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Let X,,..., X, be p (2 3) independent random variables, where each Xi has a 
distribution belonging to the one-parameter exponential family of distributions. The 
problem is to estimate the unknown parameters simultaneously in the presence of 
extreme observations. C. Stein (Ann. Statist. 9 (1981), 1135-l 151) proposed a 
method of estimating the mean vector of a multinormal distribution, based on order 
statistics corresponding to the /XJ’s. which permitted improvement over the usual 
maximum likelihood estimator, for long-tailed empirical distribution functions. In 
this paper, the ideas of Stein are extended to the general discrete and absolutely 
continuous exponential families of distributions. Adaptive versions of the estimators 
arc also discussed. 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

Let X, ,..., XP be p (> 3) independent normal variables with respective 
means 0, ,..., 0, and common unit variance. For estimating 0 = (0, ,..., 19,) 
under the loss L(f3, a) = Cf=, (Oi - q)*, the James-Stein estimator 
6’(X) = (1 - (p - 2)/C?= 1 X:)X dominates X = (X, ,..., X,). Efron and 
Morris [6] noted that do, while guaranteeing a reduction in the total risk ofp 
of the maximum likelihood estimator (MLE) X, might do poorly in 
estimating those 0:s with unusually large or small values. Accordingly, they 
proposed a compromise between S”(X) and X which consisted of using the 
components of 6’ subject to a maximum deviation from the corresponding 
MLEs. An alternative compromise was proposed by Stein [ 151 based on 
order statistics corresponding to the IX[I’s which permitted improvement over 
6’ for long-tailed empirical distribution functions. The resulting estimators 
could be viewed as trimmed versions of James-Stein estimators. 
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In this paper, we extend the ideas of Stein [ 151 to the general discrete and 
absolutely continuous exponential families of distributions. Section 2 is 
devoted to the development of a very general class of trimmed estimates for 
the natural parameter vector in the discrete exponential case. The important 
special cases involving the Poisson and negative binomial distributions are 
considered. In this process, trimmed versions of several estimators proposed 
earlier by Clevenson and Zidek [3], Peng [ 141, Hudson [ 121, Tsui [ 17, 181, 
Tsui and Press [19], Hwang [13], and Ghosh and Parsian [9] are 
developed. In Section 3, results analogous to those in Section 2 are obtained 
in the absolutely continuous case. Particular attention is paid to the special 
cases of normal and gamma distributions. In this process, trimmed versions 
of certain estimators proposed earlier by Baranchik [ 11, Strawderman [ 161, 
Efron and Morris [7], Berger [2], Ghosh and Parsian [8], and Ghosh et 
al. [ 1 l] are developed. Section 4 is devoted to the risk simulation study in 
the Poisson and gamma cases. In this section, certain additional adaptive 
trimmed estimators are also proposed in the Poisson and gamma cases, and 
their performance is studied through risk simulation. The proofs of some of 
the technical results are postponed until the Appendix. 

2. DISCRETE EXPONENTIAL DISTRIBUTION 

Let X i,..., X, be p independent discrete random variables, Xi having 
probability function (pf) 

&,(xJ = PII(Xi = Xi) = 7@) ti(xi) e;i, xi = 0, 1, 2 )...) 

where 8, E (0, co) is unknown, i = l,...,p. Then, the uniformly minimum 
variance unbiased estimator (UMVUE) of 19~ is given by &‘(X,) = 
ti(Xi - l)/ti(Xi), h w  ere ti(-1) is defined as zero. Let S”(X) = (6:(X,),..., 
%wpN* 

First assume the loss 

L(0, a) = 5 (19~ - ai)*. 
i=l 

P-1) 

Write d(X) = @i(X),..., d,(X)) where it is assumed that 

Jw:(X)1 < a3 for all i = 1 ,..., p and all 0 E (0, 00)~. (24 

Then, assuming the loss (2.1), the difference in the risk function of 
s”(X) + d(X) and S”(X) can be expressed as (cf. Hudson [ 121, Tsui [17], 
and Hwang 1131) 

qe, 60 + 0) - R(e, 60) = ~E,~(x), (2.3) 
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where 

and ei is the ith p-dimensional vector whose ith coordinate is one and other 
coordinates are zero. Hence, the problem reduces to obtaining solutions to 
the difference inequality U(X) < 0. 

Various solutions to the above difference inequality have been obtained by 
several authors (see, for example, Ghosh et al. [lo] for further references). 
In this paper, we obtain yet another set of solutions to this difference 
inequality which leads to trimmed versions of the estimators obtained earlier. 

We need to develop a few more notations before stating the first main 
result of this section. Define 

hi(Xi) = 2 v;‘(k), 
k=l 

xi = 1, 2,..., 

hi(O) = 0. 

Note that hi(xi) T in xi. 

Suppose now that x(r) < . . . < xCPJ are the ordered xI)s. Define 

d,(Xi) = hi(x[) hi(Xj + 1) + hi)9 

where b, (2 0) is a known constant. Let 

D CD(X) = x di(Xi) + s di(Xo,); 
i 3Xi<X(/) i 3xi>x,l, 

N(x) = #{i: 1 <xi <xcr,}. 

(2.5) 

(2.6) 

(2.7) 

P-8) 

Define 

I 

- ‘tNtx;- 2)+ jq(-$) if xi < X(f) 7 

4itx> = 
c(N(x) - 2) + 

(2.9) 
- 

D 
h,(xu,) if xi > xCrj, 

where 0 < c < 2 and a+ = max(a, 0). We are now in a position to state the 
first main result of this section. 
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THEOREM 2.1. Assume that Vi(j) is nondecreasing in j = 0, 1, 2,..., for all 
i= 1 ,..., p. Then defining #i(x) as in (2.9), 4(x) = (4,(x) ,..., 4,(x)) provides a 
solution to u(x) < 0 for 1 > 3. Also, P,(u(X) < 0) > Ofor every B E (0, a~)~. 

ProoJ We omit the proof of this theorem, because of its similarity to the 
proof of Theorem 2.3. 

As a consequence of the above theorem, it follows that (Sy(X,) + 
Q,(X),..., S,“(X,) + d,(X)) dominates (8:(X,),..., Sj(X,)). This leads to a class 
of trimmed shrinkage estimators shrinking the UMVUE of B towards zero. 
Also, the optimal choice of c is c = 1. 

Remark. As two important applications of Theorem 2.1, consider the 
cases (i) Xi - Poisson (e,), and (ii) Xi - negative binomial (ri, Bi), i.e., 

(2.10) 

xi = 0, l,..., ri > 2, i = l,..., p. In case (i), &‘(x,) = Vi(Xi) = xi SO that hi(O) = 0 
and hi(xi) = CiLi k-l. In case (ii), vi(xi) = Xi/(Xi + ri - 1) (7 in Xi) and 
hi(O) = 0, hi(xi) = 2:: I (ri + k - 1)/k for xi = 1, 2,... . In both cases, it is 
easy to construct an appropriate class of trimmed shrinkage estimators 
dominating 6’(X) by using (2.9). 

In many instances, prior belief and other considerations dictate shrinking 
towards an arbitrarily specified point, not necessarily zero. Ghosh et aE. [lo] 
have investigated this possibility, and have constructed a class of estimators 
shrinking towards an arbitrarily specified point. 

We shall now see how trimmed versions of the estimators proposed by 
Ghosh et al. [IO] can be obtained in this context. 

Suppose we want to shrink the estimate of Bi towards a specified 
nonnegative integer Ai. Define 

di(xi) = 
‘0 + (h,(xi) - hi(Ai))(hi(Xi + 1) - hi(Ai)) ifxi>Ai+ 1, 

(hi(xi)- hi(ni))” + V;‘[$hi(Ai - 1) -hi(l)]+ for xi <&, 

(2.11) 

where b, > 0. Let x(r) < . . . < x(,) < .*. ,< xCpJ be the ordered xI)s. Let 
D = Ci3xj6xc,, di(xi) + Ci3xj>xt,, di(xCl,) and N(X) = #{i: Li + 1 < Xi <x(r)}. 
Define - ““(x;- 2)+ (hi(xi) -hi(&)) if xi < X(l) 9 

4iCx) = 
(2.12) 

- “N’x;- 2)+ (h,(xJ - hi&)) if Xi > X(I), 

where 0 < c < 2. Then the following theorem is true. 
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THEOREM 2.2 Let vi(j) be T in j for all i = I,..., p. Let Qi(x), i = I,..., p, 
be defined as in (2.12). Then (Sy(X,) + #r(X),..., ai + o,(X)) dominates 
(6:(X,),..., S;(X,)) for all 12 3. The optimal choice for c is c = 1. 

The proof of this theorem is also omitted because of its similarity to the 
proof of Theorem 2.3. The Poisson and negative binomial examples follow as 
special cases by defining the hi(xJs appropriately. 

Next, we consider certain trimmed estimators shrinking the usual 
estimator towards the minimum; untrimmed versions of such estimators are 
proposed in Ghosh et al. [ 10). 

Assume that ur(x) = --- = V,(X) = u(x) (say), and hence, h,(x) = kaf = 
hp(x) = h(x) (say). Such assumptions hold in the Poisson case or in the 
negative binomial case with r, = +.. = rP. Let m = m(x) = x(,) and N(x) = 
#(i: xi > m + 1 }. Define 

d(Xi) = I 
(h(Xi) - h(m>)(h(xi + 1) - h(m)) if xi>m+l, 

0 otherwise. 
(2.13) 

Let D = Ci3xi<xcrj d(xi) + Ci3xi>xc,, d(xc~L and define 

c’“(xLp 2)t (h(xi) - h(m)) if m + I <xi<xCII, 

$itx) = (2.14) 
- “N(xA- 2)t (h(x,,,) -h(m)) if xi > x(,). 

Then (S?(X,) + 4,(X),..., Bi(XJ + d,(X)) dominates (6:(X,),..., Si(X,)). 
Next consider the more general loss 

L(f3, a) = fJ (ei - ai)‘/d~i, m, > 0, i = l,..., p. (2.15) 
i=l 

Losses of this form with m, = ... = mP = 1 were considered by Clevenson 
and Zidek [3] and Ghosh and Parsian [9] in the Poisson case, and by 
Tsui [17] when m, = ... =mP. Hwang [ 131 considered the most general 
form of loss given in (2.15). 

Suppose now that 

for all 19 E [0, a~)~, i = l,..., p, (2.16) 

if xi < mi, i = l,..., p. (2.17) 

Under (2.16) and (2.17), one can write the risk difference (cf. Hwang [ 131) 

R(e, 60 + #I- R(e, so) = ~E,u,(x), (2.18) 
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where 

GHOSH AND DEY 

uO(x) = 2 ui(xI) d/Vi(x) + 5 oi(xi) Wf(x)V (2.19) 
i=I i=I 

Vi(Xi) = ci(Xi + mi - l)/tt(Xi), wi(x) = iti(xi + m,)/ti(xi)Y Vi(x) = 
~i(X + miei), i = I,..., p. Once again, our goal is to find solutions to the 
difference inequality z+,(x) < 0. 

It is assumed that 

Ui(Xi) = 0 for xi < ai, and u((a,) > 0. (2.20) 

Define now 

hi(xi) = 2 u;‘(k) if xi > ai 

k=uj 

and hi(xi) = 0 ifx, < (xi, (2.21) 

i = I,..., p. Let 

di(xi) = 
hi(xi) if mi>l, 

hi(xi) hi(xi + 1) if mi = 0. 
(2.22) 

Denoting by xC1) < -e. < xcp) the ordered Xi's, let 

D = x di(Xi) + x di(x(,)). 
i3.q<+, i3Xi>X(/j 

(2.23) 

Also let 

Pi= : 

1 

if mi> 1, 

if mi= 0, 

(2.24) 

N(x) = #{i: a, ,< xi < xc,) 1. 

Define now 

I 

+w-P)+ h( 
D i xi 

) 
if xi S X(I) v 

W,(X) = 

- “‘N(x;- ‘) + h,(xt,,) 
(2.25) 

if Xi > X(I). 

We are now in a position to state the final main result of this section. 
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THEOREM 2.3. Assume that there exists a constant L (> 0) independent 
of the xI)s such that 

,3x~x(,) UdXi) hf(Xi) + C ~AxJ hf(Xo,) G LD* (2.26) 
1 %>X(/) 

Suppose also that vi(j) T in j if m, = 0. Then, assuming (2.20), y(x) = 

(v,(x),-., w,(x>) P rovi d es a solution to u,,(x) < 0 with 0 < c < L - ’ for I> /I. 
The optimum choice of c is c = (2L)-‘. 

ProoJ See Appendix. 
As a consequence of the above theorem, it follows that (8&Y,) + 

(i(X),..., Si(X,) + $JX)) dominates (6:(X,),..., Sz(X,,)), where 4((x) = 
y,(x - m,e,), i = l,..., p. We now see an application of Theorem 2.3 in the 
Poisson example. 

EXAMPLE 2.1. Let X 1,..., X,, be p independent random variables with 
Xi - Poisson(B,), i = I,..., p. Consider the loss (2.15). In this case Vi(Xi) = 
xi!/(xi + mi - l)! and Oi(Xi) = $xi!/(xi + m,)!. 

Case I (mi = 0). In this case Vi(Xi) = Xi and Wi(Xi) = f. Thus, vi(j) T in j. 
Also, h,(O) = 0 and h,(x,) = C:i, k-’ for Xi > 1. Hence, (2.20) holds with 
ai= 1. Thus, 

wi(xi) hT(xi) Q fhi(x,) hi(xi + 1) = idi( (2.27) 

. . Also, for those I with Xi > xc,), 

oi(Xi) hf(x~~) < fhi(xtl,) hi(xo, + 1) = @Lx,,,). (2.28) 

Case II (mi = 1). In this case vi(xi) = 1 and oi(xi) = f(Xi + 1))‘. Thus, 
hi(xi) = Xi + 1, SO that 

Wi(Xi) hf(xi) = t(Xi + 1) = phi = idi( 

. . Also, for those I with Xi > X(I), 

(2.29) 

wi(Xi) h&J = f(x, + l)-‘(xo, + 1)’ < f(x,l, + 1) = tdi(x(l,)* (2.30) 

Case III (mi > 2). In this case, v~(XJ = (Xi + l)-’ ... (Xi + mi - l)-’ 
and Ok = j(xi + 1))’ *em (xi + mi)-i. NOW, 

h,(x,)= 2 (j+ l)...(j+m,- 1) 
j=O 

(2.3 1) 
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Accordingly, 

pi hi2(Xi) ~ f{ (Xi + I)/(Xi + mi)} hi(Xi) ~ thi(Xi) = fdi(Xi)* (2.32) 

. . 
Also, for those I with xi > xc,), 

Oi(Xi) hf(x(,)) < f(xi + l)-’ ‘** (xi + mi)-‘(X(,) + l) 

“’ Cx(Z) + Mi- 1)(x(l) + l> hi(x(l)> 

G t!hi(x(l)) = fddx(,))* (2.33) 

Hence, combining (2.27b(2.30) and (2.32~(2.33), one finds that (2.24) 
holds with L = t. Also (2.20) holds with ai = 1 if mi = 0 and ai = 0 if 
m, > 1. Then, defining v,(x) as in (2.25) with 0 < c < 2 and hi(Xi) = 
CjYo(j+l)...(j+mi-l) if mi>2, hi(xi)=xi+l if mi=l, and 
h,(x,) = C;;, j-’ for xi > 1, h,(O) = 0 if mi = 0, one gets a solution to 
U(X) < 0. The optimal choice of c is c = 1. NOW defining $i(~) = wi(X - miei), 
(S’@,) + #i(X),..., Sj(X,) + $,(X)) dominates (S#,),..., 6,0(X,)) under the 
general loss (2.15). 

In order to handle the negative binomial case under the general loss 
(2.15), we have to modify the definitions of the di(Xi))S in (2.22). Also, it 
should be noted that in the Poisson case if m, > 1 for each i, pi = 1 for each 
i, and so j3 = 1. Then, one has the dominance over S”(X) for 12 2. In the 
negative binomial case, however, this dominance will hold only for I> 3. 
The situation is similar in the untrimmed situation as evidenced in 
Hwang [ 131. 

It should also be noted that in the Poisson and negative binomial 
examples, we could have a more general class of estimators dominating 
S”(X). We have not aimed at a comprehensive list of solutions to u(x) < 0 in 
the theorems of this section, but have provided some simple estimators which 
seem to be potentially useful in practice. 

3. ABSOLUTELY CONTINUOUS CASE 

Let X, ,..., X, be p independent random variables, Xi having pdf 

(3.1) 

with respect to Lebesgue measure on (ai, b,), ai and bi being possibly 
infinite. It is assumed that ri(xi) is absolutely continuous, and is strictly 
monotone. We want to estimate 19 = (0 i,..., 19,) based on X. Assume the loss 
L(6, a) = cp= 1 (Of - q)‘. 

For each i = l,..., p, define &,(x)/ax, = &‘(x) r;(xi), where 6’(x) = 
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(w%.., q(w) is the estimator of 8 to be improved upon. Let 
qitx) = r;(xi) exP(si(x>Ypi(xi)- C onsider the competing estimator 6(X) = 
(4(-q,..., &V>> of 6 where 6,(x) = d:(x) - qi(x) di(x), i = l,..., p. We 
consider the special case where q&x) is of the form v(x) hi(xi). Then, 
assuming conditions (CI)-(CV) of Ghosh et al. [ 111, one gets 

where 

R(8, S) - R(hJ, 60) = 2E,d(X), (3.2) 

d(x) = ?(x) ~ (hi(Xi)/rf(Xi)) ~j(‘)(X) + tt7*(X) e hf(Xi) ef(X), (3.3) 
i:l iY1 

and @I"' = (a/ax,) Q,(X), i = l,..., p. 
General solutions to the differential inequality d(x) < 0 have been 

obtained earlier by Berger 121, Ghosh and Parsian [8], and Ghosh et 
al. [ 111. In this section, we obtain yet another set of solutions to these 
inequalities which lead to trimmed shrinkage estimates. 

With this end, first write gf (Xi) = ri(xi)/hi(Xi). Let bi = / gi (xi) - ,u,.(~ for 
some p > 0, where the ,~i)s are certain specified constants. Let 
b(l) < .-- < b(,, denote the ordered b/s. Define 

Assume that q(x) > 0 for almost all x, 1 > p, and 

x hf(xi)(gi(xi> -PiI + b:/F 2 hf(Xi) yI(X) < 2CS9 (3.5) 
i 3bi< b(l) i 3bi>b,/, !  

for some C > 0. Consider any r(S) satisfying 

(i) 0 < 7(S) < C-'(l -j?), 

(ii> U(S) = Z(S) s"-~"'/[c-'(/ -/I) - Z(S)] T (strictly) in S. (3.6) 

The existence of a z(S) satisfying (i) and (ii) is trivially guaranteed. Now 
define 

-F (giCxi) -PiI if bi < b(r), 

#itx) = 

7(S) 

(3.7) 

- s b:f sgn(gi(xJ - Pi) if bi > b(r), 

where sgn u = 1, 0, or -1 according as u >, =, or <O. The main result of 
this section is as follows. 
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THEOREM 3.1. Assume that (3.5) holds. Then for any z(S) satisfying 
(3.6), ((x) = (4,(x),..., &,(x)) with #i(x) defzned in (3.7)prouides a solution to 
the dfferential inequaiity d(x) < 0, d(x) being defined in (3.3). 

Proof. If bi > b(,), @j(l)(x) = 0. If bi < bCr,, then for almost all x, 

qp’(x) = (- F + 9) g (gi(Xi) -pi) g{(q) -T gi(x,) 
I 

= 
( 

r’(S) -- + w 
s s2 1 P I gitxi> -Pi I’-’ %n(gi(xi) -Pi) 

r(S) 
X (gitxi> -Pi> gf(xi) -S gfCxi) 

=p(-T+$)) Igi(xi)-pi~~gj(xi)-~gpl(xi). (3.8) 

If bi = bO,) then, for almost all x, 

X sgn(giGi) -PiI 81(xi>(L?i(xi) -Pi> -S gfCxi) 

(3.9) 

The rest of the proof follows the pattern of Ghosh et al. [ 111, and is omitted. 
Next we consider applications of this theorem in the normal and gamma 

examples. First consider the normal case. 

EXAMPLE 3.1. Let X, ,..., X, be p (> 3) independent random variables, 
Xi - N(O,, l), i = l,..., p. In this case ri(xi) = -xi and @(xi) = Xi* Hence, 
si(xi) = -x:/2, and SO q,(x) = -1 which is of the form V(X) hi(Xi) with 
q(x) E 1, h,(xi) = -1. Now, g[(x,) = 1 so that gi(xi) = xi. Hence, defining 
bi = (Xi --i)*, it follows that equality holds in (3.5) with c = f, S being 
defined in (2.4). Let z(,) < a.0 < zti) < *a* < zCPj denote the ordered [xi -/Jil’S* 

With this notation, 

s= x (Xi -Pi)* + (P - 2) 4, * (3.10) 
i SIxi-cil <ZIO 
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Now for any r(S) satisfying (3.7) with /3 = 2, define 

I 

-~(~i-Pi) if Ixj -PiI < Z(j)- 
QiCx) = (3.11) 

@) 
- -Z(j) Sgn(Xi -Pi) s 

if JXj -,Uj] > z(f). 

Then (X, + 4,(X),..., XP + 4,(X)) dominates X for 1 > 3. 

The special case when r(S) = I - 2 was considered in Stein [ 151 and 
further studied in Dey [4]. The 1= p case is considered in Efron and 
Morris [7] under the conditions (i) and (ii) on t(S). Earlier, Baranchik [l] 
and Strawderman [ 161 considered the case when (i) holds with 1= p and 
S(S) T (strictly) in S. 

EXAMPLE 3.2. Let X, ,..., XP be p independent gamma variables, Xi 
having pdf 

fe,(Xi) = exp(-8,xi) X~'-'eQi/~(cli), Xi > 0,8j > 0, (3.12) 

where a,(> 2)‘s are known, but 19:s are unknown. This example appears in 
Berger [2]. Assuming squared error loss, the best scale invariant estimator of 
8 is S”(X) with S:(X) = @‘(Xi) = (ai - 2)/Xi, i = I,..., p. Here, ri(xi) = Xi SO 
that aSi(X)/aXi = (ai - 2)/Xi. Thus, si(x) = (ai - 2) log xi. Hence, si(X) = 
xpie2/xpi-’ =x;’ h h w  ic is of the form q(x) hi(xi) with q(x) = 1 and hi(xJ = 
x; ‘. Now, g;(xi)=xi and taking ,u,=...=~~=O and p=l, 
bi = g,(x,) = 4x:. Denoting by z(,) < . . . < zo,) the ordered x:s, 
s = f[Ci3xi<z,,, I xf + (p - f) z&l. Now from (3.5) it follows that 

=- : c [ x; + z;;; x -2 Xi i3XiGL(f) i3xf>?(f) 1 
4 c [ x; + (p - I) z;f, = 4s. 

i3XiGL(r) 1 (3.13) 

Hence, (3.5) holds with C = 4. Hence, for I > 2, and any r(S) satisfying (i) 
and (ii) with C = a and p = 1, one defines 

w 1 2 

-s TXi ( j if Xi < z(l), 

9itx> = 
w  1 -- 

s 
( -z;,, 

2 
1 if xi > z(,). 

(3.14) 

683/15/2-4 
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Then @#A - q1(4 h(x>,..., S@,) - q,(X) $,(X)) dominates (#(X,>,..., 
qxx,>>~ 

One can also obtain trimmed estimates improving on the usual ones when 
one considers estimation of the mean vector in the Hudson [ 121 subfamily of 
the general exponential family. The details are not pursued here. 

4. RISK SIMULATIONS STUDY 

In this section we will compute the risk of the shrinkage and the 
corresponding trimmed estimators for the simultaneous estimation of the 
Poisson means and the gamma scale parameters, using Monte Carlo 
simulation method. 

4.1. Numerical Studies for Poisson Case 

Suppose we want to estimate simultaneously p-Poisson means (0, ,..., 8,) 
under squared norm loss as given in (2.1). Then the usual shrinkage 
estimator is given componentwise as 

g.=x.- (P-No-2)+ 
I I S hi(xi), 

where 

No = #{i: xi = 0}, 
I 

hi(xi) = + k-l, 
Et 

a + = max(a, 0), 

and 

S = ~ hj(Xj) hj(xj + 1). 
i= 1 

The corresponding trimmed version is given componentwise as 

(4.1) 

(4.2) 

x.- (‘-No-2)+ )Qx.) I D ” if Xi < Xc/) 3 
@I) = 

I 
x.- (z-No-22)+ h.(x 

(4.3) 

I D I (1) 
) if Xi > X,1), 
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D = C hj(xj) hj(xj + l) + x hj(x(l)> hj(X(l) + l> (4.4) 
*j<xO) 

and hi(Xi), N,, and a+ are defined in (4.2). 
In the risk simulation study, first, 10 independent Poisson random 

variables are chosen. Second, 10 parameters Si are generated randomly 
within a certain range (a, b). Third, one observation of each of the 10 
distributions with the 10 parameters obtained in the second step is generated. 
Then the estimates d and e^(‘) (I = 5, 6, 7,8,9) are calculated. The third step 
is repeated 1000 times and the risks under squared norm loss for 0, &“, and 
MLE are calculated. The percentage of savings in using 0 and 8”’ as 
compared to the MLE are finally calculated. 

In Table I, the percentage improvements over the MLE are computed 
when the estimators are trimmed at specified (Ith) order statistics. The 
estimator 8(‘) as defined in (4.3) stands for the shrinkage estimator which is 
trimmed at fth-order statistic (I = 5, 6, 7, 8, 9). 

Table II is similar to Table I, except that one ei is chosen to be very large 
compared to other Bi’s so that the corresponding observation can be treated 
as possibly an outlier. 

In Table III, an adaptive version of the trimmed estimator is considered. 
For corresponding results in the normal case see Dey and Berger [5]. The 
trimming point I as given in (4.3) is chosen (depending on the data) in the 
following way. Ten independent Poisson random variables with parameters 
Bi are generated randomly, where 0:s are generated uniformly within a 
certain range. The estimate of the expected improvement of 8(‘) over the 
MLE is computed for I= 3,..., IO, and the difference is then numerically 
maximized over 1. These risks were calculated by simulation, repeating the 
calculations thousands of times. After finding the maximum, the risk of the 

TABLE I 

Shrinking at Specified Order Statistic 

Range of the 
parameters Bi I I5 I6 II I8 I9 

CO>41 10.6 2.9 4.1 5.5 7.0 8.7 
(4>8) 1.6 0.2 0.3 0.6 0.9 1.3 
(8, 12) 0.7 0.2 0.2 0.3 0.4 0.6 

(12, 16) 0.5 0.2 0.2 0.3 0.4 0.5 

I/= R(@,X) -we, e”‘) x 
R (@, X) 

1oo 
, I = 5,.., 9. 
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TABLE II 

Shrinking at Specified Order Statistic in Presence of Outliers 
0, E (0,4), i = l,..., 9, 8,, as Specified. 

e 10 I I5 I6 I7 I8 I9 

22.3147 4.5 2.1 3.2 3.1 4.2 4.1 
20.2424 3.9 1.1 1.6 2.2 2.9 3.6 
20.5531 0.7 0 0 0.3 0.3 0.8 
21.1048 0.8 0 0 0 0 0.5 

adaptive estimator, say, &*), is computed. Finally, the percentage 
improvement of @‘*’ over MLE is calculated with that of 8. 

In Tables I, II, and III, we observe, in general, that the percentage 
improvement decreases as the magnitude of the 0,‘s increases. It is also 
observed that the improvements are always positive, which indicates that 8(‘) 
and 8”” are all minimax. 

Tables I and II indicate that the percentage improvements are about the 
same if we use 8 or 8(‘). Therefore for large p, truncation at a specified order 
statistic is quite desirable. 

Tabie III indicates that the percentage improvement for the adaptive 
trimmed estimator is quite significant as compared to the usual shrinkage 
estimator. This indicates that the adaptive trimmed estimator is more 
suggestive. 

4.2. Numerical Studies for the Gamma Case 

Assume the Xi are gamma (a, Si) with known a (> 2), i = l,..., p. The 
problem is to estimate the parametric vector 8 = (e,,..., 0,). Assuming 
squared error loss, the best scale invariant estimator of 0 is S”(X) with 

TABLE III 

Percentage Improvement of 4 and 8(“’ 

Range of the 
parameters Bi II I2 

(0.4) 8.7 7.5 
(498) 2.5 2.4 
(8, 12) 1.7 1.3 

(12, 16) 0.8 0.8 

Il =Rwwm) x 1oo 

R (4 X) 
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d:(X) = (a - 2)/X,, i = l,..., p. From Berger [2] it follows that the improved 
estimator of 8, under squared error loss, is given componentwise as 

and it can be easily shown that the risk of (4.5) is 

R@‘, 6) = 

(4.5) 

(4.6) 

Now from (3.14), it follows that the corresponding trimmed version of the 
estimator (4.5) can be defined componentwise as 

&(x) = g + 2(1- 1) min(X,, Z,,,) 

1 &<Z(,) x: + (P - 1) z:,, ’ 
(4.7) 

and the risk of (4.7) is given as 

R(d’, 6) = (4-Y 

A very appealing possibility is to let the data select the trimming point 1 in 
the estimator (4.7). The obvious method of selection is to choose that 1> 3 
(call it I*) which maximizes the unbiased estimate of the risk improvement 
(see (4.8)) 

(I - 1)’ 
ii 

c l 

xi%r, 
x; + (P - 1) z:,, \ . (4.9) 

Theoretical analysis of this estimator is immensely difftcult, due to the 
complicated dependence of l* on X. Therefore we have selected the trimming 
point 1 adaptively and computed under squared error loss the risk of the 
adaptive trimmed estimator numerically. In Table IV, the percentage 
improvement of 6” is calculated over 6’ and 8 for different a and p values 
for different ranges of the parameter values. 

The parameters Bi are chosen to be uniformly distributed within certain 
ranges. The ranges are so chosen that it is possible to check the performance 
of the estimators both when the parameters fall in a narrow range and when 
they fall in a wide range. The choice of uniform prior is an artifact, just to 
demonstrate the performance of the trimmed estimator. In fact, when the 0;s 
are thought to have come from a possibly heavy-tailed prior distribution, it is 
expected (as in Dey and Berger [5]) that the trimmed estimator will perform 
much better. In all the cases, the percentage improvement of 6” over 6’ is 
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TABLE IV 

Percentage Improvement in Risk under Squared error Loss 
for S” over 6’ and S’ 

a=3 a = 20 

p= 10 p = 20 p= 10 p = 20 
Range of the 
parameters Bi a b a b a b a b 

(Ot4) 35.09 24.44 36.63 30.96 5.89 3.13 6.32 4.82 
(438) 56.31 3.30 59.34 5.62 13.42 0.49 14.37 0.13 
(8.12) 59,95 0.91 63.35 3.14 14.74 0.64 15.81 0.17 

(12, 16) 60.98 0.03 64.53 2.42 15.11 0.68 16.23 0.19 
6420) 55.09 4.52 57.18 12.91 11.87 0.98 12.35 0.15 

(l&30) 50.63 1.44 52.82 10.21 10.97 0.11 11.74 0 

a= 
R(e, 6”) -R(e, 6”) 

R(R 6’) 
x 100, 

b = N’A S-‘) -RN 6“) x 1oo 

R (e. P) 

seen to be an increasing function of p, the number of independent gamma 
variates. For small a (a = 3), we observe that the precentage improvement of 
6” over &’ increases as p increases. However, for large a (a = 20), the 
percentage improvement of 6” over dJ usually decreases as p increases. 
Table IV provides strong evidence that adaptive estimator 6” performs much 
better than the “standard” estimator and does perform significantly better 
than the untrimmed estimator. 

APPENDIX 

Proof of Theorem 2.3. Using (2.26), it follows from (2.22) through 
(2.25) that 

$I, wi(xi) dtx) G 
c2((N4 -PI + )*L 

D * 

Next observe that di V,(X) = 0 for xi < ai or Xi > x(i). For oi < Xi < XC/), 

diVi(x) G c(N(x) -P>+ 

hi(xi- l)dtdi(xi)-dih,(xi)Di 
DDi 64.2) 

Next note that Aid, = d,h,(x,) = vL7’(xi) if m, > 1 and Xi > (Xi. For mi = 0 
and xi>ai, 

didi < 2hi(xi) v;‘(xi). (A-3) 
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Hence, 

< m(x) - P) + ‘;’ 
Vi(Xi) hi(Xi - 1) didi 1 -- 

i 3Oi<Xi<X(/) DDi D 1 
<c(Nx)-P)+ P C x di(Xi - l)/(DDi) - N(x)/D 

i 3aj<xi<X(/) 1 

< -c(W(x) -PI + )‘/D. (A-4) 

Combining (2.19), (A.l), and (A.4), it follows that 

u (x)<-c(~N(x)-~)+)“(l -Lc)<O 0 L D \ * 

For any fixed L and 0 < c ( L -l, since c( 1 - Lc) is maximized at 
c = (2L)-‘, it follows from (AS) that the optimal choice of c is c = (2L)-‘. 
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