

Available online at www.sciencedirect.com

Topology and its Applications

Topology and its Applications 154 (2007) 2333-2343

www.elsevier.com/locate/topol

Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces

Ronnie Levy, Mikhail Matveev*

Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA Received 6 November 2006; accepted 6 April 2007

Abstract

A space is monotonically Lindelöf (mL) if one can assign to every open cover \mathcal{U} a countable open refinement $r(\mathcal{U})$ (still covering the space) so that $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V} . Some examples of mL and non-mL spaces are considered. In particular, it is shown that the product of a mL space and the convergent sequence need not be mL, that some L-spaces are mL, and that $C_p(X)$ is mL only for countable X.

© 2007 Elsevier B.V. All rights reserved.

MSC: 54D20

Keywords: Lindelöf, compact; Monotonically Lindelöf; Michael line; Bernstein set; Lusin space; Sorgenfrey line; L-space; C_p space; $\beta\omega$

1. Introduction

Recall that X is *monotonically Lindelöf* (mL) if there is an operator assigning to every open cover \mathcal{U} a countable open refinement $r(\mathcal{U})$ (still covering the space) in such a way that $r(\mathcal{V})$ refines $r(\mathcal{U})$ whenever \mathcal{V} refines \mathcal{U} [9]. Here, by saying that a family of sets \mathcal{A} refines a family of sets \mathcal{B} we only mean that every element of \mathcal{A} is a subset of an element of \mathcal{B} .

Not many examples of mL spaces are known. Basically, these are all separable metrizable spaces (see [2]), the one point Lindelöfication of the discrete space of cardinality ω_1 , all separable GO spaces, in particular, the Sorgenfrey line [2], some non-separable GO spaces, for example, the lexicographic square of [0, 1] [2], (consistently) some non-metrizable countable spaces [8]. On the other hand, such "good" Lindelöf spaces as the one point Lindelöfication of the discrete space of cardinality ω_2 , the one point compactification of the discrete space of cardinality ω_1 , or a dense countable subset in 2^{ω_1} are not mL. The Alexandroff Duplicate of X is mL iff X is second countable (Jerry Vaughan, unpublished).

In this paper we extend the list of spaces known to be (or not to be) mL.

⁶ Corresponding author.

E-mail addresses: rlevy@gmu.edu (R. Levy), misha_matveev@hotmail.com, mmatveev@gmu.edu (M. Matveev).

^{0166-8641/\$ –} see front matter $\,$ © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2007.04.002

Notation. For a family \mathcal{U} of subsets of a space X, and for a subset $Y \subset X$, we let $\mathcal{U}|Y = \{U \cap Y : U \in \mathcal{U}\}$. For families of sets \mathcal{U} and \mathcal{V} , we write $\mathcal{U} \land \mathcal{V} = \{U \cap V : U \in \mathcal{U} \text{ and } V \in \mathcal{V}\}$. It is clear that $\mathcal{U} \land \mathcal{V}$ refines both \mathcal{U} and \mathcal{V} , and that $\mathcal{U}_1 \land \mathcal{V}_1$ refines $\mathcal{U}_2 \land \mathcal{V}_2$ whenever \mathcal{U}_1 refines \mathcal{U}_2 , and \mathcal{V}_1 refines \mathcal{V}_2 . If \mathcal{U} is a family of sets and V a set, we write $V \prec \mathcal{U}$ if V is a subset of some element of \mathcal{U} .

2. Some (Michael line)-like spaces are mL

Recall that a space *X* concentrates on $A \subset X$ if every neighborhood of *A* contains all but countably many points of *X*. For a space (X, \mathcal{T}) and $B \subset X$, denote by \mathcal{T}_B the topology on *X* generated by the base $\mathcal{T} \cup \{\{p\}: p \in X \setminus B\}$. This generalized Michael line construction is mentioned in [7]. It is well-known that if (X, \mathcal{T}) concentrates on a Lindelöf subspace *B*, then both (X, \mathcal{T}) and (X, \mathcal{T}_B) are Lindelöf. The following is straightforward:

Proposition 1. If a second countable space (X, T) concentrates on B, then (X, T_B) is mL.

Indeed, having a countable base \mathcal{B} for (X, \mathcal{T}) and an open cover \mathcal{U} of (X, \mathcal{T}_B) , one can put $r_0(\mathcal{U}) = \{O \in \mathcal{B}: O \prec \mathcal{U}\}$ and $r(\mathcal{U}) = r_0(\mathcal{U}) \cup \{\{p\}: p \notin \bigcup r_0(\mathcal{U})\}$. Then *r* is a mL operator for (X, \mathcal{T}_B) .

Even if we are going to use only this proposition, here is a formal generalization. Say that $B \subset X$ is *relatively mL* in X if there is an operator r that assigns to every cover \mathcal{U} of B by open subsets of X a countable open cover $r(\mathcal{U})$ of B by open subsets of X in such a way that $r(\mathcal{V})$ refines $r(\mathcal{U})$ whenever \mathcal{V} refines \mathcal{U} .

Proposition 2. If (X, \mathcal{T}) concentrates on $B \subset X$, and B is relatively mL in (X, \mathcal{T}) , then (X, \mathcal{T}_B) is mL.

The proof is straightforward.

Under CH, there is an uncountable $X \subset \mathbb{R}$ that concentrates on \mathbb{Q} [1,10]. Moreover, one can get nontrivial examples without additional assumptions. Recall that $B \subset X$ is called a *Bernstein* set in X if every uncountable closed subset of X has points both in B and not in B. Every complete separable metrizable space contains a Bernstein set. It is clear that every space having a Bernstein set concentrates on it.

Proposition 3. Let $B \subset X$ be a Bernstein set in (X, \mathcal{T}) . If B is relatively mL in (X, \mathcal{T}) (in particular, if X is second countable), then (X, \mathcal{T}_B) is mL.

This gives a nontrivial example even for the real line \mathbb{R} with the usual Euclidean topology \mathcal{E} .

Corollary 4. Let B be a Bernstein subset of the real line \mathbb{R} . Then $(\mathbb{R}, \mathcal{E}_B)$ is mL.

In [10], E. Michael showed that the product $(\mathbb{R}, \mathcal{E}_B) \times (\mathbb{R} \setminus B, \mathcal{E}|_{\mathbb{R} \setminus B})$ is not normal. This implies

Corollary 5. There is a mL space X and a separable metrizable space Y such that the product $X \times Y$ is not normal.

Proposition 6. *The square of* $(\mathbb{R}, \mathcal{E}_B)$ *is Lindelöf.*

Proof. We call the topology on $\mathbb{R} \times \mathbb{R}$ generated by the base $\mathcal{E}_B \times \mathcal{E}_B$ (and restrictions of this topology to subspaces) *new*.

Claim 1. $\mathbb{R} \times \mathbb{R}$ concentrates on $(\mathbb{R} \times B) \cup (B \times \mathbb{R})$ (in the new topology).

Proof. Let *U* be a neighborhood (in the new topology) of $(\mathbb{R} \times B) \cup (B \times \mathbb{R})$ in $\mathbb{R} \times \mathbb{R}$. Suppose $H = \mathbb{R} \times \mathbb{R} \setminus U$ is uncountable. Since every horizontal or vertical line intersects *H* on at most a countable set, one can pick pairwise distinct x_{α} and y_{α} in \mathbb{R} , $0 \le \alpha < \omega_1$, so that $(x_{\alpha}, y_{\alpha}) \in H$. The sets *C* and *D* of complete accumulation points of the sets $\{x_{\alpha}: \alpha < \omega_1\}$ and $\{y_{\alpha}: \alpha < \omega_1\}$ (in the Euclidean topology) are closed and uncountable. Thus there are $c \in C \cap B$ and $d \in D \cap B$. So (c, d) is a complete accumulation point for the set $K = \{(x_{\alpha}, y_{\alpha}): \alpha < \omega_1\}$ in the Euclidean topology. But $(c, d) \in B \times B$, and points of $B \times B$ have the same basic neighborhoods in the new topology as in

the Euclidean one. Therefore (c, d) is a complete accumulation point for K in the new topology as well. This is a contradiction since $(c, d) \in U$ while $K \subset H$. \Box

Now it suffices to show that $\mathbb{R} \times B$ (in the new topology) is Lindelöf. Clearly, we will get this if we prove the following:

Claim 2. Let $B \times B \subset U \subset \mathbb{R} \times B$ where U is open in the new topology. Then $\pi_1(\mathbb{R} \times B \setminus U)$ is at most countable (where π_1 is the projection of the product $\mathbb{R} \times B$ onto the first factor).

Proof. Suppose that the projection is uncountable. Since the intersection of $(\mathbb{R} \times B) \setminus U$ with any horizontal line is at most countable, one can pick by induction points $(x_{\alpha}, y_{\alpha}) \in (\mathbb{R} \times B) \setminus U$, for all $\alpha < \omega_1$ so that x_{α} are pairwise distinct, and so are also y_{α} . The sets *C* and *D* of complete accumulation points of the sets $\{x_{\alpha}: \alpha < \omega_1\}$ and $\{y_{\alpha}: \alpha < \omega_1\}$ (in the Euclidean topology) are closed and uncountable. Thus there are $c \in C \cap B$ and $d \in D \cap B$. So (c, d) is a complete accumulation point for the set $K = \{(x_{\alpha}, y_{\alpha}): \alpha < \omega_1\}$ in the Euclidean topology. But $(c, d) \in B \times B$, and points of $B \times B$ have the same basic neighborhoods in the new topology as in the Euclidean one. Therefore (c, d) is a complete accumulation point for *K* in the new topology as well. This is a contradiction since $(c, d) \in U$ while $K \subset (\mathbb{R} \times B) \setminus U$. \Box

Recall that an uncountable space X is called *Lusin* if every nowhere dense subset of X is countable.

Proposition 7. (See [6].) (CH) Every uncountable CCC Baire space without isolated points and of π -weight at most *c* contains a dense Lusin subspace.

In fact, the condition in Proposition 7 is equivalent to CH, see [6]. It is clear that a Lusin space concentrates on every dense subspace.

Proposition 8. Let B be a dense subspace in a Lusin space (X, T). If B is relatively mL in (X, T) (in particular, if (X, T) second countable), then (X, T_B) is mL.

Corollary 9. Let B be a dense countable subspace in a Lusin space (X, \mathcal{T}) , and let (X, \mathcal{T}) be first countable at all points of B. Then (X, \mathcal{T}_B) is mL.

In contrast with Proposition 6, mL spaces obtained from Lusin spaces need not, in general, have Lindelöf square. Let (\mathbb{R}, S) denote the Sorgenfrey line.

Proposition 10. (CH) There is a dense Lusin subspace B of (\mathbb{R}, S) such that the square of $(B, S|_B)$ is not Lindelöf.

Proof. Pick a dense Lusin subspace $B_R \subset (\mathbb{R}^+, S|_{\mathbb{R}^+})$. Put $B_L = \{-b: b \in B\}$ and $B = B_L \cup B_R$. Then the square of *B* contains $\{(b, -b): b \in B\}$. By the Jones' lemma argument, it is not normal.

Proposition 11. $(\mathbb{R}, \mathcal{E}_B) \times (\omega + 1)$ is not mL.

Proof. Suppose *r* were a mL operator on $\mathbb{R} \times (\omega + 1)$.

For a function $f : \mathbb{R} \to [0, \infty)$, we denote by U_f the set of all points $(x, n) \in \mathbb{R} \times (\omega + 1)$ such that $\frac{1}{n} < f(x)$. (In this arithmetic, $1/\omega = 0$.) Denote $\mathcal{U}_f = \{U_f\} \cup \{\mathbb{R} \times \{n\}: n \in \omega\} \cup \{\{p\} \times (\omega + 1): p \in \mathbb{R} \setminus B\}$. (Naturally, we are going to consider only those f for which \mathcal{U}_f covers $\mathbb{R} \times (\omega + 1)$.)

For $x \in \mathbb{R} \setminus B$ and $t \in \mathbb{R}$, put $f_x(t) = |x - t|$. It is clear that, for $p \in \mathbb{R} \setminus B$, $r(\mathcal{U}_{f_p})$ must contain a set O such that the projection of O on \mathbb{R} is $\{p\}$, and O contains $\{p\} \times [n, \omega]$ for some n. Moreover, for uncountably many p, this n is the same. Denote the set of such p by A_n . There is a point $z \in \mathbb{R}$ every neighborhood of which contains uncountably many points of A_n . Pick $\varepsilon \ll 1/n$. Consider the function g_z defined by $g_z(t) = \max\{2|z - t|, \varepsilon\}$ (see Fig. 1).

Denote $B_n = \{p \in A_n : g_z(t) > f_p(t) \text{ for all } t \in \mathbb{R}\}$. It is clear from the picture that B_n contains all points of A_n that are close enough to z, so B_n is uncountable. Therefore, the cover \mathcal{U}_{g_z} is coarser than each of the covers \mathcal{U}_{f_p} , $p \in B_n$.

Then $r(\mathcal{U}_{g_z})$ must contain, for each $p \in B_n$, an element including the set $\{p\} \times [n, \omega]$. But the only element of \mathcal{U}_{g_z} that includes $\{p\} \times [n, \omega]$ is $\{p\} \times (\omega + 1)$. So, $r(\mathcal{U}_{g_z})$ must contain uncountably many one point wide elements, and thus $r(\mathcal{U}_{g_z})$ must be uncountable which is a contradiction. \Box

The following is a formal generalization:

Proposition 12. If the cellularity of (X, T) is uncountable, T contains a weaker metrizable topology, and Y is first countable at at least one nonisolated point, then $(X, T) \times Y$ is not mL.

As we will see from the next proposition, the assumption of something like first countability in the previous one is essential; *B* still denotes a Bernstein set.

Proposition 13. The product of $(\mathbb{R}, \mathcal{E}_B)$ and the one point Lindelöfication of the discrete space of cardinality ω_1 is mL.

Proof. Let $D = \{d_{\alpha}: \alpha < \omega_1\}$ be a discrete space of cardinality ω_1 , and let $L = D \cup \{d_{\omega_1}\}$ be the one point Lindelöfication of D. Let \mathcal{O} be a countable base of \mathcal{E} . For an open cover \mathcal{U} of $(\mathbb{R}, \mathcal{E}_B) \times L$ and $O \in \mathcal{O}$, put

$$\alpha_{\mathcal{U}}(O) = \begin{cases} \min\{\alpha < \omega_1 \colon (\exists U \in \mathcal{U}) \text{ such that } O \times \{d_\beta \colon \alpha \leqslant \beta \leqslant \omega_1\} \subset U\} \\ \text{if such } U \text{ exists,} \\ \omega_1 \quad \text{otherwise.} \end{cases}$$

Put

$$s(\mathcal{U}) = \{ O \in \mathcal{O}: \alpha_{\mathcal{U}}(O) < \omega_1 \}, t(\mathcal{U}) = \{ O \times \{ d_\beta: \alpha_{\mathcal{U}}(O) \le \beta \le \omega_1 \}: O \in s(\mathcal{U}) \}$$

For $x \in \mathbb{R}$, denote

$$h_{1,\mathcal{U}}(x) = \liminf_{y \to x} \{ \alpha_{\mathcal{U}}(O) \colon y \in O \in \mathcal{O} \}$$

(where $y \rightarrow x$ is understood with respect to the topology \mathcal{E} ; note that this inf is actually min),

$$h_{2,\mathcal{U}}(x) = \min \{ \alpha \colon (\exists U \in \mathcal{U}) \text{ such that } \{x\} \times \{d_{\beta} \colon \alpha \leq \beta \leq \omega_1\} \subset U \},\$$
$$h_{\mathcal{U}}(x) = \max \{h_{1,\mathcal{U}}(x), h_{2,\mathcal{U}}(x)\},\$$
$$H_{\mathcal{U}}(x) = \{x\} \times \{d_{\beta} \colon h_{\mathcal{U}}(x) \leq \beta \leq \omega_1\}.$$

Put $I(\mathcal{U}) = \mathbb{R} \setminus \bigcup s(\mathcal{U}), k(\mathcal{U}) = \{H_{\mathcal{U}}(x) \colon x \in I(\mathcal{U})\},\$

$$r(\mathcal{U}) = s(\mathcal{U}) \cup \{\{x\}: x \in I(\mathcal{U})\},\$$

$$\alpha^*(\mathcal{U}) = \max\{\sup\{\alpha_{\mathcal{U}}(O): O \in s(\mathcal{U})\}, \sup\{h_{2,\mathcal{U}}(x): x \in I(\mathcal{U})\}\} + 1.$$

Note that if $\alpha \ge \alpha^*(\mathcal{U})$, then $\mathbb{R} \times \{d_\alpha\} \subset \bigcup (t(\mathcal{U}) \cup k(\mathcal{U}))$. For $\alpha < \alpha^*(\mathcal{U})$, put

$$\mathcal{U}_{\alpha} = \left(\mathcal{U} \mid (\mathbb{R} \times \{d_{\alpha}\})\right) \land \left\{V \times \{d_{\alpha}\}: V \in r(\mathcal{U})\right\},\$$

$$s_{\alpha}(\mathcal{U}) = \left\{O \times \{d_{\alpha}\}: O \in \mathcal{O} \text{ and } (\exists U \in \mathcal{U}_{\alpha}) \text{ such that } O \times \{d_{\alpha}\} \subset U\right\},\$$

$$i_{\alpha}(\mathcal{U}) = \left\{\left\{(x, d_{\alpha})\right\}: (x, d_{\alpha}) \in \left(\mathbb{R} \times \{d_{\alpha}\}\right) \setminus \bigcup s_{\alpha}(\mathcal{U})\right\},\$$

$$r_{\alpha}(\mathcal{U}) = s_{\alpha}(\mathcal{U}) \cup i_{\alpha}(\mathcal{U}).$$

Finally, put $R(\mathcal{U}) = t(\mathcal{U}) \cup k(\mathcal{U}) \cup \bigcup \{r_{\alpha}(\mathcal{U}): \alpha \in A(\mathcal{U})\}$. Then $R(\mathcal{U})$ is a countable open refinement of \mathcal{U} covering $\mathbb{R} \times L$. To check monotonicity of R, let \mathcal{U} and \mathcal{V} be two open covers of $(\mathbb{R}, \mathcal{E}_B) \times L$, and suppose \mathcal{V} refines \mathcal{U} . Let $W \in R(\mathcal{V})$. We have to find $W' \in R(\mathcal{U})$ such that $W' \supset W$. There are three possibilities.

Case 1. $W \in t(\mathcal{V})$. The existence of W' follows from monotonicity of *s* and *t*.

Case 2. $W \in k(\mathcal{V})$. Then $W = H_{\mathcal{V}}(x)$ for some $x \in I(\mathcal{V})$. Obviously, $h_{1,\mathcal{U}}(x) \leq h_{1,\mathcal{V}}(x)$, $h_{2,\mathcal{U}}(x) \leq h_{2,\mathcal{V}}(x)$, and thus $h_{\mathcal{U}}(x) \leq h_{\mathcal{V}}(x)$. Therefore $H_{\mathcal{U}}(x) \supset H_{\mathcal{V}}(x)$. So if $x \in I(\mathcal{U})$, then $H_{\mathcal{U}}(x) \in k(\mathcal{U}) \subset R(\mathcal{U})$ and we can take $W' = H_{\mathcal{U}}(x)$.

Otherwise, if $x \notin I(\mathcal{U})$, we have $x \in \bigcup s(\mathcal{U})$, so $x \in O^*$ for some $O^* \in s(\mathcal{U})$. Then $\alpha_{\mathcal{U}}(O^*) \leq h_{1,\mathcal{U}}(x) \leq h_{1,\mathcal{V}}(x) \leq h_{\mathcal{V}}(x)$. So for $W' = O^* \times \{d_\beta : \alpha_{\mathcal{U}}(O^*) \leq \beta \leq \omega_1\}$ we have $W' \supset H_{\mathcal{V}}(x)$, and $W \in t(\mathcal{U}) \subset R(\mathcal{U})$.

Case 3. $W \in r_{\alpha}(\mathcal{V})$ for some $\alpha < \alpha^*(\mathcal{V})$. If $\alpha < \alpha^*(\mathcal{U})$, then the existence of W' follows from the fact that \mathcal{V}_{α} refines \mathcal{U}_{α} and monotonicity of s_{α} and r_{α} .

Suppose $\alpha \ge \alpha^*(\mathcal{U})$. Since $W \in r_\alpha(W)$, we have either (a) $W \in s_\alpha(W)$, or (b) $W \in i_\alpha(W)$. In the case (a), $W = O \times \{d_\alpha\}$ for some $O \in \mathcal{O}$, such that there is $V \in \mathcal{V}_\alpha$ with $O \times \{d_\alpha\} \subset V$. But \mathcal{V}_α refines \mathcal{U}_α , so there is $U \in \mathcal{U}_\alpha$ such that $U \supset V \supset O \times \{d_\alpha\}$. So $W \in s_\alpha(\mathcal{U})$, and we can set W' = W.

In the case (b), W is a one point set, so the existence of W' follows from the fact that $R(\mathcal{U})$ is a cover. \Box

Taking into account Propositions 11 and 12 one may wonder if there is a first countable space X with uncountably many isolated points such that the product $X \times (\omega + 1)$ is mL. The answer is affirmative. Let Z be the lexicographic product $\mathbb{R} \times 3$. It follows from a result in [2] that Z is mL. (Alternatively, it is enough to note that Z concentrates on $\mathbb{R} \times (\{0, 2\}) \subset Z$.) Furthermore, Z is first countable, compact, and $c(Z) = \mathfrak{c}$.

Proposition 14. *The (Cartesian) product* $Z \times (\omega + 1)$ *is mL.*

Proof. For $p, q \in \mathbb{Q}$, p < q, and $n \in \omega$, put

 $O_{p,q,n} = (p,q) \times 3 \times [n,\omega].$

For $p \in \mathbb{Q}$, $x \in \mathbb{R}$, p < x, and $n \in \omega$, put

$$R_{p,x,n} = \left(\left((p,x) \times 3 \right) \cup \left(\{x\} \times \{0\} \right) \right) \times [n,\omega].$$

For $x \in \mathbb{R}$, $q \in \mathbb{Q}$, x < q, and $n \in \omega$, put

$$L_{x,q,n} = \left(\left((x,q) \times 3 \right) \cup \left(\{x\} \times \{2\} \right) \right) \times [n,\omega].$$

Let \mathcal{U} be an open cover of $Z \times (\omega 1)$. Put

 $s_{O}(\mathcal{U}) = \{O_{p,q,n}: p, q \in \mathbb{Q}, p < q, n \in \omega, O_{p,q,n} \prec \mathcal{U}\},\$ $s_{R}(\mathcal{U}) = \{R_{p,x,n}: p \in \mathbb{Q}, x \in \mathbb{R}, p < x, n \in \omega, R_{p,x,n} \prec \mathcal{U}, R_{p,x,n} \not\prec s_{O}(\mathcal{U})\},\$ $s_{L}(\mathcal{U}) = \{L_{x,q,n}: x \in \mathbb{R}, q \in \mathbb{Q}, x < q, n \in \omega, L_{x,q,n} \prec \mathcal{U}, L_{x,q,n} \not\prec s_{O}(\mathcal{U})\},\$ $s(\mathcal{U}) = s_{O}(\mathcal{U}) \cup s_{R}(\mathcal{U}) \cup s_{L}(\mathcal{U}).$

Then it is easy to see that $s(\mathcal{U})$ is countable, $s(\mathcal{U}) \prec \mathcal{U}$, s is monotonic with respect to \mathcal{U} , and $\bigcup s(\mathcal{U}) \supset \mathbb{R} \times \{0, 2\} \times \{\omega\}$. Put

$$I(\mathcal{U}) = (\mathbb{R} \times \{1\} \times \{\omega\}) \setminus \bigcup s(\mathcal{U})$$

Then $I(\mathcal{U})$ is at most countable. Put

 $i(\mathcal{U}) = \{ y \in \mathbb{R} \colon \langle y, 1, \omega \rangle \in I(\mathcal{U}) \}.$

For $y \in i(\mathcal{U})$, put

$$n_{R}(y,\mathcal{U}) = \min\{n: (\exists p < y)R_{p,y,n} \prec \mathcal{U}\},\$$

$$n_{L}(y,\mathcal{U}) = \min\{n: (\exists q > y)L_{y,q,n} \prec \mathcal{U}\},\$$

$$n_{i}(y,\mathcal{U}) = \min\{n: \{y\} \times \{1\} \times [n,\omega] \prec \mathcal{U}\},\$$

$$n(y,\mathcal{U}) = \max\{n_{R}(y,\mathcal{U}), n_{L}(y,\mathcal{U}), n_{i}(y,\mathcal{U})\}.$$

Put

$$N(\mathcal{U}) = \{\{y\} \times \{1\} \times [n(y, \mathcal{U}), \omega]: y \in i(\mathcal{U})\},\$$

$$t(\mathcal{U}) = s(\mathcal{U}) \cup N(\mathcal{U}).$$

Then $t(\mathcal{U})$ is countable, $t(\mathcal{U}) \prec \mathcal{U}$, t is monotonic with respect to \mathcal{U} , and $\bigcup t(\mathcal{U}) \supset Z \times \{\omega\}$.

Let *r* be a mL operator for *Z* (as was noted before the proposition, such an operator exists). For an open cover \mathcal{U} of $Z \times (\omega + 1)$, and $n \in \omega$, put

 $\mathcal{U}_n = \{ O: O \text{ is open in } Z, O \times \{n\} \prec \mathcal{U} \}.$

Then \mathcal{U}_n is an open cover of Z. Put

 $r_n(\mathcal{U}) = \{ V \times \{n\} \colon V \in r(\mathcal{U}_n) \}.$

Then $r_n(\mathcal{U})$ is countable, $r_n(\mathcal{U}) \prec \mathcal{U}$, r_n is monotonic with respect to \mathcal{U} , and $\bigcup r_n(\mathcal{U}) \supset Z \times \{n\}$. Put

$$R(\mathcal{U}) = t(\mathcal{U}) \cup \left\{ f_n(\mathcal{U}): n \in \omega \right\}.$$

Then *R* is a mL operator for $Z \times (\omega + 1)$. \Box

So, in Proposition 12, "containing a weaker metrizable topology" cannot be generalized to "first countable".

It is clear that monotone Lindelöfness is hereditary with respect to closed subspaces, the square of $(\mathbb{R}, \mathcal{E}_B)$ is Lindelöf and contains a closed subspace homeomorphic to $(\mathbb{R}, \mathcal{E}_B) \times (\omega + 1)$, so Proposition 11 implies

Corollary 15. There is a mL space the square of which is Lindelöf but not mL.

Question 16. For which n > 1 is there X such that X^n is mL while X^{n+1} is Lindelöf but not mL?

Question 17. Is there a mL space *Y* such that the product of *Y* with the one point Lindelöfication of the discrete space of cardinality ω_1 is not mL?

More generally:

Question 18. Let *Y* be mL and *X* a mL P-space. Must the product $Y \times X$ be mL?

3. Powers of subspaces of the Sorgenfrey line

Let (\mathbb{R}, S) be the Sorgenfrey line. Even if the square of (\mathbb{R}, S) is not normal, under CH the powers of some uncountable subspaces of (\mathbb{R}, S) are Lindelöf.

Proposition 19. (See [10].) (CH) For every *n* there exists $X \subset (\mathbb{R}, S)$ such that X^n is Lindelöf but X^{n+1} is not normal.

Proposition 20. (See [3].) (CH) For every *n* and every uncountable $Y \subset (\mathbb{R}, S)$ there is an uncountable $X \subset Y$ such that X^n is Lindelöf.

A set $A \subset (\mathbb{R}, S)^n$ is called a *discrete surface* if for all distinct $x = \langle x_1, \ldots, x_n \rangle$, $y = \langle y_1, \ldots, y_n \rangle \in A$ there are $i, j \in n$ such that $x_i < y_i$ and $x_j > y_j$ [3].

Proposition 21. (See [3].) Let $X \subset (\mathbb{R}, S)$. X^n is Lindelöf iff it does not contain an uncountable discrete surface.

Proposition 22. Let $X \subset (\mathbb{R}, S)$, and let $n \in \mathbb{N}$. If X^n is Lindelöf, then it is mL.

Proof. We consider points of X^n as functions from *n* to *X*. For $a, b \in \mathbb{R}^n$, we write a < b when a(i) < b(i) for $0 \le i < n, (a, b) = \{x \in \mathbb{R}^n : a < x < b\}$ etc. Pick a dense countable subspace $D \subset X$.

Let X^n be Lindelöf, \mathcal{U} an open cover of X^n , and let $d \in D^n$. Put

$$s_d(\mathcal{U}) = \left\{ [c, d) \cap X^n \colon c \in D^n \& c < d \& [c, d) \cap X^n \prec \mathcal{U} \right\},$$

$$S_d(\mathcal{U}) = \bigcup s_d(\mathcal{U}),$$

$$T_d(\mathcal{U}) = \left\{ y \in X^n \setminus S_d(\mathcal{U}) \colon y < d \& [y, d) \cap X^n \prec \mathcal{U} \right\}.$$

Let $\emptyset \neq A \subset n$. Say that a point $t \in T_d(\mathcal{U})$ is of \mathcal{U} -type A if there is $z \in T_d(\mathcal{U})$ such that z(i) < t(i) for all $i \in A$, and z(i) = t(i) for all $i \in n \setminus A$. Let $I(t) = \{A \subset n : t \text{ is of } \mathcal{U}\text{-type } A\}$, and $MI(t) = \{A \in I(t) : \exists B \in I(t) \text{ such that } B \supset A\}$ and $B \neq A$. Let

$$T_{d,A}(\mathcal{U}) = \left\{ t \in T_d(\mathcal{U}) \colon A \in MI(t) \right\},\$$
$$\mathcal{A}_d(\mathcal{U}) = \left\{ A \colon \emptyset \neq A \subset n \& T_{d,A}(\mathcal{U}) \neq \emptyset \right\},\$$
$$T_{d,A}(\mathcal{U}) = \left\{ A \colon \emptyset \neq A \subset n \& T_{d,A}(\mathcal{U}) \neq \emptyset \right\},\$$

 $T_{d,\emptyset}(\mathcal{U}) = \left\{ t \in T_d(\mathcal{U}): t \text{ is not of } \mathcal{U} \text{-type } A \text{ for any } A \text{ such that } \emptyset \neq A \subset n \right\}.$

Then $T_d(\mathcal{U}) = T_{d,\emptyset}(\mathcal{U}) \cup \bigcup \{T_{d,A}(\mathcal{U}): A \in \mathcal{A}_d(\mathcal{U})\}.$

It is clear that $n \notin MI(t)$ for any t. For $A \subset n$, let $A' = n \setminus A$. Let $A \in \mathcal{A}_d(\mathcal{U})$. We claim that $|\pi_{A'}(T_{d,A}(\mathcal{U}))| \leq \omega$. Suppose the contrary. Note that for every $p \in \pi_{A'}(T_{d,A}(\mathcal{U}))$ there are $q_1, q_2 \in D^A \cap \pi_A(T_{d,A}(\mathcal{U}))$ such that $q_1(i) < 0$ $q_2(i)$ for all $i \in A$. There is an uncountable $K \subset \pi_{A'}(T_{d,A}(\mathcal{U}))$ such that for all $p \in K$, q_1 and q_2 are the same. Since K is uncountable, it is not a discrete surface, and thus it contains points p_1, p_2 such that $p_1(i) < p_2(i)$ for all $i \in A'$. Consider points $t_1, t_2 \in T_{d,A}(\mathcal{U})$ defined by

$$t_j(i) = \begin{cases} q_j(i) & \text{if } i \in A, \\ p_j(i) & \text{if } i \in A', \\ \end{cases} \quad j = 1, 2.$$

Then $t_1 < t_2 < d$. Pick $c \in D^n$ so that $t_1 < c < t_2 < d$. Then $t_2 \in [c, d)$, a contradiction. Suppose $A \in \mathcal{A}_d(\mathcal{U})$ and $p \in \pi_{A'}(T_{d,A}(\mathcal{U}))$. Let

$$P_{d,A,p}(\mathcal{U}) = \left\{ x \in T_{d,A}(\mathcal{U}) \colon x < d \& \pi_{A'}(x) = p \& \pi_{\{i\}}(x) \in D \text{ for all } i \in A \right\}$$

Then $|P_{d,A,p}(\mathcal{U})| \leq \omega$. Put

,

$$r_{d,A,p}(\mathcal{U}) = \{ [x,d) \colon x \in P_{d,A,p}(\mathcal{U}) \},\$$

$$r_{d,A}(\mathcal{U}) = \bigcup \{ r_{d,A,p}(\mathcal{U}) \colon p \in \pi_{A'}(T_{d,A}(\mathcal{U})) \},\$$

$$r_{d}(\mathcal{U}) = \bigcup \{ r_{d,A}(\mathcal{U}) \colon A \in \mathcal{A}_{d}(\mathcal{U}) \} \cup s_{d}(\mathcal{U}).\$$

Then $T_d(\mathcal{U}) \setminus []r_d(\mathcal{U}) = T_{d,\emptyset}(\mathcal{U})$. It is clear that $T_{d,\emptyset}(\mathcal{U})$ is a discrete surface, and thus it is countable. Put

$$\tilde{r}_d(\mathcal{U}) = r_d(\mathcal{U}) \cup \big\{ [t, d) \colon t \in T_{d,\emptyset}(\mathcal{U}) \big\},\\ r(\mathcal{U}) = \big\{ \int \big\{ \tilde{r}_d(\mathcal{U}) \colon d \in D^n \big\}.$$

Then r is a mL operator for X^n . This follows from the following observations: if \mathcal{U} and \mathcal{V} are two open covers of X^n , and $\mathcal{U} \prec \mathcal{V}$, then:

(1) $S_d(\mathcal{U}) \subset S_d(\mathcal{V}),$ (2) $S_d(\mathcal{U}) \cup T_d(\mathcal{U}) \subset S_d(\mathcal{V}) \cup T_d(\mathcal{V}),$ (3) if $x \in S_d(\mathcal{V}) \cup T_d(\mathcal{V})$, then there is $y \in S_d(\mathcal{V}) \cup T_d(\mathcal{V})$ such that $y \leq x$ and $[y, d) \in \tilde{r}_d(\mathcal{V})$. \Box

Corollary 23. (CH) For every n and every uncountable $Y \subset (\mathbb{R}, S)$ there is an uncountable $X \subset Y$ such that X^n is mL.

4. Some L spaces are mL

We start with a proposition that helps to show that two known examples of L-spaces (constructed assuming CH) are mL. Perhaps it can be applied to some other Lindelöf spaces with point countable bases.

Proposition 24. Let $X = \{x_{\alpha}: \alpha < \omega_1\}$ be a hereditarily Lindelöf space, and $\{B_{n,\alpha}: n \in \omega, \alpha < \omega_1\}$ a family of open sets in X such that

(1) $\{B_{n,\alpha}: n \in \omega, B_{n,\alpha} \neq \emptyset\}$ is a base of neighborhoods of x_{α} , and (2) if $\alpha < \beta < \omega_1$, and $x_{\beta} \in B_{n,\alpha}$, then $B_{n,\beta} \subset B_{n,\alpha}$.

Then X is mL.

Proof. Let \mathcal{U} be an open cover of X. We define families $s_{\alpha}(\mathcal{U})$ inductively for $\alpha < \omega_1$. Let $\alpha < \omega_1$ and suppose $s_{\gamma}(\mathcal{U})$ has been defined for each $\gamma < \alpha$. Put $s_{\alpha}(\mathcal{U}) = \{B_{n,\alpha}: (\alpha) \ B_{n,\alpha} \prec \mathcal{U}, \text{ and } (b)$ there are no $\gamma < \alpha$ and $B_{m,\gamma} \in s_{\gamma}(\mathcal{U})$ such that $B_{n,\alpha} \subset B_{m,\gamma}\}$. Finally, set $r(\mathcal{U}) = \bigcup \{s_{\alpha}(\mathcal{U}): \alpha < \omega_1\}$. Then $r(\mathcal{U})$ is an open cover of X that refines \mathcal{U} . The proof of monotone Lindelöfness of X is now concluded by these two claims:

Claim 1. $s_{\alpha}(\mathcal{U})$ are eventually empty and thus $r(\mathcal{U})$ is countable.

Proof. If $r(\mathcal{U})$ is uncountable, then for some *n* so is $r_n(\mathcal{U}) = \{B_{m,\alpha} \in r(\mathcal{U}) : m = n\}$. Denote $X_n = \{x_\alpha : B_{n,\alpha} \in r_n(\mathcal{U})\}$, and $A_n = \{\alpha : B_{n,\alpha} \in r_n(\mathcal{U})\}$. The open cover $\{B_{n,\alpha} : \alpha \in A_n\}$ of X_n has a countable subcover, say $\{B_{n,\alpha} : \alpha \in A\}$. Pick $\beta \in A_n$ with $\beta > \sup A$. Then $x_\beta \in B_{n,\alpha}$ for some $\alpha \in A$, and thus by (2) and (b), $B_{n,\beta}$ cannot be in $s_\beta(\mathcal{U})$. A contradiction. \Box

Claim 2. r is monotonic.

Proof. Let \mathcal{U} and \mathcal{V} be open covers of X such that \mathcal{V} refines \mathcal{U} , and let $B_{n,\alpha} \in s_{\alpha}(\mathcal{V}) \subset r(\mathcal{V})$. Then there is a $V \in \mathcal{V}$ such that $B_{n,\alpha} \subset V$, and thus a $U \in \mathcal{U}$ such that $B_{n,\alpha} \subset V \subset U$. Then either $B_{n,\alpha} \in r(\mathcal{U})$, or there is a $B_{m,\gamma} \in r(\mathcal{U})$ with $\gamma < \alpha$ and $B_{m,\gamma} \supset B_{n,\alpha}$. \Box

Remarks. (1) The condition $|X| = \omega_1$ is not very restrictive: a first countable Lindelöf space has cardinality $\leq c$. Under CH this is ω_1 , and most applications of this proposition are supposed to be under the assumption of CH.

(2) Adding condition (2') $x_{\alpha} \notin B_{n,\beta}$ whenever $\alpha < \beta$ makes X an L-space with a point-countable base. This condition holds in both applications below.

Now we apply Proposition 24 to L-spaces from [5] which are subspaces of $\mathcal{P}(\omega)$ with the Vietoris topology. The following three facts are from [5]:

Proposition 25. (See [5].)

- (A) In the Vietoris topology a neighborhood base for $x \in \mathcal{P}(\omega)$ consists of all sets of the form [f, x] $(f \in [x]^{<\omega})$ where $[f, x] = \{s: f \subseteq s \subseteq x\}$. In other words, for the discrete space ω , the Vietoris topology on $\mathcal{P}(\omega)$ coincides with the Pixley–Roy topology [4].
- (B) The following axiom is a consequence of CH
 - (DOWN) There is a sequence $\langle x_{\alpha}: \alpha < \omega_1 \rangle$ in $\mathcal{P}(\omega)$ such that
 - (1) *if* $\alpha < \beta < \omega_1$, *then* $x_{\alpha} \not\subseteq x_{\beta}$; *and*
 - (2) if $I \subseteq \omega_1$ is uncountable, then there are distinct $\alpha, \beta \in I$ with $x_\beta \subseteq x_\alpha$.
- (C) If x_{α} are as in (DOWN), then $X = \{x_{\alpha} : \alpha < \omega_1\} \subset \mathcal{P}(\omega_1)$ is an L-space.

Using this we get.

Proposition 26. If x_{α} are as in (DOWN), then $X = \{x_{\alpha} : \alpha < \omega_1\} \subset \mathcal{P}(\omega)$ is mL.

2340

Proof. To apply Proposition 24, enumerate $[\omega]^{<\omega}$ as $\{f_n: n \in \omega\}$, and put $B_{n,\alpha} = [f_n, x_\alpha]$. \Box

Now we apply Proposition 24 to an L space from [6]. This space, denoted by \mathcal{L} is a subspace of the space \mathcal{K} of all nonempty compact nowhere dense subsets of \mathbb{R} equipped with the Pixley–Roy topology, that is, a basic neighborhood of $K \in \mathcal{K}$ is of the form (*) $[K, U] = \{S \in \mathcal{K} : K \subset S \subset U\}$ where U is a neighborhood of K in \mathbb{R} . The following two facts are from [6]:

Proposition 27. (See [6].)

(A) \mathcal{K} is a CCC Baire space in which no nonempty open set is separable.

(B) (CH) By Proposition 7, \mathcal{K} contains a dense Lusin subspace \mathcal{L} ; \mathcal{L} is an L space.

Proposition 28. (CH) *The space* \mathcal{L} *from Proposition* 27(B) *is mL.*

Proof. To apply Proposition 24, enumerate \mathcal{L} as $\{L_{\alpha}: \alpha < \omega_1\}$, and all unions of finite families of open intervals in \mathbb{R} with rational endpoints as $\{U_n: n \in \omega\}$ and put $B_{n,\alpha} = [L_{\alpha}, U_n]$. \Box

Another well-known example of an L space is the Souslin line. Monotone Lindelöfness of Souslin lines is discussed in [2]; some questions remain open.

5. Subspaces of infinite products

A space X is *monotonically Lindelöf at* $p \in X$ if there is an operator r_p that assigns to every nonempty family \mathcal{U} of neighborhoods of p a nonempty countable family $r_p(\mathcal{U})$ of neighborhoods of p so that $r_p(\mathcal{U})$ refines \mathcal{U} , and $r_p(\mathcal{U})$ refines $r_p(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V} [8]. Clearly, a mL space must be mL at each point. By a subbase of neighborhoods of $p \in X$ we mean a family \mathcal{A} of neighborhoods of p such that finite intersections of elements of \mathcal{A} form a base of neighborhoods of p. The next proposition is a slight generalization of a proposition from [8].

Proposition 29. Let X be a space, $p \in X$, κ and τ infinite cardinals ($\kappa < \tau$), and \mathcal{B} a subbase of neighborhoods of p of the form $\mathcal{B} = \bigcup \{\mathcal{B}_{\alpha} : \alpha < \tau\}$. Suppose that

(1) for every neighborhood U of p, $|\{\alpha < \tau : \exists B \in \mathcal{B}_{\alpha}U \subset B\}| < \kappa$, and

(2) every subfamily of \mathcal{B} which is still a subbase at p contains elements from more than κ many $\mathcal{B}_{\alpha}s$.

Then X is not mL at p.

Proof. Suppose there were an operator r_p like in the definition of monotone Lindelöfness at p. By induction, we define a decreasing sequence $\{\mathcal{U}_{\gamma}: \gamma \leq \kappa\}$ of families of neighborhoods of p, and an increasing sequence $\{T_{\gamma}: \gamma \leq \kappa\}$ of subsets of τ . Set $\mathcal{U}_0 = \mathcal{B}$, and $T_0 = \emptyset$. Now, suppose $0 < \gamma \leq \kappa$, and \mathcal{U}_{β} and T_{β} have been defined for all $\beta < \gamma$. Put $T_{\gamma} = \{\alpha < \tau: \exists \beta < \gamma, \exists U \in r_p(\mathcal{U}_{\beta}), \exists B \in \mathcal{B}_{\alpha} \text{ such that } U \subset B\}$ and $\mathcal{U}_{\beta} = \bigcup \{\mathcal{B}_{\alpha}: \alpha \notin T_{\beta}\}$. By (1), $|T_{\gamma}| \leq \kappa$, and thus $\mathcal{U}_{\gamma} \neq \emptyset$. At step $\gamma = \kappa$ we get a contradiction with (2). \Box

Corollary 30. The one point compactification of a discrete space of uncountable cardinality is not mL.

Proof. Let $X = \{p\} \cup D$, where $|D| > \omega$, points of D are isolated in X, and a basic neighborhood of p contains p and all but finitely many points of D. To apply Proposition 29, set $\kappa = \omega$, $\tau = |D|$, enumerate $D = \{d_{\alpha} : \alpha < \tau\}$, and put $\mathcal{B}_{\alpha} = \{X \setminus \{d_{\alpha}\}\}$. \Box

Corollary 31. *The one point Lindelöfication of the discrete space of cardinality* $\geq \omega_2$ *is not mL.*

Proof. Let $X = \{p\} \cup D$, where $|D| > \omega_1$, points of D are isolated in X, and a basic neighborhood of p contains p and all but countably many points of D. To apply Proposition 29, set $k = \omega_1$, $\tau = |D|$, enumerate $D = \{d_\alpha : \alpha < \tau\}$, and put $\mathcal{B}_{\alpha} = \{X \setminus \{d_\alpha\}\}$. \Box

Corollary 32. If X is a dense subset of the product of at least ω_1 many factors each of which consist of more than one point, then X is not mL at any point.

Proof. Put $\kappa = \omega$. Without loss of generality, assume that $X \subset P = \prod \{P_{\alpha} : \alpha < \tau\}$ where $\tau \ge \omega_1$ and all P_{α} consist of more than one point. Denote π_{α} the projection of P onto the α th factor, C_{α} the family of all open sets in P_{α} that contain $\pi_{\alpha}(p)$ but not the entire $\pi_{\alpha}(X)$, and $\mathcal{B}_{\alpha} = \{X \cap (\pi_{\alpha})^{-1}(B): B \in C_{\alpha}\}$. Then $\mathcal{B} = \bigcup \{\mathcal{B}_{\alpha}: \alpha < \tau\}$ is a subbase at p like in the previous proposition. \Box

Recall that $C_p(X)$, the space of continuous functions on X with the pointwise convergence topology, is Lindelöf in many nontrivial cases. In contrast with this we get:

Corollary 33. The following conditions are equivalent:

(1) C_p(X) is mL,
 (2) C_p(X) is mL at any point,
 (3) X is countable.

6. $\beta \omega$ is not mL

Proposition 34. $\beta \omega \setminus \omega$ *is not mL*.

Proof. Let \mathcal{A} be an uncountable independent family of subsets of ω . For $A \in \mathcal{A}$, put $A^0 = cl_{\beta\omega}(A) \cap (\beta\omega \setminus \omega)$ and $A^1 = cl_{\beta\omega}(\omega \setminus A) \cap (\beta\omega \setminus \omega)$. For $\mathcal{C} \subset \mathcal{A}$, put $\tilde{\mathcal{C}} = \{A^i \colon A \in \mathcal{C} \text{ and } i \in 2\}$. If $\mathcal{C} \neq \emptyset$, then $\tilde{\mathcal{C}}$ is an open cover of $\beta\omega \setminus \omega$. Suppose there is a mL operator r for $\beta\omega \setminus \omega$.

We inductively define nonempty subfamilies $\mathcal{U}_{\alpha} \subset \mathcal{A}$ for $0 \leq \alpha \leq \omega$ so that $\mathcal{U}_{\beta} \subset \mathcal{U}_{\alpha}$ whenever $\alpha < \beta$. Put $\mathcal{U}_{0} = \mathcal{A}$. Now let $0 \leq \alpha < \omega$, and \mathcal{U}_{α} has been defined. For every $R \in r(\tilde{\mathcal{U}}_{\alpha})$ pick $A_{R} \in \mathcal{U}_{\alpha}$ so that $R \subset (A_{R})^{i}$ for some $i \in 2$. Put $\mathcal{U}_{\alpha+1} = \mathcal{U}_{\alpha} \setminus \{A_{R}: R \in r(\tilde{\mathcal{U}}_{\alpha})\}$. Then for every $\alpha < \omega$, \mathcal{U}_{α} is a co-countable subfamily of \mathcal{A} , and hence so is $\mathcal{U}_{\omega} = \bigcap \{\mathcal{U}_{\alpha}: \alpha < \omega\}$.

Notice that for every $R \in r(\tilde{\mathcal{U}}_{\alpha})$, there is $A_R \in \mathcal{U}_{\alpha} \setminus \mathcal{U}_{\alpha+1}$ and $i \in 2$ such that $R \subset (A_R)^i$. Then by monotonicity,

(*) if $0 \leq \alpha < \beta \leq \omega$, then for every $R \in r(\tilde{\mathcal{U}}_{\beta})$, there is $A \in \mathcal{U}_{\alpha} \setminus \mathcal{U}_{\alpha+1}$ and $i \in 2$ such that $R \subset (A)^i$.

By compactness, there is a finite subcover $\mathcal{D} \subset r(\tilde{\mathcal{U}}_{\omega})$. Let $|\mathcal{D}| = M$. Pick *m* so that $2^m > M$. For each $D \in \mathcal{D}$ and each $\alpha \in \{0, ..., m-1\}$ by (*) one can pick $A_{D,\alpha} \in \mathcal{U}_{\alpha} \setminus \mathcal{U}_{\alpha+1}$ so that $D \subset (A_{D,\alpha})^i$ for some $i \in 2$, then $A_{D,\alpha} \neq A_{D,\beta}$ whenever $\alpha \neq \beta$. Put $\mathcal{K} = \{A_{D,\alpha}: D \in \mathcal{D}, 0 \leq \alpha < m\}$. Then $|\mathcal{K}| \geq m$. Now we note that $\bigwedge \{\tilde{A}: A \in \mathcal{K}\}$ is a partition of $\beta \omega \setminus \omega$ into $2^{|\mathcal{K}|}$ nonempty clopen sets, call them blocks, and each $D \in \mathcal{D}$ intersects at most $2^{|\mathcal{K}|-n}$ blocks. So elements of \mathcal{D} , together, cannot intersect all blocks, a contradiction. \Box

Since monotone Lindelöfness is preserved by closed subspaces, we get

Corollary 35. $\beta \omega$ is not mL.

Acknowledgements

The authors are grateful to Alan Dow, Viacheslav Malykhin, and Peter Nyikos for useful discussions, and to the referee for suggestions that helped to improve the paper.

References

- [1] A. Beliscowitz, Concentrated and rarified sets of points, Acta Math. 62 (1934) 289-300.
- [2] H. Bennett, D. Lutzer, M. Matveev, The monotone Lindelöf property and separability in ordered spaces, Topology Appl. 151 (2005) 180-186.
- [3] D. Burke, J. Moore, Subspaces of the Sorgenfrey line, Topology Appl. 90 (1998) 57-68.
- [4] E.K. van Douwen, The Pixley-Roy topology on spaces of subsets, in: Set-Theoretic Topology, Academic Press, NY, 1977, pp. 111-134.
- [5] E.K. van Douwen, K. Kunen, L-spaces and S-spaces in $\mathcal{P}(\omega)$, Topology Appl. 14 (1982) 143–149.

- [6] E.K. van Douwen, F.D. Tall, W.A.R. Weiss, Nonmetrizable hereditarily Lindelöf spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1) (1977) 139–145.
- [7] R. Engelking, General Topology, Helderman Verlag, Berlin, 1989.
- [8] R. Levy, M. Matveev, The monotone Lindelöf property for countable spaces, submitted for publication.
- [9] M. Matveev, A monotonically Lindelöf space which is not monotonically normal, preprint, 1996.
- [10] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963) 375–376.