; here, 0 denotes the constant zero
path: 0(t) ≡ 0.

(i) For each c ≥ 0, a map T (c)1 : W0 3 ω 7→ T (c)1 (ω) ∈ W0 ∪ {0} is defined by

T (c)1 (ω)(t) =

cω

(
t

c2

)
, if c > 0

0, if c = 0.
(3.9)

(ii) A map T2 : (0,∞)×W1 3 (x, w) 7→ T2((x, w)) ∈ W++ is defined by

T2((x, w))(t) =

x · w

(
t

x2

)
, if 0 ≤ t < x2m0(w)

0, if t ≥ x2m0(w)

(3.10)

where m0(w) = inf{s > 0|w(s) = 0} for w ∈ W1. (Note that w(0) = 1 if w ∈ W1.)
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Let q1 be the image under the map T (p2)

1 of the point process p1 and q2 be the image under
the map T2 of the point process p2, so that q1 and q2 are stationary (Ft )-Poisson point processes
with values in W0 and in W++, respectively, and with characteristic measures m1 and m2,
respectively, given by

m1(A) = p2n+(A), A ∈ B(W0)

and

m2(A) =
∫
(0,∞)

P1

({
w;
[
s 7→ x · w

( s

x2 ∧ m0(w)
)]
∈ A

})
p4(dx), A ∈ B (W++) .

Then the images σ(q1) and σ(q2) of q1 and q2, respectively, under the map σ : W0∪W++ 3
ω 7→ σ(ω) ∈ (0,∞) are stationary (Ft )-Poisson point processes with values in (0,∞), which
we denote by π1 and π2, respectively. Their characteristic measures, denoted by ν1(dx) and
ν2(dx), respectively, are given by

ν1(dx) = p2
dx
√

2πx3
, ν2(dx) =

(∫
(0,∞)

y
√

2πx3
e−y2/(2x) p4(dy)

)
dx .

Let m B̂a

0 = min{s ≥ 0|B̂a(s) = 0}. We set

A(t) = m B̂a

0 +
∑

s∈Dq1 ;s≤t

σ(q1(s))+
∑

s∈Dq2 ;s≤t

σ(q2(s))+ p3t

= m B̂a

0 +

∫ t+

0

∫
W0

σ(ω)Nq1(ds, dω)+
∫ t+

0

∫
W++

σ(ω)Nq2(ds, dω)+ p3t

= m B̂a

0 +

∫ t+

0

∫
(0,∞)

x Nπ1(ds, dx)+
∫ t+

0

∫
(0,∞)

x Nπ2(ds, dx)+ p3t. (3.11)

It is easy to see that
∫
(0,∞)(1∧ x)ν1(dx)+

∫
(0,∞)(1∧ x)ν2(dx) <∞ and hence (3.11) defines

an (Ft )-subordinator (i.e., a right-continuous, increasing (Ft )-adapted process {A(t)} such that
A(t2) − A(t1) is independent of Ft1 for every 0 ≤ t1 < t2). By our assumptions (3.1) and (3.2),
we easily see that, with probability 1, t 7→ A(t) is strictly increasing and limt→∞ A(t) = ∞.

Now we define the path t ∈ [0,∞) 7→ Xa(t) ∈ [0,∞) ∪ {∆} as follows:
If 0 ≤ t ≤ m B̂a

0 , we set Xa(t) = B̂a(t).

If A(e) > t > m B̂a

0 , then there exists a unique e ≥ s > 0 such that A(s−) = A(s) = t or
A(s−) ≤ t < A(s).

In the first case, we set Xa(t) = 0.
In the second case, it must happen that either s ∈ Dq1 or s ∈ Dq2 , and exactly one case can

occur with probability 1 because Dq1 ∩ Dq2 = ∅ with probability 1. If s ∈ Dq1 , we set Xa(t) =
[q1(s)] (t − A(s−)), while if s ∈ Dq2 , we set Xa(t) = [q2(s)] (t − A(s−)).
Finally, if t ≥ A(e), we set Xa(t) = ∆.

In this way, {Xa(t)} is completely defined and we can identify it as a Brownian motion on the
half-line satisfying Feller’s boundary condition (3.3).

Remark 3.2. In the above construction, we have used the scaling property of the Wiener process
in (3.9) and (3.10). This seemingly troublesome procedure, which we can spare in the one-
dimensional case, will play a crucial role in its multi-dimensional extension, as we discuss in
the next section.
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3.2

We consider the general case in which the minimal diffusion B̂ is replaced by a more general
Feller diffusion process X̂ . Itô’s method, based on the Poisson point process of excursions, as
we have discussed in the case of the process B̂, still works. We shall only remark upon some
necessary modifications. For simplicity, we assume that X̂ is given on the half-interval (0,∞)
as a Feller diffusion with generator G = d

m(dx)
d

dx , so the canonical scale is the Euclidean scale:
s(x) = x , and the speed measure is an everywhere positive Radon measure on (0,∞). The
boundary∞ cannot be reached from inside and so we consider only the problem concerning the
boundary 0.

If
∫
(0,1) m{(x, 1]}dx = ∞, then the boundary 0 is natural and the process X̂ , starting from

inside, cannot reach 0 in a finite time. So a possible extension of X̂ does not exist.
In the case

∫
(0,1) m{(x, 1]}dx < ∞, the boundary 0 is regular or exit according as m{(0, 1]}

is finite or infinite. In both cases, the excursion measure n+ exists as an infinite measure on
the path space W0 and, as was shown by Fitzsimmons and Yano ([4]; cf. also [27]), it can be
obtained by a time change from Itô’s measure n+ of Brownian positive excursions. Hence, we
have a stationary Poisson point process p on W0 with characteristic measure n+. Let ν1 be the
characteristic measure of the point process σ [p] on (0,∞) obtained as the image of p under the
map σ : W0 3 ω 7→ σ(ω) ∈ (0,∞). Then we can show that∫

(0,∞)
(1 ∧ x)ν1(dx) is finite or infinite according as the boundary 0 is regular or exit.

Hence, in the regular case, the totality of extensions are described by the same Feller boundary
conditions as (3.3) in which, however, we understand that Gu = d

m(dx)
du
dx and the domain

C 2
b([0,∞)) needs to be modified.

In the exit case, we have, almost surely,
∫ t+

0

∫
W0

σ(ω)Np(ds, dω) = ∞ for t > 0 so we
cannot define a subordinator. This fact implies that we must have p2 = 0 in the boundary
condition, that is, a continuous entering inside from the boundary is impossible. Entering
is possible only by jumping-in. The jumping-in measure p4(dx) is possible if and only if∫
∞

0

((∫ x
0 m{(y, 1]}dy

)
∧ 1

)
p4(dx) <∞ ([11]; cf. also [28]).

As we remarked in the Introduction, the study of all possible boundary conditions in this exit
boundary case has been a main motivation for Itô in his theory of excursion point processes.

4. The multi-dimensional case: Diffusions with Wentzell’s boundary conditions

We shall consider the multi-dimensional extension of the problem which we discussed in the
previous section for one-dimensional half-intervals. A diffusion process in a multi-dimensional
domain or manifold is described by Kolmogorov’s differential equations (i.e., a semielliptic
second-order differential operator) and, when the boundary exists, its possible behavior on the
boundary is determined by Wentzell’s boundary condition (cf. [26]). In the one-dimensional
case, the problem was completely settled by Feller and by Itô and McKean, for which we have
discussed the construction of path functions in the previous section. After the success of the
Itô–McKean theory, the problems concerning Wentzell’s boundary condition were studied by
many people with various approaches: for example, in an analytical approach, Sato and Ueno [22]
laid out a fundamental route and, by following it, Bony, Courrège and Priouret [1] succeeded in
constructing diffusions in a very general case; in a probabilistic approach, Ikeda [6] applied Itô’s
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SDE in a two-dimensional case and Watanabe (cf. [7]) and El Karoui [3] applied the SDE method
in a general case.

Here, we shall show that Itô’s method based on excursion point processes, as applied above in
the one-dimensional case, still works well for this problem; such an approach has been discussed
by Watanabe [25] (cf. also [7]), Takanobu [23] and Takanobu and Watanabe [24].

Let D = (Rd)+ = {x = (x1, . . . , xd); xd
≥ 0} be the upper half-space of Rd , D◦ =

{x ∈ D; xd > 0} be its interior, and so its boundary is a (d − 1)-dimensional hyperplane given
by ∂D = {x ∈ D; xd

= 0}. We denote x ∈ D as x = (x̄, xd), x̄ = (x1, . . . , xd−1), and so
(x̄, 0) ∈ ∂D.

Suppose we are given a second-order differential operator G on D, for u ∈ C 2
b(D) (the space

of C 2-functions on D, bounded and with bounded derivatives),

Gu(x) =
1
2

d∑
i, j=1

ai j (x)
∂2u

∂x i∂x j (x)+
d∑

i=1

bi (x)
∂u

∂x i (x), (4.1)

and Wentzell’s boundary condition:

Lu((x̄, 0)) =
1
2

d−1∑
i, j=1

αi j ((x̄, 0))
∂2u

∂x i∂x j ((x̄, 0))+
d−1∑
i=1

β i ((x̄, 0))
∂u

∂x i ((x̄, 0))

+µ((x̄, 0))
∂u

∂xd ((x̄, 0))− ρ((x̄, 0)) · (Gu)((x̄, 0))

+

∫
{D\{0}}∩{|y|≤1}

{
u((x̄, 0)+ y)− u((x̄, 0))−

d−1∑
i=1

yi ∂u

∂x i ((x̄, 0))
}

n x̄ (dy)

+

∫
{D\{0}}∩{|y|>1}

{u((x̄, 0)+ y)− u((x̄, 0))} n x̄ (dy), (4.2)

where:

(i) ai j (x) and bi (x)i, j = 1, . . . , d , are bounded Borel-measurable functions on D such that
ai j (x) = a j i (x),

∑d
i, j=1 ai j (x)ξ iξ j

≥ 0 for all ξ ∈ Rd ,
(ii) αi j ((x̄, 0)), β i ((x̄, 0)), i, j = 1, . . . , d − 1, µ((x̄, 0)) and ρ((x̄, 0)) are bounded Borel-

measurable functions on ∂D such that αi j ((x̄, 0)) = α j i ((x̄, 0)),
∑d−1

i, j=1 α
i j ((x̄, 0))ξ iξ j

≥

0 for all ξ ∈ Rd−1, µ((x̄, 0)) ≥ 0 and ρ((x̄, 0)) ≥ 0,
(iii) for each (x̄, 0) ∈ ∂D, n x̄ (dy) is a nonnegative Radon measure on D \ {0} such that∫

{D\{0}}∩{|y|≤1}

(
|ȳ|2 + yd

)
n x̄ (dy)+ n x̄ ({D \ {0}} ∩ {|y| > 1}) <∞, (4.3)

and the integral (4.3) is bounded in x̄ .

Remark 4.1. We often denote a function f ((x̄, 0)) on the boundary simply by f (x̄), so we write
αi j ((x̄, 0)) = αi j (x̄), β i ((x̄, 0)) = β i (x̄), and so on.

Remark 4.2. We have assumed that the coefficients in G and L are bounded globally, which
may seem too strong. However, by a standard localization argument, more general cases can
be reduced to this case and so we do not hesitate to set such assumptions. Also, we treat here
only conservative diffusions, although we know well how to treat more general cases; for the
one-dimensional case, we treated the general case in the previous section.

Our objective is a diffusion process X = (X (t), Px ) on D determined by a pair of analytic
data (G, L).
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Definition 4.1. By a (G, L)-process X = (X (t), Px ), we mean a càdlàg process X (t) on D such
that, under Px , X (0) = x a.s., and, for every u ∈ C 2

b(D), the process t ∈ [0,∞) 7→ u(X (t)) is a
semimartingale with the semimartingale decomposition given by

u(X (t)) = u(x)+ a martingale+
∫ t

0
(Gu)(X (s))ds +

∫ t

0
(Lu)(X (s))dφ(s) (4.4)

where φ(s) is a continuous increasing process such that∫ t

0
1∂D(X (s))dφ(s) = φ(t) and

∫ t

0
1∂D(X (s))ds =

∫ t

0
ρ(X (s))dφ(s). (4.5)

It is well-known that, if we can show the uniqueness in law of a (G, L)-process, then it is a
diffusion process. We shall extend our method based on excursion point processes given in the
previous section to construct (G, L)-process and discuss its uniqueness in law.

4.1. The case of G = 1
2∆ and Wentzell’s boundary operator L with constant coefficients

The simplest case is when ai j (x), bi (x), αi j (x̄), β i (x̄), µ(x̄) and ρ(x̄) are all constants:
ai j (x) = ai j , bi (x) = bi , αi j (x̄) = αi j , β i (x̄) = β i , µ(x̄) = µ, ρ(x̄) = ρ, and the measure
n x̄ (dy) := n(dy) is independent of x̄ . We assume, for simplicity, that ai j

= δi j and bi
= 0, and

so G = 1
2∆; probabilistically, the minimal diffusion is a Brownian motion B̂(t) in D◦ before it

hits the boundary ∂D. So, we are given a symmetric, nonnegative definite (d−1)×(d−1)-matrix
αi j , a (d − 1)-vector β i , nonnegative constants µ and ρ, and a nonnegative measure n(dy) on
D \ {0}.

Lemma 4.1. For some positive integer l, there exists a Borel map

g : (Rl)+ 3 u 7→ g(u) = (ḡ(u), gd(u)) ∈ D (4.6)

with g(0) = 0 which satisfies the following properties:

(i) On the set {u ∈ (Rl)+; |u| ≤ 1}, the function g(u) is bounded.
(ii) lim|u|→0 g(u) = 0.

(iii) The image of the measure du
|u|l+1 on {u ∈ (Rl)+; |g(u)| > 0} under the map u 7→ y = g(u)

coincides with the measure n(dy) on D \ {0}. Here, du is the l-dimensional Lebesgue
measure.

A proof is omitted. By (4.3), we have∫
{0<|u|≤1}∩(Rl )+

{
|ḡ(u)|2 + gd(u)

} du

|u|l+1 <∞. (4.7)

So, instead of the Wentzell boundary operator L of the type given by (4.2), we may start with
one of the following form:

Lu((x̄, 0)) =
1
2

d−1∑
i, j=1

αi j ∂2u

∂x i∂x j ((x̄, 0))+
d−1∑
i=1

β i ∂u

∂x i ((x̄, 0))

+µ
∂u

∂xd ((x̄, 0))− ρ · (Gu)((x̄, 0))
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+

∫
{0<|u|≤1}∩(Rl )+

{
u((x̄, 0)+ g(u))− u((x̄, 0))−

d−1∑
i=1

g(u)i
∂u

∂x i ((x̄, 0))

}
du

|u|l+1

+

∫
{|u|>1}∩(Rl )+

{u((x̄, 0)+ g(u))− u((x̄, 0))}
du

|u|l+1 . (4.8)

We introduce several path spaces in D to describe excursions away from the boundary. We set

W(D) = {w ∈ C([0,∞)→ D);w(t ∧ σ(w)) = w(t)} (4.9)

where

σ(w) = inf{t > 0;w(t) ∈ ∂D}. (4.10)

We set also

W+(D) = {w ∈ W(D); σ(w) > 0}. (4.11)

For x ∈ D, let Wx (D) (resp. W+
x (D)) be the subclass of W(D) (resp, W+(D)) consisting of

all paths w such that w(0) = x .
Note that, if x ∈ D◦, then Wx (D) = W+

x (D), while, if x ∈ ∂D, then Wx (D) = W+
x (D)∪{x},

where x is the constant path at x : x(t) ≡ x .
We are now going to construct the ( 1

2∆, L)-diffusion process X; we shall define its path
function Xa(t) starting at a ∈ D, i.e., Xa(0) = a. First of all, we take a sufficiently large
probability space (Ω ,F , P) with a filtration (Ft ) on which we can realize the following objects:

(i) A filtration (Gt ) on Ω such that Gt ⊂ F0 for every t > 0 and a d-dimensional (Gt )-Brownian
motion B̂a

= (B̂a(t)) such that B̂a(0) = a.
(ii) A stationary (Ft )-Poisson point process p1 with values in the product space W (d−1)

0 ×W0,

having characteristic measure P(d−1)
0 × n+. Here, W (d−1)

0 = {w ∈ C([0,∞) → Rd−1);

w(0) = 0} and P(d−1)
0 is the (d − 1)-dimensional Wiener measure on W (d−1)

0 . The one-
dimensional path space W0 and the measure n+ on W0 are the same as in Section 3.1;
n+ is the excursion measure of one-dimensional positive Brownian excursions on W0 (cf.
Example 2.2).

(iii) A stationary (Ft )-Poisson point process p2 with values in the product space W d
(0̄,1)
×((Rl)+\

{0}) with characteristic measure given by the product measure P(d)
(0̄,1)
×

(
du
|u|l+1

)
. Here,

W d
(0̄,1)
= {w ∈ C([0,∞) → Rd);w(0) = (0̄, 1)} (0̄ is the origin in Rd−1), and P(d)

(0̄,1)

is d-dimensional Wiener measure on W d
(0̄,1)

, u ∈ (Rl)+ \ {0} and du is the l-dimensional
Lebesgue measure.

(iv) A continuous (Ft )-Lévy process (a Gaussian diffusion) η(t) on ∂D ∼= Rd−1 with η(0) = 0,
associated with the covariance matrix αi j , i, j = 1, . . . , d − 1, and the drift vector β̃ i ,
i = 1, . . . , d − 1, given by

β̃ i
= β i

−

∫
(Rl )+∩{0<|u|≤1}

gi (u) · P(d)
(0̄,1)
[σ(w) > h(u)−2

]
du

|u|l+1 , (4.12)

where, for w = (w̄, wd) ∈ W d
(0̄,1)

, we set σ(w) = min{s ≥ 0;wd(s) = 0}. Here, the
function h(u) is defined by (4.19) below.
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We set up the point processes p1 and p2 as mutually independent: Then all the random elements
B̂a , p1, p2 and η are mutually independent.

An element of the product space W (d−1)
0 × W0 is denoted by [w̄, ω] with w̄ = (w̄(t)) ∈

W (d−1)
0 and ω = (ω(t)) ∈ W0. Also, an element in the product space W d

(0̄,1)
× ((Rl)+ \ {0}) is

denoted by [w, u] with w = (w(t)) ∈ W d
(0̄,1)

and u ∈ (Rl)+ \ {0}.
We define the following mappings (in the following, when there is no fear of confusion, we

often identify x̄ ∈ Rd−1 with (x̄, 0) ∈ ∂D, for simplicity):

Φ : ∂D × {W (d−1)
0 ×W0} 3 (x̄, [w̄, ω]) 7→ Φ(x̄, [w̄, ω]) ∈ Wx̄ (D)

and

Ψ : ∂D × {W d
(0̄,1)
× ((Rl)+ \ {0})} 3 (x̄, [w, u]) 7→ Ψ(x̄, [w, u]) ∈ W(x̄,0)+g(u)(D).

The definition of Φ is as follows:
Φ(x̄, [w̄, ω]) = (Φ̄(x̄, [w̄, ω]),Φd(x̄, [w̄, ω])),

Φ̄(x̄, [w̄, ω])(t) =

x̄ + µ · w̄

(
t

µ2 ∧ σ(ω)

)
, in the case µ > 0,

x̄, in the case µ = 0,
(4.13)

and

Φd(x̄, [w̄, ω])(t) =

µ · ω
(

t

µ2

)
, in the case µ > 0,

0, in the case µ = 0.
(4.14)

The definition of Ψ is as follows: Denoting Ψ(x̄, [w, u]) = (Ψ̄(x̄, [w, u]),Ψd(x̄, [w, u])) with
w = (w̄, wd) and, remembering σ(w) = min{s ≥ 0;wd(s) = 0},

Ψ̄(x̄, [w, u])(t)

=

x̄ + ḡ(u)+ gd(u) · w̄

(
t

(gd(u))2
∧ σ(w)

)
, in the case gd(u) > 0,

x̄ + ḡ(u), in the case gd(u) = 0,
(4.15)

and

Ψd(x̄, [w, u])(t) =

gd(u) · wd
(

t

(gd(u))2
∧ σ(w)

)
, in the case gd(u) > 0,

0, in the case gd(u) = 0.
(4.16)

Note that Φ(x̄, [w̄, ω])(0) = (x̄, 0) ∈ ∂D, while Ψ(x̄, [w, u])(0) = (x̄, 0) + g(u), which is in
D \ {(x̄, 0)} when g(u) 6= 0.

Then σ {Φ(x̄, [w̄, ω])} and σ {Ψ(x̄, [w, u])} are given, respectively, by µ2σ(ω) and
(gd(u))2σ(w), which are independent of x̄ and we denote them by σ̂ ([w̄, ω]) and σ̂ ([w, u]),
respectively. Then it is easy to deduce the following:∫

W (d−1)
0 ×W0

σ̂ ([w̄, ω]) · 1{σ(ω)≤1}P
(d−1)
0 (dw̄)n+(dω)

=

∫
W0

µ2σ(ω) · 1{σ(ω)≤1}n+(dω) <∞ (4.17)
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and ∫
W (d−1)

0 ×W0

1{σ(ω)>1}P
(d−1)
0 (dw̄)n+(dω) =

∫
W0

1{σ(ω)>1}n+(dω) <∞. (4.18)

We set

h(u) = |ḡ(u)|2 + gd(u), u ∈ (Rl)+ \ {0}, (4.19)∫
W (d)
(0̄,1)
×(Rl )+

σ̂ ([w, u]) · 1{σ(w)≤h(u)−2, 0<|u|≤1}P
(d)
(0̄,1)

(dw)
du

|u|l+1

=

∫
(Rl )+

E (d)
(0̄,1)

[
(gd(u))2σ(w); σ(w) ≤ h(u)−2

]
· 1{0<|u|≤1}

du

|u|l+1 <∞, (4.20)

and ∫
W (d)
(0̄,1)
×(Rl )+

1{σ(w)>h(u)−2 or |u|>1}P
(d)
(0̄,1)

(dw)
du

|u|l+1 <∞. (4.21)

For example, (4.20) and (4.21) can be verified easily from (4.7) if we note simple estimates
like P(d)

(0̄,1)
(σ (w) > h(u)−2) = O(h(u)) and E (d)

(0̄,1)
(σ (w) ∧ h(u)−2) = O(h(u)−1) as |u| → 0.

We define two ∂D-valued functions:

ϕ(x̄, [w̄, ω]) = Φ(x̄, [w̄, ω])(σ [Φ(x̄, [w̄, ω])])− x̄ (4.22)

and

ψ(x̄, [w, u]) = Ψ(x̄, [w, u])(σ [Ψ(x̄, [w, u])])− x̄ . (4.23)

Then we see immediately that

ϕ(x̄, [w̄, ω]) =

{
µ · w̄(σ (ω)), in the case µ > 0,
0̄, in the case µ = 0,

(4.24)

and, writing w = (w̄, wd),

ψ(x̄, [w, u]) =

{
ḡ(u)+ gd(u) · w̄(σ (w)), in the case gd(u) > 0,
ḡ(u), in the case gd(u) = 0,

(4.25)

so that both are independent of x̄ . We denote them by ϕ([w̄, ω]) and ψ([w, u]), respectively.
Then, we can easily obtain the following estimates:∫

W (d−1)
0 ×W0

|ϕ([w̄, ω])|2 · 1{σ(ω)≤1}P
(d−1)
0 (dw̄)n+(dω) <∞ (4.26)

and ∫
W (d)
(0̄,1)
×(Rl )+

|ψ([w, u])|2 · 1{σ(w)≤h(u)−2, 0<|u|≤1}P
(d)
(0̄,1)

(dw)
du

|u|l+1 <∞. (4.27)

We define an (Ft )-Lévy process ξ = (ξ(t)) on ∂D ∼= Rd−1 by setting

ξ(t) = B̂a(m B̂a

∂D)+ η(t)+
∫ t+

0

∫
W (d−1)

0 ×W0

ϕ([w̄, ω]) · 1{σ(ω)≤1} Ñp1(ds, d([w̄, ω]))
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+

∫ t+

0

∫
W (d−1)

0 ×W0

ϕ([w̄, ω]) · 1{σ(ω)>1}Np1(ds, d([w̄, ω]))

+

∫ t+

0

∫
W (d)
(0̄,1)
×(Rl )+

ψ([w, u]) · 1{σ(w)≤h(u)−2, 0<|u|≤1} Ñp2(ds, d([w, u]))

+

∫ t+

0

∫
W (d)
(0̄,1)
×(Rl )+

ψ([w, u]) · 1{σ(w)>h(u)−2 or |u|>1}Np2(ds, d([w, u])), (4.28)

where

m B̂a

∂D = inf{s ≥ 0; B̂a(s) ∈ ∂D}. (4.29)

By (4.18), (4.21), (4.26) and (4.27), the right-hand side (RHS) of (4.28) is well-defined and it
yields an (Ft )-Lévy process.

Also, we define an increasing (Ft )-Lévy process A = (A(t)) by setting

A(t) = m B̂a

∂D + ρt +
∫ t+

0

∫
W (d−1)

0 ×W0

σ̂ ([w̄, ω])Np1(ds, d([w̄, ω]))

+

∫ t+

0

∫
W (d)
(0̄,1)
×((Rl )+\{0})

σ̂ ([w, u])Np2(ds, d([w, u])). (4.30)

By (4.17), (4.18), (4.20) and (4.21), the RHS of (4.30) is well-defined and yields an increasing
(Ft )-Lévy process. Since σ̂ ([w̄, ω]) = µ2σ(ω) and σ̂ ([w, u]) = (gd(u))2σ(w), it is easy to see
that limt→∞ A(t) = ∞ a.s., if and only if µ+ ρ +

∫
(Rl )+

1{gd (u)>0}du > 0 (including the value
infinity). It is also easy to see that t 7→ A(t) is strictly increasing a.s., if and only if the following
condition(H1) is satisfied.

(H1) At least one of the following three conditions is satisfied:

(i) µ > 0, (ii) ρ > 0, (iii)
∫
(Rl )+

1{0<|u|≤1, gd (u)>0}
du

|u|l+1 = ∞.

Note that we have limt→∞ A(t) = ∞ a.s., when (H1) is satisfied.
In the following, we assume that(H1) is satisfied.

Now we can define the path function Xa(t). Setting A(0−) = 0, the following holds with
probability 1: For any given t ∈ [0,∞), there exists a unique s ∈ [0,∞), denoted by s = φ(t),
such that A(s−) ≤ t ≤ A(s).

If s = 0, then this implies that 0 ≤ t ≤ m B̂a
and we set Xa(t) = B̂a(t).

If s > 0 and if A(s) > A(s−), then this implies that s ∈ Dp1 ∪ Dp2 . By the independence of
p1 and p2, we have Dp1 ∩ Dp2 = ∅ a.s., so that only one case, s ∈ Dp1 or s ∈ Dp2 , can occur. In
the first case, we set

Xa(t) = Φ(ξ(s−),p1(s))(t − A(s−)).

In the second case, we set

Xa(t) = Ψ(ξ(s−),p2(s))(t − A(s−)).

If s > 0 and if A(s) = A(s−), then this implies that either s ∈ Dp2 and σ̂ (p2(s)) = 0, or
s 6∈ Dp1 ∪ Dp2 .
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In the first case, we set

Xa(t) = ξ(s)(=Ψ(ξ(s−),p2(s))(0)) = ξ(s−)+ ḡ(us)

where us denotes the “u-component” of p2(s) ∈ W (d)
(0̄,1)
× ((Rl)+ \ {0}).

In the second case, we have ξ(s) = ξ(s−) and we set

Xa(t) = ξ(s).

In this way, we have completely defined the path function {Xa(t)}. We can identify this as a
(G, L)-process and show its uniqueness in law.

4.2. The case of G = 1
2∆ and with Wentzell’s boundary operator L of variable coefficients

Here, we consider (G, L)-diffusion processes with G = 1
2∆ as in the previous subsection

but the boundary operator L has variable coefficients. So we treat the case of L given in the
same form as (4.8) in which, however, αi j , β i , µ, ρ, and g(u) = (ḡ(u), gd(u)) may depend
on the boundary points x̄ ∈ ∂D, so that they are replaced by αi j (x̄), β i (x̄), µ(x̄), ρ(x̄),
g(x̄, u) = (ḡ(x̄, u), gd(x̄, u)). Of course, these functions satisfy, at each fixed x̄ ∈ ∂D, the
same conditions as were given in the previous section and we assume, for simplicity, that these
functions are bounded on ∂D. As for g(x̄, u) = (ḡ(x̄, u), gd(x̄, u)), we assume, more precisely,
that there exists a positive function h(u), of u ∈ (Rl)+, having the property that h(0) = 0,
lim|u|→0 h(u) = 0, bounded on {0 < |u| ≤ 1} and∫

(Rl )+∩{0<|u|≤1}
h(u)

du

|u|l+1 <∞, (4.31)

which satisfies

|ḡ(x̄, u)|2 + gd(x̄, u) ≤ h(u) if x̄ ∈ ∂D and 0 < |u| ≤ 1. (4.32)

Now we define the mappings

Φ : ∂D × {W (d−1)
0 ×W0} → W(D)

and

Ψ : ∂D × {W d
(0̄,1)
× ((Rl)+ \ {0})} → W(D)

in the same way as (4.13) and (4.14) and as (4.15) and (4.16), respectively, in which, however,
we replace µ and g(u) = (ḡ(u), gd(u)) by µ(x̄) and g(x̄, u) = (ḡ(x̄, u), gd(x̄, u)), respectively.
Then,

σ̂ (x̄, [w̄, ω]) := σ {Φ(x̄, [w̄, ω])}, and σ̂ (x̄, [w, u]) := σ {Ψ(x̄, [w, u])}

now depend on x̄ .
Also, ∂D-valued functions ϕ(x̄, [w̄, ω]) and ψ(x̄, [w, u]) are defined by (4.22) and (4.23),

respectively, which now really depend on x̄ . Then, (4.24) and (4.25) hold in which, however, µ
and g(u) = (ḡ(u), gd(u)) are replaced by µ(x̄) and g(x̄, u) = (ḡ(x̄, u), gd(x̄, u)), respectively.

Now, (4.18) and (4.21) hold and estimates like (4.17), (4.20), (4.26) and (4.27) still hold by
modifying the dependence in x̄ ; in these estimates, the integrals in the LHS’s are uniformly
bounded in x̄ .
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The path function of a (G, L)-diffusion can be defined in the same way as in the previous
section from a process (ξ(t)) on the boundary ∂D and an increasing process (A(t)). However,
they are no longer Lévy processes. Eq. (4.28) for the process (ξ(t)) now turns out to be a SDE
of jump type (cf. (4.36) below).

We add further sufficient conditions on the coefficients of L so that the SDE has a pathwise
unique solution (in the following, K denotes some positive constant):

(1) There exist bounded functions τ i
k (x̄), i = 1, . . . , d − 1, k = 1, . . . , r , such that

αi j (x̄) =
r∑

k=1

τ i
k (x̄)τ

j
k (x̄)

and

|τ i
k (x̄)− τ

i
k (ȳ)| ≤ K |x̄ − ȳ|.

(2)

|β i (x̄)− β i (ȳ)| ≤ K |x̄ − ȳ|.

(3)

|µ(x̄)− µ(ȳ)| ≤ K |x̄ − ȳ|.

(4) For every u ∈ (Rl)+ such that 0 < |u| ≤ 1,

|ḡ(x̄, u)− ḡ(ȳ, u)|2 ≤ K · h(u)|x̄ − ȳ|2,

and

|gd(x̄, u)− gd(ȳ, u)| ≤ K · h(u)|x̄ − ȳ|.

We can deduce the following estimates from (3) and (4):∫
W (d−1)

0 ×W0

|ϕ(x̄, [w̄, ω])− ϕ(ȳ, [w̄, ω])|2 · 1{σ(ω)≤1}P
(d−1)
0 (dw̄)n+(dω)

≤ K |x̄ − ȳ|2 (4.33)

and ∫
W (d)
(0̄,1)
×(Rl )+

|ψ(x̄, [w, u])− ψ(ȳ, [w, u])|2 · 1{σ(w)≤h(u)−2, 0<|u|≤1}P
(d)
(0̄,1)

(dw)
du

|u|l+1

≤ K |x̄ − ȳ|2. (4.34)

We are now going to construct a path function (Xa(t)) of the (G = 1
2∆, L)-diffusion process

starting at a ∈ D. First of all we set up the following on some probability space with a filtration
(Ft ).

(i) A filtration (Gt ) on Ω such that Gt ⊂ F0 for every t > 0 and a d-dimensional (Gt )-Brownian
motion B̂a

= (B̂a(t)) such that B̂a(0) = a.
(ii) A stationary (Ft )-Poisson point process p1 with values in the product space W (d−1)

0 ×W0,

having characteristic measure P(d−1)
0 × n+. Here, W (d−1)

0 = {w ∈ C([0,∞) → Rd−1);

w(0) = 0} and P(d−1)
0 is the (d − 1)-dimensional Wiener measure on W (d−1)

0 . The one-
dimensional path space W0 and the measure n+ on W0 are the same as in Section 3.1; n+
is the positive Brownian excursion measure on W0 (cf. Example 2.2).
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(iii) A stationary (Ft )-Poisson point process p2 with values in the product space W d
(0̄,1)
×((Rl)+\

{0}) with characteristic measure given by the product measure P(d)
(0̄,1)
×

(
du
|u|l+1

)
. Here,

W d
(0̄,1)
= {w ∈ C([0,∞) → Rd);w(0) = (0̄, 1)} (0̄ is the origin in Rd−1), and P(d)

(0̄,1)

is d-dimensional Wiener measure on W d
(0̄,1)

, u ∈ (Rl)+ \ {0} and du is the l-dimensional
Lebesgue measure.

(iv) An r -dimensional (Ft )-Brownian motion B = (Bk(t))rk=1 with B(0) = 0.

Define the functions β̃ i (x̄), i = 1, . . . , d − 1, on ∂D by

β̃ i (x̄) = β i
−

∫
(Rl )+∩{0<|u|≤1}

gi (x̄, u) · P(d)
(0̄,1)
[σ(w) > h(u)−2

]
du

|u|l+1 . (4.35)

It is easy to see that β̃ i (x̄) is also Lipschitz continuous. Define the ∂D-valued functions τ̄k(x̄),
k = 1, . . . , r , and β̌(x̄) by setting

τ̄k(x̄) = (τ
i
k (x̄))

d−1
i=1 , β̌(x̄) = (β̃ i (x̄))d−1

i=1 .

Consider the following SDE of jump type:

ξ(t) = B̂a(m B̂a

∂D)+

r∑
k=1

∫ t

0
τ̄k(ξ(s))dBk(s)+

∫ t

0
β̌(ξ(s))ds

+

∫ t+

0

∫
W (d−1)

0 ×W0

ϕ(ξ(s−), [w̄, ω]) · 1{σ(ω)≤1} Ñp1(ds, d([w̄, ω]))

+

∫ t+

0

∫
W (d−1)

0 ×W0

ϕ(ξ(s−), [w̄, ω]) · 1{σ(ω)>1}Np1(ds, d([w̄, ω]))

+

∫ t+

0

∫
W (d)
(0̄,1)
×(Rl )+

ψ(ξ(s−), [w, u]) · 1{σ(w)≤h(u)−2, 0<|u|≤1} Ñp2(ds, d([w, u]))

+

∫ t+

0

∫
W (d)
(0̄,1)
×(Rl )+

ψ(ξ(s−), [w, u]) · 1{σ(w)>h(u)−2 or |u|>1}Np2(ds, d([w, u])). (4.36)

By the estimates (4.33) and (4.34) combined with the Lipschitz continuity of τ̄k and β̌, we can
apply Theorem 2.1 to conclude that ξ(t) is determined uniquely as the pathwise unique solution
of (4.36).

Then A(t) can be defined by

A(t) = m B̂a

∂D +

∫ t

0
ρ(ξ(s))ds +

∫ t+

0

∫
W (d−1)

0 ×W0

σ̂ (ξ(s−), [w̄, ω])Np1(ds, d([w̄, ω]))

+

∫ t+

0

∫
W (d)
(0̄,1)
×((Rl )+\{0})

σ̂ (ξ(s−), [w, u])Np2(ds, d([w, u])). (4.37)

We assume that the following condition (H2) is satisfied:

(H2) For every x̄ ∈ ∂D, one of the following three conditions holds:

(i) µ(x̄) > 0, (ii) ρ(x̄) > 0, (iii)
∫
(Rl )+

1{0<|u|≤1, gd (x̄,u)>0}
du

|u|l+1 = ∞.

Then we can conclude that, with probability 1, t 7→ A(t) is strictly increasing and limt→∞
A(t) = ∞. Now, Xa(t) can be constructed in exactly the same way as in the previous subsection.
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4.3. The case of G being a general second-order elliptic differential operator

We consider the case of Gu(x) = 1
2

∑d
i, j=1 ai j (x) ∂2u

∂x i ∂x j (x)+
∑d

i=1 bi (x) ∂u
∂x i (x). We assume

that there exist bounded functions θ i
q(x), i = 1, . . . , d , q = 1, . . . ,m, such that

ai j (x) =
m∑

q=1

θ i
q(x)θ

j
q (x).

We also assume the Lipschitz conditions:

|θ i
q(x)− θ

i
q(y)| + |b

i (x)− bi (y)| ≤ K |x − y|.

We assume further that add(x) = 1 on D and

θd
q (x) = 0, q = 1, . . . ,m − 1 and θd

m(x) = 1. (4.38)

This assumption is not so restrictive; if add(x) > 0 everywhere on D, then, at least locally,
the problem can be reduced to this case by a method of time change or a transformation of
coordinates. As for the boundary operator L described by functions αi j (x̄), β i (x̄), µ(x̄), ρ(x̄)
and g(x̄, u) = (ḡ(x̄, u), gd(x̄, u)), we make all the same assumptions as we did in the previous
subsection.

We shall apply the same method as in the previous section: A necessary modification is
that, instead of the product spaces W (d−1)

0 × W0 and W d
(0̄,1)
× ((Rl)+ \ {0}), we take spaces

W (m−1)
0 ×W0 and W m

(0̄,1)
× ((Rl)+ \ {0}), respectively, whose elements are denoted by the same

notation [w̄, ω] and [w, u] as above, with w̄ ∈ W (m−1)
0 , w ∈ W m

(0̄,1)
and 0̄ is the origin in Rm−1.

We define the mappings

Φ : ∂D × {W (m−1)
0 ×W0} 3 (x̄, [w̄, ω]) 7→ Φ(x̄, [w̄, ω]) ∈ Wx̄ (D)

and

Ψ : ∂D × {W m
(0̄,1)
× ((Rl)+ \ {0})} 3 (x̄, [w, u]) 7→ Ψ(x̄, [w, u]) ∈ W(x̄,0)+g(u)(D).

To define them, we first consider the following d-dimensional SDE for Y (t) = (Y i (t)) on the
measure space {W (m−1)

0 ×W0, P(m−1)
0 × n+}: for given x̄ = (x1, . . . , xd−1),

Y i (t) = x i
+ c

m−1∑
q=1

∫ t

0
θ i

q(Y (s))dw
q(s)

+ c
∫ t

0
θ i

m(Y (s))dω(s)+ c2
∫ t

0
bi (Y (s))ds, i = 1, . . . , d − 1,

Y d(t) = cω(t), (4.39)

where c is a given nonnegative constant. Since n+ is the Brownian excursion measure, the
stochastic integral for dω(s) can be defined as in ordinary Itô calculus and the above SDE has a
pathwise unique solution. We denote this solution as Y (c) = (Y (c)(t; x̄, [w̄, ω])).

Next, we consider the following d-dimensional SDE for Z(t) = (Z i (t)) on the Wiener space
{W (m)

(0̄,1)
, P(m)

(0̄,1)
}: for given x̄ = (x1, . . . , xd−1),
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Z i (t) = x i
+ c

m∑
q=1

∫ t

0
θ i

q(Z(s))dw
q(s)+ c2

∫ t

0
bi (Z(s))ds, i = 1, . . . , d − 1,

Zd(t) = cwm(t), (4.40)

where c is a given nonnegative constant. We denote its pathwise unique solution by Z (c) =
(Z (c)(t; x̄, w)).

Now the definition of Φ(x̄, [w̄, ω]) is as follows:

Φ(x̄, [w̄, ω])(t) =

Y (µ(x̄))
(

t

µ2(x̄)
∧ σ(ω); x̄, [w̄, ω]

)
, in the case µ (x̄) > 0,

(x̄, 0), in the case µ(x̄) = 0.
(4.41)

The definition of Ψ(x̄, [w, u]) is as follows: letting σ(w) = inf{s ≥ 0;wm(s) = 0},

Ψ(x̄, [w, u])(t)

=

Z (g
d (x̄,u))

(
t

(gd)2(x̄, u)
∧ σ(w); x̄, w

)
, in the case gd(x̄, u) > 0,

(x̄ + ḡ(x̄, u), 0), in the case gd(x̄, u) = 0.
(4.42)

Note that

Φ(x̄, [w̄, ω])(0) = (x̄, 0) and Ψ(x̄, [w, u])(0) = (x̄, 0)+ g(x̄, u).

Using these Φ and Ψ , σ̂ (x̄, [w̄, ω]), σ̂ (x̄, [w, u]), ϕ(x̄, [w̄, ω]) and ψ(x̄, [w, u]) are defined
in the same way as above and the construction of the path function Xa(t) can be carried out
in the same way under the same condition (H2). A necessary modification is just that the d-
dimensional (Gt )-Brownian motion (B̂a(t)), which was used to construct the part of the diffusion
before hitting the boundary, should be replaced by a (Gt )-measurable continuous process X̂a(t)
on Rd which starts at a ∈ D. This process is obtained as the pathwise unique solution of the SDE

X̂ i (t) = ai
+

m∑
q=1

∫ t

0
θ i

q(X̂(s))dBq(s)+
∫ t

0
bi (X̂(s))ds, i = 1, . . . , d,

where (Bq(t)) is an m-dimensional (Gt )-Brownian motion which we first set up on the
probability space.

Now, we can identify this process (Xa(t)) as the unique (G, L)-diffusion in law under the
conditions on the coefficients that we imposed above. The details appear in [24], though some
modifications should be made which we omit in this paper.
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[9] K. Itô, On stochastic differential equations, Mem. Amer. Math. Soc. 4 (1951) 1–51.
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