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a b s t r a c t

The band diagram, deformation potential and photoelastic tensor of silicon are calculated self-
consistently under uniaxial and shear strain by solving for the electronic wavefunctions with a finite-
difference method. Many-body effects are accounted for by the local density approximation. In order to
accommodate the large number of grid points required due to the diverging electrostatic potential near
the atomic nuclei in an all-electron calculation, a non-uniformmeshing is adopted. Internal displacements
are taken into account by adding an additional coordinate transform to themethod of Bir and Pikus. Good
consistency of the calculated deformation potential and photoelastic coefficients is obtained with prior
experimental and theoretical results, validating the numerical methods. Furthermore, it is shown that a
slight correction of the multiplicative coefficient of the Xα approximation for conduction bands results in
good agreement with experiment for both the direct and indirect bandgaps.

© 2014 The Author. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Recent developments in electronics and optoelectronics have
led to a rekindled interest in the modeling of strained semicon-
ductors. The best known device application is the improvement of
carrier mobility in strained silicon that has allowed further scal-
ing of Moore’s law [1]. Strained semiconductors are also of great
interest to photonics and optoelectronics: For example, applying
strain to quantum wells is a well known technique to improve the
performance of semiconductor lasers [2]. More recently, strained
group IV semiconductors have gained in importance for the CMOS
compatible fabrication of photonic circuits (Silicon Photonics [3]).
Inhomogeneously strained silicon has been shown to have a finite
second order optical nonlinearity enabling photonic devices such
as silicon based Pockels modulators and two photon converters
[4,5]. Highly n-doped germanium has been shown to support op-
tical gain [6]. Further narrowing of the direct bandgap via ten-
sile strain could further improve the material’s gain and enable
more efficient group IV light sources [7,8]. The SiGeSn material
system allows the realization of highly strained germanium and
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GeSn quantumwells [9] andmight pave the way towards practical
devices.

We solve the Kohn–Sham equation [10] for strained cubic semi-
conductors with a finite-difference (FD) real-space all-electron ap-
proach and apply it to the case of strained silicon. In order to
assess the method’s suitability to the determination of the optical
properties of strained semiconductors, we carefully benchmark it
by calculating the deformation potential and the photoelastic co-
efficients of silicon under uniaxial and shear strain.

All-electronmodeling can lead tomore accurate results in prob-
lems that involve a high level of interaction between valence and
lower orbital electrons [11,12], certain classes of problems that re-
quire treatment of lower orbitals [13,14], or the determination of
absolute energies [15] and absolute deformation potentials [16]
referenced against energy levels of lower orbitals. Our interest is to
apply all-electron treatment to the modeling of novel effects such
as the Pockels effect in inhomogeneously strained silicon forwhich
pseudopotentials have not yet been carefully benchmarked. How-
ever, treatment of the diverging electrostatic potential around the
nucleus and rapid oscillations of the wavefunctions in its vicinity
result in a multi-scale numerical problem [17] that needs to be ad-
dressed, e.g., with hierarchical finite elements bases [18,19] or real-
space methods with grid refinements around the nucleus [20–24].
Real-space finite-difference methods have the general advantage
of resulting in sparse matrices with a small number of off-diagonal
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terms, which can be efficiently diagonalized with parallel comput-
ing algorithms.

A number of methods have been demonstrated to adapt FD
algorithms to handle the diverging potential of the nucleus. In
[20,21], a rectangular cartesian grid was successively refined in
concentric regions around the nucleus. In [20], orphan nodes were
handled by generalizing the finite-difference expression of the
Laplacian. In [21] the multi-grid problem was solved based on a
V-cycle. In [22,23], a regular grid was used after applying a curvi-
linear spatial transformation, effectively increasing the number of
grid points around the nucleus in the original coordinate system.
In [24], the wavefunction was solved on a coarse rectangular grid
and subsequently interpolated on a fine grid around the nuclei
prior to calculating overlap integrals with pseudopotentials. Fi-
nally, in [25] the wavefunctions were solved for on a coarse grid
excluding the space regions within a muffin-tin radius in the im-
mediate vicinity of the nuclei. These excluded regions were han-
dled by applying a boundary condition to the grid points closest
to the nuclei forcing the wavefunctions on the boundary to be a
superposition of atomic-like solutions. Here, we apply successive
cartesian grid refinements to concentric regions centered on the
nuclei, similarly to [20,21], and extend the methodology to calcu-
late the band diagram and dielectric constant of strained semicon-
ductors. The nested grid refinements used here allowmore straight
forward control over the extent and range of the grid refinements
relative to methods based on curvilinear transformations [17,23],
but require special handling of the derivative operators at the sub-
grid boundaries [20]. Here, we express the numerical problem as
a sparse matrix diagonalization that can be straightforwardly han-
dled with the Lanczos algorithm implemented in standard numer-
ical packages.

The deformation of the crystal lattice is handled by a curvilinear
coordinate transform that maps the strained onto the unstrained
lattice. This allows, e.g., for the computation of the effect of
internal strain with finite differences without numerical artifacts
resulting from displacements of the nuclei relative to the grid
points and generally for a smooth treatment of the effect of strain.
The coordinate system is deformed in order for individual nuclei
to remain on the same grid points irrespectively of the lattice
deformation. In addition to the deformation introduced by Bir and
Pikus [26,27], an additional curvilinear coordinate transform is
introduced in order to accommodate internal displacements inside
the unit cell [28].

Many-body effects are accounted for by using the Xα approx-
imation [10,29,30] in the framework of density functional the-
ory [31] (DFT) and of the local density approximation (LDA). While
the electrostatic and LDA potentials of inner shell electrons are
fully taken into account, the shape of the inner orbitals are as-
sumed to correspond to that of isolated silicon atoms (frozen core,
all-electron approximation (FCAE)). While the numerical methods
described here could easily be extended to the treatment of inner
shell electrons, the frozen core approximation is adequate for the
numerical studies reported here and is adopted to shorten com-
putation time. The numerical methods used here could also be ap-
plied to other semiconductors or to materials of arbitrary shape
following the path shown in [21], thus providing high flexibility
for the modeling of irregular shapes.

In order to validate the numerical methods, we calculate the
strained band diagram, the deformation potential and the pho-
toelastic coefficients of silicon under uniaxial and shear strain.
Convergence and accuracy, as well as required computational re-
sources are carefully benchmarked. The deformation potential is
derived both directly and in the framework of perturbation the-
ory with a linearized perturbation Hamiltonian. Numerical results
for the deformation potential and the photoelastic coefficients of
strained silicon are compared to the literature, with good agree-
ment. Furthermore, in order to determine the primary factors
affecting the deformation potential, the overall deformation po-
tential is broken down in the framework of a perturbation the-
oretical approach into individual contributions from the LDA
potential, nuclei induced dipoles, dipoles induced by valence elec-
trons, electrostatic potential due to redistribution of the valence
electron density and screening from inner shells.

2. Coordinate transformation

Given a strain ϵij, the method of Bir and Pikus starts by intro-
ducing the transformation

x′

i = xi +

j=1..3

ϵijxj (1)

where x′

i corresponds to the physical coordinates of the strained
unit cell that are mapped to a new coordinate system xi. The lat-
ter corresponds to the unstrained unit cell, in that nuclei are lo-
cated at their original position. There are two atoms in the unit
cell of crystalline silicon. When shear strain is applied, in addition
to the overall deformation of the unit cell, the two silicon atoms
undergo an internal displacement relative to one another [28,32]
parameterized by a number typically denoted as ζ . When a shear
strain is applied to the unit cell, the lengths of the atomic bonds be-
tween adjacent nuclei become unequal, subdividing them into two
categories. This can be fully or partially compensated by the inter-
nal displacement. ζ = 0 corresponds to a total absence of inter-
nal displacement, i.e., the displacement of both atoms is predicted
by Eq. (1). ζ = 1 corresponds to a full equalization of the bond
lengths. The unit cell considered here has dimensions [a/2, a/2, a],
where a is the lattice constant of silicon, with atoms placed at (1a)
[0, 0, 0], (1b) [a/2, a/2, 0], (1c) [0, 0, a], (1d) [a/2, a/2, a] (each
split between 8 unit cells), (1e) [a/2, 0, a/2], (1f) [0, a/2, a/2]
(each split between 4 unit cells) and a second atom placed at (2)
[a/4, a/4, a/4]. Atom (2) is connected with sp3 bonds to (1a), (1b),
(1e) and (1f). For a shear strain ϵij, the second atom (2) is displaced
by δxk = −ζϵija/2 relative to atoms of the first category (1a–1f),
where i ≠ j ≠ k.

In order to accommodate the internal displacement without
creating numerical artifacts in the finite-difference solver resulting
from a displacement of the nuclei relative to the grid, we introduce
an additional term in the coordinate transform

x′

i = xi +

j=1..3

ϵijxj −

i≠j

δxi
4

cos

4πxj
a


(2)

x′

i = xi +

j=1..3

ϵijxj +
ζa
8


i≠j≠k

ϵjkcos

4πxj
a


. (3)

This transformation maps the position of the nuclei in the
unstrained unit cell to the position of the nuclei in the strained
unit cell. Since the Hamiltonian will be described in the coordinate
system of the unstrained lattice, xi, rather than in the physical
coordinate system of the strained lattice, x′

i , this results in a
description of the problem where the nuclei are always located on
the same grid points, irrespectively of the strain that is applied to
the lattice and irrespectively of ζ .

The Laplace operator of the physical coordinate system can be
expressed in the unstrained coordinates as

∆′
= ∆− 2


i,j=1...3

ϵij
∂2

∂xi∂xj

−
2π
a


i≠j

δxisin

4π
a

xj


∂2

∂xi∂xj

−
4π2

a2

i≠j

δxicos

4π
a

xj


∂

∂xi
(4)
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∆′
= ∆− 2


i,j=1...3

ϵij
∂2

∂xi∂xj

+πζ

i≠j≠k

ϵjksin

4π
a

xj


∂2

∂xi∂xj

+
2π2ζ

a


i≠j≠k

ϵjkcos

4π
a

xj


∂

∂xi
. (5)

The perturbation Hamiltonian can then be written as

δH =
h̄2

m


i,j=1...3

ϵij
∂2

∂xi∂xj
−

h̄2

2m
πζ


i≠j≠k

ϵjksin

4π
a

xj


∂2

∂xi∂xj

−
h̄2

m
π2ζ

a


i≠j≠k

ϵjkcos

4π
a

xj


∂

∂xi
− eδV (6)

wherem is themass of the electron and e is the elementary electric
charge. δV = V ′

−V , whereV ′ andV are respectively the sumof the
electrostatic and LDA potentials in the strained (V ′) and unstrained
(V ) lattice.

3. Grid definition and differential operators

The unrefined grid consists in a rectangular grid with vertices
spaced by a/32, i.e., with 8192 vertices in the unit cell. This grid is
successively refined inside cubes centered on the nuclei (Fig. 1).
For a nucleus located at (x0, y0, z0), we denote δ = max(|x −

x0|, |y − y0| , |z − z0|). For δ ≤ a/512, δ ≤ 3a/512, δ ≤ a/64,
δ ≤ a/32, δ ≤ a/16 and δ ≤ 3a/32 the grid size is respectively
a/2048, a/1024, a/512, a/256, a/128 and a/64 (the grid refine-
ments were first evaluated and optimized on a simpler 1D prob-
lem consisting in verifying the accuracy of higher orbital energies
of isolated silicon atoms). This results in a total of 41920 vertices,
about 5 times the number of points of the unrefined grid. Even
though this is a very large number of vertices, the eigensolutions
can still be calculated in a short timewith a desktop computer [33]
using the Lanczos algorithm [34] since the Laplace operator results
in a sparse matrix.

At the boundary between a refined and a coarser grid, hanging
nodes are missing one or two nearest neighbors. As a first step to
derive the differential operators, these nearest neighbors are in-
terpolated so as to subsequently allow the numerical evaluation of
the differential operators (in practice the numerical problem re-
duces to the diagonalization of a matrix resulting from the product
of an interpolation and a finite-difference operator). In Fig. 2(a), the
wavefunction is interpolated at points 11 and 14 as

ψ (p11) = ψ (p2)+
1
2
(ψ (p10)+ ψ (p12)− ψ (p1)− ψ (p3)) (7)

ψ (p14) = ψ (p5)+
1
4
(ψ (p10)+ ψ (p12)+ ψ (p16)+ ψ (p18)

−ψ (p1)− ψ (p3)− ψ (p7)− ψ (p9)) . (8)

Points 13, 15 and 17 are interpolated in a similarmanner to 11. The
three terms of the Laplace operator are evaluated at a point p0 as

∂2

∂x2
ψ =

2δx−ψ (px+)+ 2δx+ψ (px−)− 2 (δx− + δx+) ψ (p0)
δ2x+δx− + δx+δ

2
x−

(9)

where px− is the grid point immediately to the left of p0, px+ is the
point immediately to the right, δx− is the distance between px− and
p0, and δx+ is the distance between p0 and px+. The single deriva-
tives are calculated as

∂

∂x
ψ =

δ2x−ψ (px+)− δ2x+ψ (px−)−

δ2x− − δ2x+


ψ (p0)

δ2x+δx− + δx+δ
2
x−

. (10)
The lattice vectors of silicon are given by v1 = (a/2, 0, a/2),
v2 = (0, a/2, a/2) and v3 = (a/2, a/2, 0). Since (0, 0, a) = v1 +

v2 − v3, the points at z = 0 and at z = a are related by the relation
ψ (x, y, a) = ψ (x, y, 0)·eikza, where k =


kx, ky, kz


is the reduced

wave-vector of the Bloch-mode. Similarly, ψ (a/2, y, z + a/2) =

ψ (0, y, z) · eikxa/2+ikza/2 for z ≤ a/2 and ψ (a/2, y, z − a/2) =

ψ (0, y, z) ·eikxa/2−ikza/2 for z > a/2 (equivalent relations relate the
boundaries at y = 0 and y = a/2). These relations are taken into
account to evaluate the derivative operators at the unit cell bound-
aries, thus taking into account the periodic boundary conditions of
the eigenvalue problem.

4. Electrostatic potential and LDA correction

Many-body effects are taken into account with the local den-
sity approximation by adding Slater’s exchange energy [29] to the
electrostatic energy with a corrective factor α (Xα approxima-
tion). Correlation effects [36] are much weaker than the exchange
term [30] and are not explicitly taken into account. The exchange
energy is given by

− eVx = −α
e2

4πε0

3
2


3
π


ρ +


k

ρin (rk)

 1
3

(11)

where ρ is the electron density of the valence electrons, ρin is the
electron density of the inner orbitals for a single atom centered on
the kth nucleus, rk is the distance to the kth nucleus, and α is a pa-
rameter used to adjust the strength of the exchange potential. The
parameter α was derived to be 2/3 by Kohn and Sham [10] in the
framework of DFT.

Eq. (11) is based on the exchange energy of the free electron gas.
This exchange energy, as derived from the Hartree–Fock method,
is dependent on the electron wave-vector with a proportionality
constant given by

α =
4
3


1
2

+
1 − η2

4η
ln

1 + η

1 − η


(12)

where η = k/kF is the ratio between the free electronwave-vector
and the wave-vector at the Fermi level. This is a monotonically de-
creasing function equal to 4/3 at η = 0, to 2/3 at η = 1 and de-
caying to zero at large η. In the original derivation by Slater [29],
the exchange energy was averaged over all wave-vectors up to the
Fermi level, resulting in α = 1. In the subsequent derivation by
Kohn and Sham [10] done in the framework of DFT, α was derived
as 2/3 and corresponds to the value of Eq. (12) at the Fermi level.

Since α = 2/3 results in smaller bandgaps than in experiment,
it has been suggested [30] to adjust α empirically in order to re-
cover the experimental bandgap. It was shown that increasing α
leads to a larger indirect bandgap resulting from a flattening of the
bands. However, as also pointed out in [30], this is not fully sat-
isfactory, since the discrepancy between theory and experiment
remains essentially unchanged for the direct bandgap. Since the
coefficient given by Eq. (12) is decreasing with η and since the
wavefunctions of the conduction bands generally have a higher
frequency content than the wavefunctions of the valence bands, it
seems a natural correction to assume a lower α for the conduction
bands than for the valence bands. This strictly breaks the frame-
work of LDA, since the LDA potential is now dependent on the elec-
tronic band. As shown in Fig. 2(b), this results however in a very
good agreement between the calculated band diagram and a more
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Fig. 1. Illustration of the grid refinements. (a) shows a unit cell. The thick lines represent silicon–silicon bonds. The cubes represent regions of space in which the grid is
being successively refined. (b) shows the grid along a cross-section on the (0 0 1) plane passing through the origin. Regions of successive grid refinement are represented by
red squares. (c) shows the grid along the cross-section along the (1–1 0) plane passing through the origin.
Fig. 2. (a) Illustration of hanging nodes and interpolated nodes (unfilled circles) at the boundary to a coarser grid. The numbering is used to describe the interpolation
procedure in the text. (b) Comparison between the band diagram calculated with adjusted Xα coefficient (continuous line) and a band diagram calculated with non-local
empirical pseudopotentials.
Source: Adapted from Ref. [35].
accurate band diagram calculatedwith a non-local empirical pseu-
dopotential method in close agreement with experiment [35]. The
varying α can be justified both because the DFT theorem has only
been proven for the ground state of the system, i.e., for the valence
bands, and because LDA itself is an approximation that only par-
tially reflects the true kernel of the non-local DFT potential.

Fig. 2(b) shows the band diagram of silicon computedwith LDA,
where the coefficientα has been reducedby1/24th for the conduc-
tion band (Nt as defined in Section 4.1 is equal to 6 and α = 5/6
for the valence band). The corresponding weakening of the con-
duction band exchange energy and the resulting increase in con-
duction band energy are sufficient to obtain good consistency for
both the direct and the indirect bandgaps. The calculated indirect
bandgap is 1.18 eV (versus 1.17 eV measured at 0 K [37]) and the
calculated direct bandgap between the upper valence band and the
fourth conduction band (Γ ′

25v → Γ ′

2c) is 4.30 eV (versus 4.18 eV
measured at 4.2 K [38]).

4.1. Potential

The potential is calculated as the combination of the electro-
static potentials of the nuclei and of the electron distribution with
the exchange potential given by Eq. (11). Rather than obtaining
the electrostatic potential by solving the Laplace equation, it is ob-
tained by summing up individual contributions of the nuclei and
electrons. While being a less computationally efficient method for
periodic problems with a potential following a well known differ-
ential equation, it facilitates the extension of the method to ape-
riodic systems or to more general potentials. In particular, it is
adapted here to the perturbative potential generated by a homo-
geneous lattice deformation and can be readily generalized to the
perturbative potential generated by an inhomogeneous lattice de-
formation or other general potentials with a well known Green’s
function. The potential is calculated in the framework of the frozen
core, all-electron approximation (FCAE), i.e., the electrostatic po-
tentials and LDA correction of inner shell electrons are taken into
account, but inner electrons are assumed to correspond to orbitals
of isolated silicon atoms.

Spatially varying screening of the nuclei takes into account the
electrostatic potential of inner electron shells. In order to com-
pute the contribution of the valence electron density distribution
to the electrostatic potential, the latter is approximated by a series
of point charges distributed on a coarse grid with a grid size a/32
that is offset by (a/64, a/64, a/64) relative to the grid onwhich the
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wavefunction is calculated. While the kinetic term of the Hamilto-
nian and the electrostatic potential of the nuclei are computed on
the refined grid, for the purpose of calculating the distance to the
distributed electrons and deriving the electrostatic potential asso-
ciated to the electron density distribution, thewavefunction grid is
also snapped to its coarsest mesh (a/32). This ensures that no di-
verging terms occur, since the two grids are offset relative to each
other and have no common vertices. Similarly, in order to truncate
the divergence of the electrostatic potential created by the nuclei,
distances to the nuclei smaller then 1/2 the finest grid size (smaller
than a/4096) are rounded up to a/4096 (this applies to the points
where the nuclei are located). In order to calculate the electrostatic
potential with a finite sum over nuclei and distributed electron
point charges, the infinite reach of the unscreened Coulomb poten-
tial is truncated by progressively ramping it down for radii larger
than Nt · a/2 and forcing it to zero for radii above (Nt + 4) · a/2. In
the following, results are reported for Nt = 6.

The calculation of the electrostatic potential generated by the
valence electron density distribution is a computationally inten-
sive process. In order to accelerate the calculation, the grid-point
to grid-point contributions are only directly taken into account for
the electron density in a volume of 75 unit cells surrounding the
computational domain. Farther electrons are taken into account
by a multipole expansion of the electrostatic potential created by
the unit cell, with a Taylor expansion of the generated potential to
the third polynomial order (i.e., with terms scaling as δxi1δyi2δz i3,
where (δx, δy, δz) is the displacement between the point where
the electrostatic potential is applied and the center of the unit cell
acting as the source of the potential and where i1, i2 and i3 are in-
tegers such that i1 + i2 + i3 ≤ 3).

4.2. Perturbative potential

The perturbative potential V ′
− V can be directly obtained by

replacing each of the charges by an electrostatic dipole whose
strength depends on the distance to the point at which the field
is calculated, thus effectively linearizing the perturbation Hamilto-
nian as a function of strain. This method can be readily extended to
aperiodic problems of amore general nature. Additional terms take
into account modified screening of the nuclei, as well as the redis-
tribution of the valence electron density distribution. The pertur-
bative term arising from the LDA potential is derived by linearizing
the strain induced changes of the local electron density.

Given a strain tensor ϵ, the strain induced displacement of a
nucleus initially located at (x0, y0, z0) relative to a point initially
located at (xp, yp, zp) is given by δxi = ϵij(x0j − xpj)+

ζa
8


i≠j≠k ϵjk

(cos( 4πa x0j)− cos( 4πa xpj)). This gives rise to a dipole of magnitude
d⃗ = qδxi and to an electrostatic potential

δV1 (p) = −
Ze

4πε0


i


x0i − xpi

2−
3
2

×


i,j

ϵij

x0j − xpj

 
x0i − xpi


+
ζa
8


i≠j≠k

ϵjk


cos


4π
a

x0j



− cos

4π
a

xpj

 
x0i − xpi

 
(13)

where q = Ze is the charge of the nucleus and ε0 is the permittivity
of free space. For hydrostatic strain ϵ = ϵ · Id, where Id is the 3× 3
identity matrix, this expression takes the simple form of an addi-
tional electrostatic potential directly opposed to the unperturbed
one

δV1 (p) = −
Ze

4πε0


i
ϵ

x0i − xpi

2


i


x0i − xpi

2 3
2

= −
Zeϵ
4πϵ0

1
r

(14)
where r is the distance between the nucleus and the point where
the field is calculated.

A second perturbative term arises from the redistribution of
the electron density distribution. The inner shells are assumed to
simply shift with the position of the nucleus to which they are
bound and can be taken into account by adjusting the screening
of the nucleus

δV2 (p) =
e

4πε0r
dZ (r)
dr

δr (15)

=
e

4πε0r2
dZ (r)
dr


i,j

ϵij

x0j − xpj

 
x0i − xpi


+
ζa
8


i≠j≠k

ϵjk


cos


4π
a

x0j



− cos

4π
a

xpj

 
x0i − xpi

 
. (16)

Here too, Eq. (16) takes a simplified form in the case of hydrostatic
strain

δV2 (p) =
eϵ

4πε0

dZ (r)
dr

(17)

where it should be noted that dZ/dr is a rapidly decaying negative
function (the screened charge is constant and equal to 4e far from
the nucleus).

The valence electron distribution in the strained unit cell (ρ ′)
can be described as a function of the unstrained or the strained
lattice coordinates, with corresponding normalizations given by
ρ ′

x′

d3x′

= 8 (18)
ρ ′

x′ (x)

 
1 + tr


¯̄ϵ


d3x = 8. (19)

We introduce ρ̂(x) = ρ ′(x′(x))(1 + tr( ¯̄ϵ)). This corresponds
to the redistributed valence electron density described in the co-
ordinate system and the normalization of the undistorted silicon
lattice. If we note the volume element of the undistorted lattice as
dv = d3x, the redistribution of the electron density function is
taken into account by

δV3 (p) = −
edv

4πε0r


ρ̂ (x)− ρ (x)


(20)

= −
edv

4πε0r
∂ρ̂ (x)
∂ϵij

ϵij. (21)

The displacement of the electron density distribution due to the
lattice deformation is taken into account by a potential δV4 that
takes the same form as Eq. (13).

Finally the variation of the exchange energy is taken into
account by

− eδV5 (p) = −α
e2

8πε0


3
π

 1
3

ρ +


k

ρin (rk)

−
2
3

×


∂ρ̂ (x)
∂ϵij

ϵij − ρ̂ (x) tr

¯̄ϵ

+


i,j,k

∂ρin (rk)
∂r

ϵij

xkj − xpj

 
xki − xpi


rk

+
ζa
8


i≠j≠l,k

∂ρin (rk)
∂r

ϵjl

cos

 4π
a xkj


− cos

 4π
a xpj

 
xki − xpi


rk


(22)
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Fig. 3. Self-consistent electron density distribution at z = a/8 and on the refined grid close to the nucleus of atom (2) at z = a/4 − a/128.
Fig. 4. (a) Flow of the wavefunction and band energy computation and (b) flow of the dielectric constant computation. The term ‘‘perturbed’’ in (b) refers to perturbed by
the external electric field. Inclusion of lattice strain is implicit in both diagrams.
where rk and xk are respectively the distance to and the position
of the kth nucleus. The first term in the bottom parenthesis
corresponds to the redistribution of the valence electrons, the
second term to the modification of the valence electron density
due to the volume element change. The third and fourth terms
arise from the displacement of the inner core electrons tracking
the displacement of the nuclei to which they are bound.

5. Self-consistent electron density distribution

The self-consistent valence electron density distribution is iter-
atively calculated. The initial guess is obtained by adding the elec-
tron densities of sp3 bonds calculated in the strained lattice with
restricted orbitals [39,40]. The specific orbital restriction parame-
ters are taken from an unpublished tight binding study in which
they were optimized in view of getting a good agreement between
the physical band diagram and the band energies back-calculated
from the wavefunctions obtained with the third nearest neighbor
tight binding coefficients published in [41]. We opt for an implicit
orbital confinement [42]. The restricted orbitalψr is obtained from
the unrestricted orbital ψ via the transformation ψr (r) = ψ


r ′

,

where r ′ is obtained from r via a transformation parameterized by
two radii r1 (at which the restriction starts having an effect) and r2
(the radius within which the orbital is fully confined). For r ≤ r1,
r = r ′. For r > r1 the transformation is given by

r ′
= r1 +

r − r1
1 −

r−r1
r2−r1

. (23)
For r approaching r2, r ′
→ ∞ so that the orbitals are restricted

to a maximum radius of r2. Parameter values r1 = 2.9a0 and
r2 = 4.9a0 were used, where a0 is the Bohr radius. As can be seen
in the section on algorithmic convergence, this yields a reasonable
initial estimate and the self-consistent electron density function
converges to a high degree within five iterations.

In order to refine the electron density distribution, at each it-
eration wavefunctions for half the Brillouin cell are calculated,
with regularly spaced reducedwave-vectors located on a grid with
∆k = 0.4π/a. Since homogeneous strain does not break the cen-
trosymmetry of silicon, the rest of the Brillouin zone can be ob-
tained by simple symmetry considerations resulting in an effective
total of 424 k-space points. The squares of the wavefunctions are
then summed over the entire Brillouin zone in order to obtain the
electron density. As a final step, the electron density is normalized
to yield a total of 8 valence electrons in the unit cell. This process is
repeated iteratively in order to obtain the self-consistent electron
density. Fig. 3 shows the electron density function at two cross-
sections through the unit cell with a smooth distribution even very
close to the nucleus. The overall computation flow is summarized
in Fig. 4(a).

6. Numerical results for the deformation potential

This section summarizes the numerical results, including con-
vergence of the self-consistent electron distribution, a comparison
of the calculated deformation potential with literature values, as
well as a detailed look at the influence of individual perturbative
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Fig. 5. Convergence of the calculated deformation potentials as a function of the number of iterations. (a) shows the calculated energy level shifts for the 4 valence and
first 4 conduction bands for all high-symmetry points under the influence of a uniaxial strain of magnitude ϵ along the [001] axis. The average value over iteration numbers
3–5 has been subtracted in order to visualize the convergence and overlay the plots. (b) shows the same data for the ∆ point of the first conduction band (upper curve)
and for the Γ point averaged over the three upper valence bands (lower curve). The dashed curves show the averages over iteration numbers 3–5. (c) shows the extracted
deformation potential as a function of the iteration number, as well as the average over iteration numbers 3–5 (dashed curve). All calculations were made with Nt = 6 and
α = 5/6.
Table 1
Comparison of calculated deformation potential coefficients with literature values (in eV).

Coefficient Calculated value Lit. experimental Lit. theory

Ξ
(∆)
u 8.94a , 8.89b 8.1 ± 0.3c , 8.77 ± 0.07d , 8.6 ± 0.4e , 10.5k , 9.29l , 8.47m , 9.16n

9.0 ± 0.4f , 8.6 ± 0.2g , 9.2 ± 0.3h

Ξ
(L)
u 15.19a , 15.02b 18k , 12.35m , 16.14n

Ξ
(∆)
d + Ξ

(∆)
u /3 − a 1.73a , 1.50b 1.6 ± 0.3c , 1.5 ± 0.3e , 2.5k , 0.29l , 1.79m , 1.72n

3.8 ± 0.5g , 3.1 ± 0.5h

Ξ
(X)
d + Ξ

(X)
u /3 − a 1.92a , 1.69b 1.84i , 1.35j

Ξ
(L)
d + Ξ

(L)
u /3 − a −3.52a , −3.76b

−3.60i , −4.07j , −3.1k , −3.65l , −2.84m , −3.12n

aΓ−Γ
−11.50a , −11.75b

−11.39i , −12.44j , −12.3o , −11.84p

a Calculated with α = 5/6 for both valence and conduction bands.
b Calculated with α = 5/6 for the valence bands and α = 5/6 × 23/24 for the conduction bands.
c Ref. [47], Experimental (Stress dependence of excitons), T = 77 K (1978).
d Ref. [46], Experimental (Piezospectroscopy of donors), T = 4 K (1972).
e Ref. [45], Experimental (Exciton Energy), T = 77 K (1971).
f Ref. [44], Experimental (Cyclotron Resonance), T = 4.2 K (1970).
g Ref. [43], Experimental (Exciton Energy/Absorption Spectroscopy), T = 80 K (1966).
h Ref. [43], Experimental (Exciton Energy/Absorption Spectroscopy), T = 295 K (1966).
i Ref. [53], Linearized Augmented Plane-Wave Method with LDA approximation (1999).
j Ref. [53], Linearized Augmented Plane-Wave Method with LDA approximation and correction based on external potential (1999).
k Ref. [52], Empirical Pseudopotential, ζ = 0.53 (1996).
l Ref. [51], Empirical Pseudopotential (1993).

m Ref. [50], Empirical Pseudopotential, ζ = 0.53 (1989).
n Ref. [49], Pseudopotential with LDA approximation, ζ = 0.53 (1986).
o Ref. [55], Tight Binding (1995).
p Ref. [54], Tight Binding (1993).
terms and of the internal displacement parameter ζ on the defor-
mation potential.

6.1. Convergence study

Fig. 5 shows the convergence of the solver with the number of
iterations applied to obtain the self-consistent electron distribu-
tion. It can be seen that the calculated deformation potentials con-
verge quickly and are almost fully converged after 5 iterations.

6.2. Comparison to the literature

Table 1 shows a comparison of the calculated deformation po-
tentials (5 iterations,Nt = 6, α = 5/6)with literature [43–55]. ζ is
assumed to be 0.53 as is also the case in [49,50,52,56] and in close
agreement with measured values [57]. Good agreement of the cal-
culated deformation potentials can be seen with previously deter-
mined values, validating the numericalmethods. aΓ−Γ refers to the
deformation potential of the direct gap between the three upper
valence bands and the fourth conduction band (Γ ′

25v → Γ ′

2c). Fine
tuning α has a rather small effect on the calculated deformation
potentials. This is in line with the results reported in [53] where
the enhancement of an LDA calculation with a calibrated external
potential also resulted in relatively small corrections, on the or-
der of 0.5 eV for Ξ (∆)

d + Ξ
(∆)
u /3 − a and Ξ (L)

d + Ξ
(L)
u /3 − a. Com-

pared to [53], similar trends are seen between the plain LDA values
and the deformation potentials obtained after enhancing the LDA
methodwith an additional correction.However, the calculated cor-
rections have an even smaller magnitude here.

6.3. Effect of individual perturbative terms and of the internal
displacement

Fig. 6 shows the magnitude of the effect of individual pertur-
bative terms on the deformation potential as well as the depen-
dence of the shear strain energy shift at the conduction L-point
(Ξ (L)

u ) on the assumed internal displacement parameter ζ . The
LDA potential has a comparatively weak effect on the deforma-
tion potential compared to kinetic effects or to the electrostatic
potential of the nuclei (the perturbation theoretical approach is
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Fig. 6. Decomposition of the deformation potentials into their individual perturbative terms. (a) shows the decompositions of Ξ (∆)
d + Ξ

(∆)
u /3 − a (solid dots) as well as

Ξ
(∆)
u (circles). (b) shows the decompositions of Ξ (L)

d + Ξ
(L)
u /3 − a (solid dots) as well as Ξ (L)

u (circles). The absolute values of the terms are shown in order to plot them
on a log scale. Calculations were made with Nt = 6, α = 5/6, iteration number = 5 (converged electron density function) and ζ = 0.53. (c) Dependence of the calculated
displacement potentialΞ (L)

u on the assumed internal displacement parameter ζ (calculated with Nt = 6, α = 5/6, iteration number = 5).
applied towavefunctions that have already been calculated includ-
ing LDA correction, i.e., this statement only refers to the additional
energy shift induced by strain).

Due to the transformationdescribed in Eq. (3), the nuclei remain
on the same grid points irrespectively of the internal displacement.
This is important to obtain a smooth dependence on ζ , since
displacements of the nuclei relative to the grid points result in
numerical artifacts.

7. Calculation of photoelastic coefficients

In this section we calculate the dependence of the dielectric
constant of silicon on uniaxial and shear strain from the wave-
functions obtained in the previous sections. The dielectric constant
is calculated with the method first devised by Adler and Wiser
[58,59], but with a modified treatment of local field corrections.
These are directly derived from the self-consistently calculated
electron density perturbation induced by the application of the ex-
ternal electric field, with the dielectric constant given by

εr − 1 =
4e2

ε0


4
a3



×
1
N

lim
q→0


n∈BZ,v,c


ψ∗

c,kn+qe
iqx

−

i
q + VLF


ψv,knd

3x


Ec (kn + q)− Ev (kn)

×


ψ∗

c,kn+qe
iqx


−
i
q


ψv,knd

3x
∗

(24)

where Ev and Ec are respectively the energies of the valence and
conduction states indexed by indices v and c , kn is a wave-vector
sampled inside the 1st Brillouin zone, N is the number of sampled
k-space points and q⃗ = qe⃗x is an infinitesimal vector oriented along
the direction of the external E-field. VLF corresponds to the self-
consistently calculated electrostatic and exchange potential result-
ing from the redistribution of the valence electron density function
caused by the externally applied electric field (local field correc-
tion). The prefactor of Eq. (24) already takes into account that each
state is doubly degenerate due to electron spin, so that each va-
lence and conduction band only needs to be accounted for once in
the summation.

When applying an externally applied electric field associated
with an electrostatic potential sin(qx)

q , the perturbation of the elec-
tron density distribution and the resulting potential are calculated
self-consistently as functions ρLF (xi) cos (qx) and VLF (xi) cos (qx),
where ρLF (xi) and VLF (xi) both have the same periodicity as the
crystal lattice. Under the influence of the externally applied elec-
tric field and the induced internal potential (including the LDA cor-
rection), the valence electron wavefunctions are then transformed
to the first order as

ψv,kn → ψv,kn +
e
2


c


ψ∗

c,kn+qe
iqx

VLF −

i
q


ψv,knd

3x

Ec (kn + q)− Ev (kn)
ψc,kn+q

+
e
2


c


ψ∗

c,kn−qe
−iqx


VLF +

i
q


ψv,knd

3x

Ec (kn − q)− Ev (kn)
ψc,kn−q (25)

The equation only takes into account mixing with conduction
band states, since only these contribute to the perturbation of the
electron density function given by

ρ → ρ +
2e
N

Re

 
n∈BZ,v,c


ψ∗

c,kn+qe
iqx

VLF −

i
q


ψv,knd

3x

Ec (kn + q)− Ev (kn)
ψc,kn+qψ

∗

v,kn

+


n∈BZ,v,c


ψ∗

c,kn−qe
−iqx


VLF +

i
q


ψv,knd

3x

Ec (kn − q)− Ev (kn)
ψc,kn−qψ

∗

v,kn

 . (26)

where the prefactor again takes into account the dual de-
generacy of the electron spin. Using


ψ∗

c,knψv,knd
3x = 0

we make the transformation 1
q limq→0


ψ∗

c,kn+qe
iqxψv,knd

3x =

∂
∂q |q=0


ψ∗

c,kn+qe
iqxψv,knd

3x. For vanishing q, Eq. (26) can then be
recast into

ρ → ρ +
4e
N

Re

 
n∈BZ,v,c


ψ∗

c,knVLFψv,knd
3x

Ec (kn)− Ev (kn)

− i
∂

∂q |q=0


ψ∗

c,kn+qe
iqxψv,knd

3x

Ec (kn)− Ev (kn)


ψc,knψ

∗

v,kn


cos (qx)

= ρ + ρLF cos (qx) (27)

validating the initial assumption on the functional form of the
induced valence electrons redistribution. The first term of Eq. (27)
corresponds to the reaction of the electron density function to
the internal field, while the second term is the reaction of the
electron density function to the external field. The perturbation
of the electron density function ρLF cos (qx) in turn results in the
local field potential VLF cos (qx) as calculated with the methods
described in the previous sections (based on Eq. (20) and an
adapted version of Eq. (22)). In order to calculate the photoelastic
coefficients of silicon, the local field potential is self-consistently
calculated for both unstrained and uniaxially strained silicon.
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In a material with a cubic symmetry, the general expression
of the photoelastic tensor δ


1
εij


= pijklϵkl ≈ −

1
ε20
δεij reduces to

[56,60,61]

−
1
ε20
δ


εxx
εyy
εzz
εxy
εyz
εzx

 =


p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44



×


ϵxx
ϵyy
ϵzz

ϵxy + ϵyx
ϵyz + ϵzy
ϵzx + ϵxz

 . (28)

A number of corrective factors have to be applied to Eq. (24)
when it is evaluated in the transformed coordinates used in this pa-
per. Indeed, in the transformed coordinates the volume of the unit
cell remains a3, even though the physical volume under uniaxial
strain is (1 + ϵ) a3. In addition, a physical E-field of magnitude E
results in an E-field of magnitude (1 + ϵ) E in the transformed co-
ordinate system when it is oriented along the uniaxial strain axis,
since −∂V/∂x = − (1 + ϵxx) ∂V/∂x′. Similarly, under shear strain
ϵxy the physical E-field E


e⃗x + e⃗y


results in (1 + ϵ) E


e⃗x + e⃗y


in

the transformed coordinate system.
Under uniaxial strain Eq. (24) becomes
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(30)

when the E-field is oriented along a different axis than the uniaxial
strain and
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(32)

when the E-field is oriented along the same axis as the uniaxial
strain. In both Eqs. (29) and (31) the factor 1+ϵ in the denominator
takes into account the increased volume of the unit cell. In Eq. (31)
the additional factor (1 + ϵ)2 in the numerator takes into account
that both the external field and the internal field are effectively
1 + ϵ stronger in the deformed cell described in the transformed
coordinate system when the uniaxial strain and the external field
are along the same axis.

In order to calculate p44 we calculate εxx + εyy + 2εxy as

εxx + εyy + 2εxy − 1 =
16e2
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(33)

where VLF ,x and VLF ,y are respectively the local field potentials
generated by a unit external E-field oriented along the x- and y-
axes. After applying a shear strain ϵxy Eq. (33) becomes
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(35)

in the transformed coordinate system.
Since Eqs. (30), (32) and (35) are evaluated with the wavefunc-

tions of the strained lattice, care has to be taken to correctly nor-
malize the wavefunctions as


ψ∗ψd3x = 1 following either Eq.

(18) or Eq. (19) depending on whether they are expressed in the
physical or the transformed coordinate system.

The overall flow of the computation is summarized in Fig. 4(b).
We evaluate Eqs. (24) and (29)–(34)with q = 0.01·2π/a, ζ = 0.53
and α = 5/6 for all the bands. As previously, the 1st Brillouin
zone was effectively sampled with 424 k-space points spaced by
∆k = 0.4π/a. Summationswere taken over the four valence bands
corresponding to outer shell electrons and the first 30 conduc-
tion bands. Due to the non-uniform grid, the eigenproblem leading
to the wavefunctions is slightly non-hermitian and the wavefunc-
tions not perfectly orthogonal to each other, leading to numerical
errors increasing with the number of conduction bands taken into
account in the summations. These numerical errors were allevi-
ated by orthogonalizing the wavefunctions prior to the dielectric
constant calculations, leading to a satisfactory convergence of the
calculated dielectric constants (the value calculated with inclusion
of 10 conduction bands is within 0.005 of the value calculatedwith
30 conduction bands).

The calculated dielectric constant of silicon is 13.1 prior to lo-
cal field corrections and 12.4 after local field corrections. Both the
calculated dielectric constant and the magnitude of the local field
corrections are in line with prior LDA based calculations in the ab-
sence of additional refinements such as a scissor operator [62–64].
Table 2 summarizes the results for the photoelastic coefficients and
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Table 2
Comparison of calculated photoelastic coefficients with literature values.

Coefficient Calculated value Lit. experimental Lit. theory

p11 −0.100a , −0.096b
−0.094 ± 0.005c

−0.100d , −0.097e

p12 0.024a , 0.020b 0.017 ± 0.001c 0.019d , 0.015e

p44 −0.048a , −0.044b
−0.051 ± 0.002c

−0.050d , −0.051e

a Calculated with ϵ (εr − 1) evaluated with calculated εr .
b Calculated with ϵ (εr − 1) evaluated with experimental εr .
c Measured in [65] at 0.37 eV.
d Calculated in [56] with DFT+LDA.
e Calculated in [60].
compares them to literature values. In all three Eqs. (30), (32) and
(35) the first term in ϵ (εr − 1) can be evaluated either with the
calculated or experimental dielectric constant. Both results are re-
ported in the table with a better consistency with experimental
values found, as expected, in the latter case.

8. Conclusion

Wehave developed a real-space eigensolver based on finite dif-
ferences and a non-uniform grid for solving thewavefunctions and
the band diagram of strained silicon with an all-electron potential.
The numerical methods are validated by comparison of the cal-
culated bandgaps, deformation potentials, dielectric constant and
photoelastic coefficients with experiment and prior modeling re-
sults. Strain was handled by a curvilinear transformation including
a treatment of internal displacement. The computational method
is highly flexible and is intended to be adaptable to more general
classes of problems.
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