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Early in April 2009, several patients infected 

with novel H1N1 swine-origin influenza virus A

(S-OIV A) were found in the United States and

Mexico. Through rapid and frequent international

travel, it has spread to over 74 countries around

the world and over 29,000 cases, including 145

deaths, have been reported up to June 12, 2009.1

On June 11, 2009, the World Health Organization

declared an influenza pandemic, caused by novel

S-OIV A (H1N1).

The three previous influenza pandemics,

A/H1N1 from 1918 to 1919, A/H2N2 from 1957

to 1963, and A/H3N2 from 1968 to 1970, were

characterized by a shift in the virus subtype, a shift

in the highest mortality to younger populations,

successive pandemic waves, higher transmissibility

than seasonal influenza, and different impacts in

different geographic regions.2 The present novel

H1N1 influenza has one of the most important

characteristics, a shift in virus subtype, and it is very

possible the other characteristics will develop.

Clinical Manifestations

According to a report of 642 confirmed cases of

novel S-OIV A (H1N1) infection in the United

States, patients ranged from 3 months to 81 years

in age; 60% of patients were ≤ 18 years, 40% were

10–18 years, and only 5% were ≥ 51 years.3 There-

fore, younger populations were much more 

susceptible than the elderly. The most common
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presenting symptoms were fever (94%), cough

(92%), and sore throat (66%); 25% of patients

had diarrhea, and 25% had vomiting. Of the 399

patients for whom hospitalization status was

known, 36 (9%) required hospitalization.3 Of 22

hospitalized patients with available data, 12 had

underlying characteristics that conferred an in-

creased risk of severe seasonal influenza, and 11

had radiologically confirmed pneumonia. These

included one (in each group) with pneumome-

diastinum, necrotizing pneumonia, and empyema

that was surgically drained (no microbiological

growth was detected in the fluid). Eight patients

required admission to an intensive care unit, and

four had respiratory failure that required mechan-

ical ventilation. A 22-month-old child with neona-

tal myasthenia gravis and a 33-year-old pregnant

woman have died.3

Therefore, most confirmed cases of novel 

S-OIV A (H1N1) infection have been character-

ized by self-limited, uncomplicated febrile respi-

ratory illness and symptoms similar to those of

seasonal influenza (a cough, a sore throat, rhinor-

rhea, headache, and myalgia). Approximately 38%

of cases have also developed vomiting or diarrhea,

neither of which is typical of seasonal influenza.

Some patients have developed severe illness and

required hospitalized, and two patients have died.

The observation that 60% of patients were ≤ 18

years old suggests that children and young adults

are more susceptible than older persons, or that

because of differences in social networks, trans-

mission to older persons has been delayed. It is

also possible that elderly persons may have had

some level of cross-protection from preexisting

antibodies against other influenza A (H1N1)

viruses—this requires further confirmation.

Is There Any Cross-protection of

Seasonal Influenza Vaccine Against 

the Novel S-OIV A (H1N1)?

The United States Centers for Disease Control

(CDC) has assessed the level of cross-reactive an-

tibody to the novel influenza A (H1N1) virus in

cohorts of children and adults before and after

vaccination with the 2005–2006, 2006–2007,

2007–2008, or 2008–2009 seasonal influenza vac-

cines.4 In children, before vaccination, there were

no cross-reactive antibodies to S-OIV A (H1N1).

Among adults, before vaccination, cross-reactive

antibodies were detected in 6–9% of those aged

18–64 years, and in 33% of those aged > 60

years. Previous vaccination of children with any of

the four seasonal trivalent, inactivated influenza

vaccines (TIVs), or with live attenuated influenza

vaccine, did not elicit a cross-reactive antibody

response to S-OIV A (H1N1).4 In adults aged

18–64 years, vaccination with seasonal TIV re-

sulted in a twofold increase in cross-reactive anti-

body response to S-OIV A (H1N1), compared with

a 12- to 19-fold increase in response to the sea-

sonal H1N1 strain. No increase in cross-reactive

antibody response to the S-OIV A (H1N1) was

observed among adults aged > 60 years.4 These

data suggested that receipt of recent (2005–2009)

seasonal influenza vaccines did not elicit a pro-

tective antibody response to the novel influenza

A (H1N1) virus. In addition, the researchers 

suggested that about one third of those aged 

> 60 years may have had preexisting cross-

reactive antibodies—this may explain why only

5% of S-OIVA (H1N1) patients were ≥ 51 years.3

Case–fatality Rate (CFR) and

Reproduction Number (R0) of 

the Novel H1N1 Influenza

By analyzing the outbreak in Mexico, early data

on international spread, and viral genetic diver-

sity, Fraser et al made an early assessment of trans-

missibility and severity.5 Their estimates suggested

that 23,000 (range, 6000–32,000) of individuals

were infected in Mexico by late April, which gave

an estimated CFR of 0.4% (range, 0.3–1.5%),

based on confirmed and suspect deaths reported

by that time. In a community outbreak in the

small community of La Gloria, Veracruz, no deaths

were attributed to infection, which gave an upper

95% bound CFR of 0.6%. Thus, while substantial
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uncertainty remains, clinical severity appears less

than that seen in 1918 but comparable with that

in 1957.

Clinical attack rate in children aged < 15 years

in La Gloria was 61%, which was more than twice

that in adults aged ≥ 15 years (29%). R0 is defined

as the average number of secondary cases gener-

ated by a primary case. Three different epidemio-

logical analyses estimated R0 to be 1.4–1.6, while

a genetic analysis gave a central estimate of 1.2.

This range of values was consistent with 14 to 73

generations of human-to-human transmission

that occurred in Mexico by late April. Transmissi-

bility was therefore substantially higher than for

seasonal influenza, and comparable with lower

estimates of R0 obtained from previous influenza

pandemics.

Risk Factors for Severe Cases or

Mortality

To date, there is insufficient information about

the clinical complications of S-OIV A (H1N1) 

infection. Deaths have been caused by previous

variants of swine influenza viruses and the novel

H1N1 virus. While data are being collected on the

spectrum of illnesses and complication risk asso-

ciated with infection, clinicians should expect that

both this and seasonal influenza infections will

share the same age and risk factors.

Groups at higher risk of seasonal influenza

complications include: children aged < 5 years;

persons aged ≥ 65 years; children and adolescents

aged < 18 years who are receiving long-term as-

pirin therapy, and who might be at risk for Reye’s

syndrome after influenza; pregnant women; adults

and children who have chronic pulmonary, cardio-

vascular, hepatic, hematological, neurological, neu-

romuscular, or metabolic disorders; adults and

children with immunosuppression caused by med-

ication or human immunodeficiency virus; and

residents of nursing homes and other chronic-care

facilities.

The risk factors for complications of the pres-

ent S-OIV A (H1N1) infection may be similar 

to those of seasonal influenza. However, the

1918 epidemic and the early reports of the pres-

ent S-OIV A (H1N1) outbreak have shown that

younger rather than older people are more sus-

ceptible, and that infected patients of any age

should be observed carefully for the occurrence

of complications.

Transmission: Pandemic Threat and

Infection Control

Pending clarification of transmission patterns for

the S-OIV A (H1N1), the CDC recommends that

personnel providing direct care for patients pre-

senting with febrile respiratory illness (fever 

> 37.8°C, plus one or more of the following: rhi-

norrhea or nasal congestion, sore throat, cough),

in a community in which S-OIV A (H1N1) infec-

tion has been reported, should wear a disposable

N95 respirator, a gown, gloves, and goggles when

entering the patient’s room. The patient should

also wear a surgical mask and be placed in a pri-

vate room, preferably an airborne infection iso-

lation room. These are interim recommendations

and subject to change at any time. Healthcare

personnel entering the room of a patient in iso-

lation should be limited to those performing di-

rect patient care. It is vital to promote good hand

washing and respiratory/cough etiquette for the

prevention of all respiratory infections in the

healthcare setting.

Antiviral Therapy and Post-exposure

Antiviral Chemoprophylaxis

Either oseltamivir or zanamivir is recommended

for treatment of S-OIV A (H1N1) infection, in-

cluding all hospitalized patients with confirmed,

probable, or suspected novel infection, and symp-

tomatic patients who are at higher risk of seasonal

influenza complications. Post-exposure antiviral

chemoprophylaxis with oseltamivir or zanamivir

should be considered for the following: close con-

tacts of cases (confirmed, probable or suspected)
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and healthcare personnel; public health workers;

or those who have had recognized, unprotected,

close-contact exposure to an infected person (con-

firmed, probable or suspected) during that person’s

infectious period.

Characteristics of Novel S-OIV A (H1N1)

in Humans

Where did the swine influenza virus 
come from?
Influenza A virus can infect various host species,

including birds, humans, and swine. Influenza 

A H1N1 virus was first isolated from swine in

19306 and from humans in 1933.7 Swine influ-

enza A viruses are antigenically very similar to the

1918 human influenza A virus, and they may all

have originated from a common ancestor.8,9 From

1930 to the late 1990s, swine influenza A viruses

were called “classical swine influenza” and they

have remained relatively stable antigenically.10,11

In around 1998, the classical swine influenza

virus resorted with human influenza A H3N2 virus

and a North American Lineage avian influenza

virus (unknown subtype), which resulted in the

emergence of a triple resorted H3N2 swine virus.

This resorted virus has been circulating in the swine

population throughout North America.12–14 Also

in around 1998, the triple resorted H3N2 virus

resorted again with the classical swine influenza

virus. This generated two new subtypes of swine

influenza A virus, the H1N1 and the H1N2

viruses,11 which have been circulating in the

Asian swine population. Although human and

swine H1N1 viruses are all of avian origin, they

have evolved in different host species. Antigenic

drift has occurred amongst different lineages of

H1N1 viruses; therefore, cross-protection anti-

bodies against avian, swine, and human H1N1

viruses are not expected to exist. Indeed, a recent

study has demonstrated that ferret post-infection

antisera raised against the currently circulating,

seasonal human H1N1 viruses did not react with

the novel S-OIV, according to a hemagglutination

inhibition assay.15

The newly emerged S-OIV A (H1N1) contains

a combination of gene segments that have not

been previously identified in swine or human in-

fluenza viruses. The PB2 and PA genes originated

from an avian virus that was introduced into swine

viruses around 1998. PB1 originated from the

human H3N2 virus, which acquired the gene

from an avian virus in 1968. HA, NP, and NS genes

came from classical swine virus and these three

genes are closely related to the 1918 human in-

fluenza A virus. The other two genes, NA and M,

were from the Eurasian swine virus and were in-

troduced to swine viruses in 1979.16 The Figure

depicts the origins of each gene segment of 

S-OIV A (H1N1).

NA and M are the targets of two classes of

clinically used antivirals, oseltamivir (Tamiflu)/

zanamivir (Relenza) and amantadine/rimantadine.

Eurasian swine viruses are oseltamivir-sensitive

and amantadine-resistant. The novel S-OIV A

(H1N1) also has inherited sensitivity to oseltamivir

and resistance to amantadine.16

Virulence factors of S-OIV A (H1N1)
The mortality rate for infection with S-OIV 

A (H1N1) appears not to be particularly high.

However, virulence may change as the number of

adaptive gene mutations increases, and the virus

may have more opportunities to replicate in the

new host species. Like other influenza A viruses,

swine influenza virus enters host cells by binding

to receptors that contain sialic acid. Swine are

known to contain two types of receptors, 2,6-

linked sialic acids that appear abundantly in the

human respiratory tract, and 2,3-linked sialic

acids that tend to be found in avian cells. The

binding affinity of S-OIV A (H1N1) to different

sialic acids is unclear. However, since the S-OIV 

A (H1N1) has been transmitted from human to

human, this virus is expected to bind to human

receptors. However, adaptive mutations may occur

that promote the binding of S-OIV A (H1N1) to

2,6-linked sialic acids, if more humans become

infected in the near future.

Adaptive mutations may occur in any other

gene segments apart from the receptor binding

Novel H1N1 influenza pandemic
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site, and alter viral pathogenesis and virulence.

Currently, predicting which adaptive mutations

will increase or reduce the virulence of S-OIV A

(H1N1) is difficult. However, the following genetic

features may be of interest.

PB2 is a viral ribonucleoprotein subunit that

is responsible for viral replication in cells infected

with influenza virus, and is considered to be a

genetic factor that is associated with host restric-

tion. Almost all of the human influenza A viruses

have lysine (K) at position 627 in the PB2 pro-

tein, and most of the avian viruses have glutamic

acid (E) at this position.17 The E to K mutation in

an avian virus has been shown to increase its vir-

ulence in mammalian experimental systems.18

The PB2 gene segment of S-OIV A (H1N1) has

resorted from an avian influenza A virus of an

unknown subtype and has retained E at position

627. H7N7 avian influenza viruses have infected

humans previously, and one human isolate from

a fatal case has been found to have the E to K

mutation.19 Therefore, monitoring changes in the

amino acid sequence at position 627 of S-OIV 

A (H1N1) in humans is important for predicting

a change in virulence.

PB1-F2 is translated from another reading

frame of the PB1 gene segment because of an al-

ternative translation initiation, and has also been

reported to increase the pathogenicity of the 1918

virus and the highly pathogenic H5N1 virus.18,20

The PB1 gene of the novel S-OIV A (H1N1) has

been found to have truncated forms of PB1-F2

because of the presence of a stop codon at posi-

tion 12. Hence, a point mutation at position 12

may lead to production of a full-length PB1-F2

in the novel S-OIV to increase viral pathogenicity

in humans. However, the mutation may not be

favored in human hosts because human viruses

have tended not to express PB1-F2 as they have

evolved in humans.21

Another well-known virulence factor for the

influenza virus is the NS1 protein. NS1 protein

suppresses the antiviral mechanism in host cells

upon viral infection.22 The C-terminal domain of

the NS1 protein contains the ESEV signal in many

avian influenza A viruses; this signal interacts with

cellular modulators that contain the PDZ domain.

This interaction may increase viral pathogenicity.

Although the NS gene segment of S-OIV A (H1N1)

originated from an avian virus, it is truncated by
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Figure. The origin of each gene segment of swine-origin influenza virus A (H1N1). NA and M were derived from the
Eurasian swine virus that originated from the Eurasian avian influenza A virus. The remaining genes were derived from
the triple resorted swine virus that originated from different lineages of avian viruses.



a stop codon at position 220. Hence, NS1 pro-

tein in S-OIV does not have the PDZ ligand do-

main. It is difficult to predict whether a further

mutation in humans will change the sequence at

position 220 and thereby alter the virulence of 

S-OIV A (H1N1).

How Did S-OIV A (H1N1) Overcome Host

Restriction and Pass from Swine to

Humans?

The crossing of host species by the novel S-OIV A

(H1N1) is very important and interesting. Given

the known virulence factors discussed above, the

causes of human infection and its spread among

humans remain unknown. Clearly, other previ-

ously unrecognized molecular determinants are

responsible for the ability of S-OIV A (H1N1) to

replicate and be transmitted in humans. The so-

called species-specific signatures of avian and

human influenza A viruses have been reported.23

We examined the amino acid sequences of S-OIV

A (H1N1) at those species-specific positions and

found that most of the sequences were avian-like

signatures. However, some of them had changed

from avian- to human-like signatures. For exam-

ple, at position 271 of the PB2 gene, the avian-

like signature is T (threonine); whereas the

human-like signature is A (alanine). Most swine

viruses contain T at this position, whereas S-OIV

in humans has A at position 271 of PB2. More

studies should be conducted to identify the un-

recognized molecular markers and thus help to

determine the mechanism by which an animal

influenza A virus crossed the species barrier to

infect humans. Additionally, these molecular de-

terminants will be used to predict viral virulence

and pathogenicity for diagnosis.

Combating the Pandemic: Vaccines

As the S-OIV A (H1N1) infection has become a

pandemic, the most critical question is how to con-

tain it. From the experience so far, it is impossible

to prevent the virus from spreading further be-

cause the first wave of the epidemic hit many 

developed countries and containment has been a

failure. Although this virus remains sensitive to

oseltamivir, the medication is for treatment and

short-term prophylaxis rather than epidemic con-

trol. The only way to control this pandemic is

through large-scale immunization. The production

of vaccines against S-OIV A (H1N1) is feasible;

however, several questions remain unanswered.

First, how many doses are needed to induce ef-

fective protection? For seasonal influenza vaccine,

one dose is sufficient for those aged > 8 years. For

pandemic vaccines such as H5N1, two doses are

needed.24 Second, what is the optimal antigen

content in the vaccine? Seasonal influenza vaccine

contains 15 μg per strain and 45 μg in total.

Without adjuvant, even at 90 μg, H5N1 vaccine

is not sufficiently immunogenic. It is not known

whether adjuvant is needed, or the optimal

amount of antigen in the vaccine. Finally, there is

a historic precedent of rushed production of in-

fluenza vaccine to contain swine influenza (as

demonstrated in 1976). Unfortunately, an increase

in the incidence of Guillain-Barré syndrome was

demonstrated in the same year and vaccination

had to be stopped.25 The mechanism remains

uncertain, although the antiganglioside antibody

was raised as a possible explanation.26 How to

prevent this from being repeated in 2009 is an

area of concern.

Conclusion

Forty-one years after the last influenza pandemic,

we have witnessed the first pandemic caused by a

novel S-OIV A (H1N1) in the 21st century. With

our knowledge and experience about influenza

viruses, we should be able to cope with this pan-

demic with the least possible morbidity and

mortality. Vaccination is the only effective way to

stop this pandemic and will be available in late

2009. More understanding of influenza viruses

and continuous development of broad-spectrum

influenza vaccines are of critical importance.
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