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Abstract

A space is monotonically Lindelöf (mL) if one can assign to every open cover U a countable open refinement r(U) (still covering
the space) so that r(U) refines r(V) whenever U refines V . Some examples of mL and non-mL spaces are considered. In particular,
it is shown that the product of a mL space and the convergent sequence need not be mL, that some L-spaces are mL, and that
Cp(X) is mL only for countable X.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recall that X is monotonically Lindelöf (mL) if there is an operator assigning to every open cover U a countable
open refinement r(U) (still covering the space) in such a way that r(V) refines r(U) whenever V refines U [9]. Here,
by saying that a family of sets A refines a family of sets B we only mean that every element of A is a subset of an
element of B.

Not many examples of mL spaces are known. Basically, these are all separable metrizable spaces (see [2]), the one
point Lindelöfication of the discrete space of cardinality ω1, all separable GO spaces, in particular, the Sorgenfrey
line [2], some non-separable GO spaces, for example, the lexicographic square of [0,1] [2], (consistently) some non-
metrizable countable spaces [8]. On the other hand, such “good” Lindelöf spaces as the one point Lindelöfication of
the discrete space of cardinality ω2, the one point compactification of the discrete space of cardinality ω1, or a dense
countable subset in 2ω1 are not mL. The Alexandroff Duplicate of X is mL iff X is second countable (Jerry Vaughan,
unpublished).

In this paper we extend the list of spaces known to be (or not to be) mL.
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Notation. For a family U of subsets of a space X, and for a subset Y ⊂ X, we let U |Y = {U ∩Y : U ∈ U}. For families
of sets U and V , we write U ∧ V = {U ∩ V : U ∈ U and V ∈ V}. It is clear that U ∧ V refines both U and V , and that
U1 ∧ V1 refines U2 ∧ V2 whenever U1 refines U2, and V1 refines V2. If U is a family of sets and V a set, we write
V ≺ U if V is a subset of some element of U .

2. Some (Michael line)-like spaces are mL

Recall that a space X concentrates on A ⊂ X if every neighborhood of A contains all but countably many points
of X. For a space (X,T ) and B ⊂ X, denote by TB the topology on X generated by the base T ∪ {{p}: p ∈ X \ B}.
This generalized Michael line construction is mentioned in [7]. It is well-known that if (X,T ) concentrates on a
Lindelöf subspace B , then both (X,T ) and (X,TB) are Lindelöf. The following is straightforward:

Proposition 1. If a second countable space (X,T ) concentrates on B , then (X,TB) is mL.

Indeed, having a countable base B for (X,T ) and an open cover U of (X,TB), one can put r0(U) = {O ∈ B: O ≺
U} and r(U) = r0(U) ∪ {{p}: p /∈ ⋃

r0(U)}. Then r is a mL operator for (X,TB).
Even if we are going to use only this proposition, here is a formal generalization. Say that B ⊂ X is relatively mL

in X if there is an operator r that assigns to every cover U of B by open subsets of X a countable open cover r(U) of
B by open subsets of X in such a way that r(V) refines r(U) whenever V refines U .

Proposition 2. If (X,T ) concentrates on B ⊂ X, and B is relatively mL in (X,T ), then (X,TB) is mL.

The proof is straightforward.
Under CH, there is an uncountable X ⊂ R that concentrates on Q [1,10]. Moreover, one can get nontrivial examples

without additional assumptions. Recall that B ⊂ X is called a Bernstein set in X if every uncountable closed subset
of X has points both in B and not in B . Every complete separable metrizable space contains a Bernstein set. It is clear
that every space having a Bernstein set concentrates on it.

Proposition 3. Let B ⊂ X be a Bernstein set in (X,T ). If B is relatively mL in (X,T ) (in particular, if X is second
countable), then (X,TB) is mL.

This gives a nontrivial example even for the real line R with the usual Euclidean topology E .

Corollary 4. Let B be a Bernstein subset of the real line R. Then (R,EB) is mL.

In [10], E. Michael showed that the product (R,EB) × (R \ B,E |R\B) is not normal. This implies

Corollary 5. There is a mL space X and a separable metrizable space Y such that the product X × Y is not normal.

Proposition 6. The square of (R,EB) is Lindelöf.

Proof. We call the topology on R × R generated by the base EB × EB (and restrictions of this topology to subspaces)
new.

Claim 1. R × R concentrates on (R × B) ∪ (B × R) (in the new topology).

Proof. Let U be a neighborhood (in the new topology) of (R × B) ∪ (B × R) in R × R. Suppose H = R × R \ U

is uncountable. Since every horizontal or vertical line intersects H on at most a countable set, one can pick pairwise
distinct xα and yα in R, 0 � α < ω1, so that (xα, yα) ∈ H . The sets C and D of complete accumulation points of the
sets {xα: α < ω1} and {yα: α < ω1} (in the Euclidean topology) are closed and uncountable. Thus there are c ∈ C ∩B

and d ∈ D ∩ B . So (c, d) is a complete accumulation point for the set K = {(xα, yα): α < ω1} in the Euclidean
topology. But (c, d) ∈ B × B , and points of B × B have the same basic neighborhoods in the new topology as in
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the Euclidean one. Therefore (c, d) is a complete accumulation point for K in the new topology as well. This is a
contradiction since (c, d) ∈ U while K ⊂ H . �

Now it suffices to show that R × B (in the new topology) is Lindelöf. Clearly, we will get this if we prove the
following:

Claim 2. Let B × B ⊂ U ⊂ R × B where U is open in the new topology. Then π1(R × B \ U) is at most countable
(where π1 is the projection of the product R × B onto the first factor).

Proof. Suppose that the projection is uncountable. Since the intersection of (R×B) \U with any horizontal line is at
most countable, one can pick by induction points (xα, yα) ∈ (R×B)\U , for all α < ω1 so that xα are pairwise distinct,
and so are also yα . The sets C and D of complete accumulation points of the sets {xα: α < ω1} and {yα: α < ω1}
(in the Euclidean topology) are closed and uncountable. Thus there are c ∈ C ∩ B and d ∈ D ∩ B . So (c, d) is a
complete accumulation point for the set K = {(xα, yα): α < ω1} in the Euclidean topology. But (c, d) ∈ B × B , and
points of B × B have the same basic neighborhoods in the new topology as in the Euclidean one. Therefore (c, d)

is a complete accumulation point for K in the new topology as well. This is a contradiction since (c, d) ∈ U while
K ⊂ (R × B) \ U . �

Recall that an uncountable space X is called Lusin if every nowhere dense subset of X is countable.

Proposition 7. (See [6].) (CH) Every uncountable CCC Baire space without isolated points and of π -weight at most
c contains a dense Lusin subspace.

In fact, the condition in Proposition 7 is equivalent to CH, see [6]. It is clear that a Lusin space concentrates on
every dense subspace.

Proposition 8. Let B be a dense subspace in a Lusin space (X,T ). If B is relatively mL in (X,T ) (in particular, if
(X,T ) second countable), then (X,TB) is mL.

Corollary 9. Let B be a dense countable subspace in a Lusin space (X,T ), and let (X,T ) be first countable at all
points of B . Then (X,TB) is mL.

In contrast with Proposition 6, mL spaces obtained from Lusin spaces need not, in general, have Lindelöf square.
Let (R,S) denote the Sorgenfrey line.

Proposition 10. (CH) There is a dense Lusin subspace B of (R,S) such that the square of (B,S|B) is not Lindelöf.

Proof. Pick a dense Lusin subspace BR ⊂ (R+,S|R+). Put BL = {−b: b ∈ B} and B = BL ∪ BR . Then the square of
B contains {(b,−b): b ∈ B}. By the Jones’ lemma argument, it is not normal.

Proposition 11. (R,EB) × (ω + 1) is not mL.

Proof. Suppose r were a mL operator on R × (ω + 1).
For a function f : R → [0,∞), we denote by Uf the set of all points (x,n) ∈ R × (ω + 1) such that 1

n
< f (x). (In

this arithmetic, 1/ω = 0.) Denote Uf = {Uf } ∪ {R × {n}: n ∈ ω} ∪ {{p} × (ω + 1): p ∈ R \ B}. (Naturally, we are
going to consider only those f for which Uf covers R × (ω + 1).)

For x ∈ R \ B and t ∈ R, put fx(t) = |x − t |. It is clear that, for p ∈ R \ B , r(Ufp ) must contain a set O such that
the projection of O on R is {p}, and O contains {p}× [n,ω] for some n. Moreover, for uncountably many p, this n is
the same. Denote the set of such p by An. There is a point z ∈ R every neighborhood of which contains uncountably
many points of An. Pick ε � 1/n. Consider the function gz defined by gz(t) = max{2|z − t |, ε} (see Fig. 1).

Denote Bn = {p ∈ An: gz(t) > fp(t) for all t ∈ R}. It is clear from the picture that Bn contains all points of An that
are close enough to z, so Bn is uncountable. Therefore, the cover Ugz is coarser than each of the covers Ufp , p ∈ Bn.
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Fig. 1.

Then r(Ugz ) must contain, for each p ∈ Bn, an element including the set {p} × [n,ω]. But the only element of Ugz

that includes {p} × [n,ω] is {p} × (ω + 1). So, r(Ugz ) must contain uncountably many one point wide elements, and
thus r(Ugz ) must be uncountable which is a contradiction. �

The following is a formal generalization:

Proposition 12. If the cellularity of (X,T ) is uncountable, T contains a weaker metrizable topology, and Y is first
countable at at least one nonisolated point, then (X,T ) × Y is not mL.

As we will see from the next proposition, the assumption of something like first countability in the previous one is
essential; B still denotes a Bernstein set.

Proposition 13. The product of (R,EB) and the one point Lindelöfication of the discrete space of cardinality ω1 is mL.

Proof. Let D = {dα: α < ω1} be a discrete space of cardinality ω1, and let L = D ∪ {dω1} be the one point Lindelö-
fication of D. Let O be a countable base of E . For an open cover U of (R,EB) × L and O ∈O, put

αU (O) =
{min{α < ω1: (∃U ∈ U) such that O × {dβ : α � β � ω1} ⊂ U}

if such Uexists,
ω1 otherwise.

Put

s(U) = {
O ∈ O: αU (O) < ω1

}
,

t (U) = {
O × {

dβ : αU (O) � β � ω1
}
: O ∈ s(U)

}
.

For x ∈ R, denote

h1,U (x) = lim inf
y→x

{
αU (O): y ∈ O ∈ O

}
(where y → x is understood with respect to the topology E ; note that this inf is actually min),

h2,U (x) = min
{
α: (∃U ∈ U) such that {x} × {dβ : α � β � ω1} ⊂ U

}
,

hU (x) = max
{
h1,U (x), h2,U (x)

}
,

HU (x) = {x} × {
dβ : hU (x) � β � ω1

}
.

Put I (U) = R \ ⋃
s(U), k(U) = {HU (x): x ∈ I (U)},

r(U) = s(U) ∪ {{x}: x ∈ I (U)
}
,

α∗(U) = max
{
sup

{
αU (O): O ∈ s(U)

}
, sup

{
h2,U (x): x ∈ I (U)

}} + 1.

Note that if α � α∗(U), then R × {dα} ⊂ ⋃
(t (U) ∪ k(U)). For α < α∗(U), put



R. Levy, M. Matveev / Topology and its Applications 154 (2007) 2333–2343 2337
Uα = (
U | (R × {dα})) ∧ {

V × {dα}: V ∈ r(U)
}
,

sα(U) = {
O × {dα}: O ∈ O and (∃U ∈ Uα) such that O × {dα} ⊂ U

}
,

iα(U) =
{{

(x, dα)
}
: (x, dα) ∈ (

R × {dα}) \
⋃

sα(U)
}
,

rα(U) = sα(U) ∪ iα(U).

Finally, put R(U) = t (U) ∪ k(U) ∪ ⋃{rα(U): α ∈ A(U)}. Then R(U) is a countable open refinement of U covering
R × L. To check monotonicity of R, let U and V be two open covers of (R,EB) × L, and suppose V refines U . Let
W ∈ R(V). We have to find W ′ ∈ R(U) such that W ′ ⊃ W . There are three possibilities.

Case 1. W ∈ t (V). The existence of W ′ follows from monotonicity of s and t .
Case 2. W ∈ k(V). Then W = HV (x) for some x ∈ I (V). Obviously, h1,U (x) � h1,V (x), h2,U (x) � h2,V (x),

and thus hU (x) � hV (x). Therefore HU (x) ⊃ HV (x). So if x ∈ I (U), then HU (x) ∈ k(U) ⊂ R(U) and we can take
W ′ = HU (x).

Otherwise, if x /∈ I (U), we have x ∈ ⋃
s(U), so x ∈ O∗ for some O∗ ∈ s(U). Then αU (O∗) � h1,U (x) �

h1,V (x) � hV (x). So for W ′ = O∗ × {dβ : αU (O∗) � β � ω1} we have W ′ ⊃ HV (x), and W ∈ t (U) ⊂ R(U).
Case 3. W ∈ rα(V) for some α < α∗(V). If α < α∗(U), then the existence of W ′ follows from the fact that Vα

refines Uα and monotonicity of sα and rα .
Suppose α � α∗(U). Since W ∈ rα(W), we have either (a) W ∈ sα(W), or (b) W ∈ iα(W). In the case (a), W =

O × {dα} for some O ∈ O, such that there is V ∈ Vα with O × {dα} ⊂ V . But Vα refines Uα , so there is U ∈ Uα such
that U ⊃ V ⊃ O × {dα}. So W ∈ sα(U), and we can set W ′ = W .

In the case (b), W is a one point set, so the existence of W ′ follows from the fact that R(U) is a cover. �
Taking into account Propositions 11 and 12 one may wonder if there is a first countable space X with uncountably

many isolated points such that the product X × (ω + 1) is mL. The answer is affirmative. Let Z be the lexicographic
product R × 3. It follows from a result in [2] that Z is mL. (Alternatively, it is enough to note that Z concentrates on
R × ({0,2}) ⊂ Z.) Furthermore, Z is first countable, compact, and c(Z) = c.

Proposition 14. The (Cartesian) product Z × (ω + 1) is mL.

Proof. For p,q ∈ Q, p < q , and n ∈ ω, put

Op,q,n = (p, q) × 3 × [n,ω].
For p ∈ Q, x ∈ R, p < x, and n ∈ ω, put

Rp,x,n = ((
(p, x) × 3

) ∪ ({x} × {0})) × [n,ω].
For x ∈ R, q ∈ Q, x < q , and n ∈ ω, put

Lx,q,n = ((
(x, q) × 3

) ∪ ({x} × {2})) × [n,ω].
Let U be an open cover of Z × (ω1). Put

sO(U) = {Op,q,n: p,q ∈ Q, p < q, n ∈ ω, Op,q,n ≺ U},
sR(U) = {

Rp,x,n: p ∈ Q, x ∈ R, p < x, n ∈ ω, Rp,x,n ≺ U, Rp,x,n �≺ sO(U)
}
,

sL(U) = {
Lx,q,n: x ∈ R, q ∈ Q, x < q, n ∈ ω, Lx,q,n ≺ U, Lx,q,n �≺ sO(U)

}
,

s(U) = sO(U) ∪ sR(U) ∪ sL(U).

Then it is easy to see that s(U) is countable, s(U) ≺ U , s is monotonic with respect to U , and
⋃

s(U) ⊃ R × {0,2} ×
{ω}. Put

I (U) = (
R × {1} × {ω}) \

⋃
s(U).

Then I (U) is at most countable. Put

i(U) = {
y ∈ R: 〈y,1,ω〉 ∈ I (U)

}
.
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For y ∈ i(U), put

nR(y,U) = min
{
n: (∃p < y)Rp,y,n ≺ U

}
,

nL(y,U) = min
{
n: (∃q > y)Ly,q,n ≺ U

}
,

ni(y,U) = min
{
n: {y} × {1} × [n,ω] ≺ U

}
,

n(y,U) = max
{
nR(y,U), nL(y,U), ni(y,U)

}
.

Put

N(U) = {{y} × {1} × [
n(y,U),ω

]
: y ∈ i(U)

}
,

t (U) = s(U) ∪ N(U).

Then t (U) is countable, t (U) ≺ U , t is monotonic with respect to U , and
⋃

t (U) ⊃ Z × {ω}.
Let r be a mL operator for Z (as was noted before the proposition, such an operator exists). For an open cover U

of Z × (ω + 1), and n ∈ ω, put

Un = {
O: O is open in Z,O × {n} ≺ U

}
.

Then Un is an open cover of Z. Put

rn(U) = {
V × {n}: V ∈ r(Un)

}
.

Then rn(U) is countable, rn(U) ≺ U , rn is monotonic with respect to U , and
⋃

rn(U) ⊃ Z × {n}. Put

R(U) = t (U) ∪
⋃{

rn(U): n ∈ ω
}
.

Then R is a mL operator for Z × (ω + 1). �
So, in Proposition 12, “containing a weaker metrizable topology” cannot be generalized to “first countable”.
It is clear that monotone Lindelöfness is hereditary with respect to closed subspaces, the square of (R,EB) is

Lindelöf and contains a closed subspace homeomorphic to (R,EB) × (ω + 1), so Proposition 11 implies

Corollary 15. There is a mL space the square of which is Lindelöf but not mL.

Question 16. For which n > 1 is there X such that Xn is mL while Xn+1 is Lindelöf but not mL?

Question 17. Is there a mL space Y such that the product of Y with the one point Lindelöfication of the discrete space
of cardinality ω1 is not mL?

More generally:

Question 18. Let Y be mL and X a mL P-space. Must the product Y × X be mL?

3. Powers of subspaces of the Sorgenfrey line

Let (R,S) be the Sorgenfrey line. Even if the square of (R,S) is not normal, under CH the powers of some
uncountable subspaces of (R,S) are Lindelöf.

Proposition 19. (See [10].) (CH) For every n there exists X ⊂ (R,S) such that Xn is Lindelöf but Xn+1 is not normal.

Proposition 20. (See [3].) (CH) For every n and every uncountable Y ⊂ (R,S) there is an uncountable X ⊂ Y such
that Xn is Lindelöf.

A set A ⊂ (R,S)n is called a discrete surface if for all distinct x = 〈x1, . . . , xn〉, y = 〈y1, . . . , yn〉 ∈ A there are
i, j ∈ n such that xi < yi and xj > yj [3].
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Proposition 21. (See [3].) Let X ⊂ (R,S). Xn is Lindelöf iff it does not contain an uncountable discrete surface.

Proposition 22. Let X ⊂ (R,S), and let n ∈ N. If Xn is Lindelöf, then it is mL.

Proof. We consider points of Xn as functions from n to X. For a, b ∈ Rn, we write a < b when a(i) < b(i) for
0 � i < n, (a, b) = {x ∈ Rn: a < x < b} etc. Pick a dense countable subspace D ⊂ X.

Let Xn be Lindelöf, U an open cover of Xn, and let d ∈ Dn. Put

sd(U) = {[c, d) ∩ Xn: c ∈ Dn & c < d & [c, d) ∩ Xn ≺ U
}
,

Sd(U) =
⋃

sd(U),

Td(U) = {
y ∈ Xn \ Sd(U): y < d & [y, d) ∩ Xn ≺ U

}
.

Let ∅ �= A ⊂ n. Say that a point t ∈ Td(U) is of U -type A if there is z ∈ Td(U) such that z(i) < t(i) for all i ∈ A, and
z(i) = t (i) for all i ∈ n \A. Let I (t) = {A ⊂ n: t is of U -type A}, and MI(t) = {A ∈ I (t): � ∃B ∈ I (t) such that B ⊃ A

and B �= A}. Let

Td,A(U) = {
t ∈ Td(U): A ∈ MI(t)

}
,

Ad(U) = {
A: ∅ �= A ⊂ n&Td,A(U) �= ∅}

,

Td,∅(U) = {
t ∈ Td(U): t is not of U-type A for any A such that ∅ �= A ⊂ n

}
.

Then Td(U) = Td,∅(U) ∪ ⋃{Td,A(U): A ∈Ad(U)}.
It is clear that n /∈ MI(t) for any t . For A ⊂ n, let A′ = n \ A. Let A ∈Ad(U). We claim that |πA′(Td,A(U))| � ω.
Suppose the contrary. Note that for every p ∈ πA′(Td,A(U)) there are q1, q2 ∈ DA ∩πA(Td,A(U)) such that q1(i) <

q2(i) for all i ∈ A. There is an uncountable K ⊂ πA′(Td,A(U)) such that for all p ∈ K , q1 and q2 are the same. Since
K is uncountable, it is not a discrete surface, and thus it contains points p1,p2 such that p1(i) < p2(i) for all i ∈ A′.
Consider points t1, t2 ∈ Td,A(U) defined by

tj (i) =
{

qj (i) if i ∈ A,

pj (i) if i ∈ A′, j = 1,2.

Then t1 < t2 < d . Pick c ∈ Dn so that t1 < c < t2 < d . Then t2 ∈ [c, d), a contradiction.
Suppose A ∈ Ad(U) and p ∈ πA′(Td,A(U)). Let

Pd,A,p(U) = {
x ∈ Td,A(U): x < d &πA′(x) = p &π{i}(x) ∈ D for all i ∈ A

}
.

Then |Pd,A,p(U)| � ω. Put

rd,A,p(U) = {[x, d): x ∈ Pd,A,p(U)
}
,

rd,A(U) =
⋃{

rd,A,p(U): p ∈ πA′(Td,A(U))
}
,

rd(U) =
⋃{

rd,A(U): A ∈ Ad(U)
} ∪ sd(U).

Then Td(U) \ ⋃
rd(U) = Td,∅(U). It is clear that Td,∅(U) is a discrete surface, and thus it is countable. Put

r̃d (U) = rd(U) ∪ {[t, d): t ∈ Td,∅(U)
}
,

r(U) =
⋃{

r̃d (U): d ∈ Dn
}
.

Then r is a mL operator for Xn. This follows from the following observations: if U and V are two open covers of Xn,
and U ≺ V , then:

(1) Sd(U) ⊂ Sd(V),
(2) Sd(U) ∪ Td(U) ⊂ Sd(V) ∪ Td(V),
(3) if x ∈ Sd(V) ∪ Td(V), then there is y ∈ Sd(V) ∪ Td(V) such that y � x and [y, d) ∈ r̃d (V). �
Corollary 23. (CH) For every n and every uncountable Y ⊂ (R,S) there is an uncountable X ⊂ Y such that Xn

is mL.
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4. Some L spaces are mL

We start with a proposition that helps to show that two known examples of L-spaces (constructed assuming CH)
are mL. Perhaps it can be applied to some other Lindelöf spaces with point countable bases.

Proposition 24. Let X = {xα: α < ω1} be a hereditarily Lindelöf space, and {Bn,α: n ∈ ω,α < ω1} a family of open
sets in X such that

(1) {Bn,α: n ∈ ω,Bn,α �= ∅} is a base of neighborhoods of xα , and
(2) if α < β < ω1, and xβ ∈ Bn,α , then Bn,β ⊂ Bn,α .

Then X is mL.

Proof. Let U be an open cover of X. We define families sα(U) inductively for α < ω1. Let α < ω1 and suppose sγ (U)

has been defined for each γ < α. Put sα(U) = {Bn,α: (a) Bn,α ≺ U , and (b) there are no γ < α and Bm,γ ∈ sγ (U)

such that Bn,α ⊂ Bm,γ }. Finally, set r(U) = ⋃{sα(U): α < ω1}. Then r(U) is an open cover of X that refines U . The
proof of monotone Lindelöfness of X is now concluded by these two claims:

Claim 1. sα(U) are eventually empty and thus r(U) is countable.

Proof. If r(U) is uncountable, then for some n so is rn(U) = {Bm,α ∈ r(U): m = n}. Denote Xn = {xα: Bn,α ∈ rn(U)},
and An = {α: Bn,α ∈ rn(U)}. The open cover {Bn,α: α ∈ An} of Xn has a countable subcover, say {Bn,α: α ∈ A}.
Pick β ∈ An with β > supA. Then xβ ∈ Bn,α for some α ∈ A, and thus by (2) and (b), Bn,β cannot be in sβ(U).
A contradiction. �
Claim 2. r is monotonic.

Proof. Let U and V be open covers of X such that V refines U , and let Bn,α ∈ sα(V) ⊂ r(V). Then there is a V ∈ V
such that Bn,α ⊂ V , and thus a U ∈ U such that Bn,α ⊂ V ⊂ U . Then either Bn,α ∈ r(U), or there is a Bm,γ ∈ r(U)

with γ < α and Bm,γ ⊃ Bn,α . �
Remarks. (1) The condition |X| = ω1 is not very restrictive: a first countable Lindelöf space has cardinality � c.
Under CH this is ω1, and most applications of this proposition are supposed to be under the assumption of CH.

(2) Adding condition (2′) xα /∈ Bn,β whenever α < β makes X an L-space with a point-countable base. This
condition holds in both applications below.

Now we apply Proposition 24 to L-spaces from [5] which are subspaces of P(ω) with the Vietoris topology. The
following three facts are from [5]:

Proposition 25. (See [5].)

(A) In the Vietoris topology a neighborhood base for x ∈ P(ω) consists of all sets of the form [f,x] (f ∈ [x]<ω)

where [f,x] = {s: f ⊆ s ⊆ x}. In other words, for the discrete space ω, the Vietoris topology on P(ω) coincides
with the Pixley–Roy topology [4].

(B) The following axiom is a consequence of CH
(DOWN) There is a sequence 〈xα: α < ω1〉 in P(ω) such that

(1) if α < β < ω1, then xα �⊆ xβ ; and
(2) if I ⊆ ω1 is uncountable, then there are distinct α,β ∈ I with xβ ⊆ xα .

(C) If xα are as in (DOWN), then X = {xα: α < ω1} ⊂ P(ω1) is an L-space.

Using this we get.

Proposition 26. If xα are as in (DOWN), then X = {xα: α < ω1} ⊂ P(ω) is mL.
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Proof. To apply Proposition 24, enumerate [ω]<ω as {fn: n ∈ ω}, and put Bn,α = [fn, xα]. �
Now we apply Proposition 24 to an L space from [6]. This space, denoted by L is a subspace of the space K of all

nonempty compact nowhere dense subsets of R equipped with the Pixley–Roy topology, that is, a basic neighborhood
of K ∈ K is of the form (∗) [K,U ] = {S ∈K: K ⊂ S ⊂ U} where U is a neighborhood of K in R. The following two
facts are from [6]:

Proposition 27. (See [6].)

(A) K is a CCC Baire space in which no nonempty open set is separable.
(B) (CH) By Proposition 7, K contains a dense Lusin subspace L; L is an L space.

Proposition 28. (CH) The space L from Proposition 27(B) is mL.

Proof. To apply Proposition 24, enumerate L as {Lα: α < ω1}, and all unions of finite families of open intervals in
R with rational endpoints as {Un: n ∈ ω} and put Bn,α = [Lα,Un]. �

Another well-known example of an L space is the Souslin line. Monotone Lindelöfness of Souslin lines is discussed
in [2]; some questions remain open.

5. Subspaces of infinite products

A space X is monotonically Lindelöf at p ∈ X if there is an operator rp that assigns to every nonempty family U
of neighborhoods of p a nonempty countable family rp(U) of neighborhoods of p so that rp(U) refines U , and rp(U)

refines rp(V) whenever U refines V [8]. Clearly, a mL space must be mL at each point. By a subbase of neighborhoods
of p ∈ X we mean a family A of neighborhoods of p such that finite intersections of elements of A form a base of
neighborhoods of p. The next proposition is a slight generalization of a proposition from [8].

Proposition 29. Let X be a space, p ∈ X, κ and τ infinite cardinals (κ < τ), and B a subbase of neighborhoods of p

of the form B = ⋃{Bα: α < τ }. Suppose that

(1) for every neighborhood U of p, |{α < τ : ∃B ∈ BαU ⊂ B}| < κ , and
(2) every subfamily of B which is still a subbase at p contains elements from more than κ many Bαs.

Then X is not mL at p.

Proof. Suppose there were an operator rp like in the definition of monotone Lindelöfness at p. By induction, we
define a decreasing sequence {Uγ : γ � κ} of families of neighborhoods of p, and an increasing sequence {Tγ : γ � k}
of subsets of τ . Set U0 = B, and T0 = ∅. Now, suppose 0 < γ � κ , and Uβ and Tβ have been defined for all β < γ .
Put Tγ = {α < τ : ∃β < γ, ∃U ∈ rp(Uβ), ∃B ∈ Bα such that U ⊂ B} and Uβ = ⋃{Bα: α /∈ Tβ}. By (1), |Tγ | � κ ,
and thus Uγ �= ∅. At step γ = κ we get a contradiction with (2). �
Corollary 30. The one point compactification of a discrete space of uncountable cardinality is not mL.

Proof. Let X = {p} ∪ D, where |D| > ω, points of D are isolated in X, and a basic neighborhood of p contains p

and all but finitely many points of D. To apply Proposition 29, set κ = ω, τ = |D|, enumerate D = {dα: α < τ }, and
put Bα = {X \ {dα}}. �
Corollary 31. The one point Lindelöfication of the discrete space of cardinality � ω2 is not mL.

Proof. Let X = {p} ∪ D, where |D| > ω1, points of D are isolated in X, and a basic neighborhood of p contains p

and all but countably many points of D. To apply Proposition 29, set k = ω1, τ = |D|, enumerate D = {dα: α < τ },
and put Bα = {X \ {dα}}. �
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Corollary 32. If X is a dense subset of the product of at least ω1 many factors each of which consist of more than one
point, then X is not mL at any point.

Proof. Put κ = ω. Without loss of generality, assume that X ⊂ P = ∏{Pα: α < τ } where τ � ω1 and all Pα consist
of more than one point. Denote πα the projection of P onto the αth factor, Cα the family of all open sets in Pα that
contain πα(p) but not the entire πα(X), and Bα = {X ∩ (πα)−1(B): B ∈ Cα}. Then B = ⋃{Bα: α < τ } is a subbase
at p like in the previous proposition. �

Recall that Cp(X), the space of continuous functions on X with the pointwise convergence topology, is Lindelöf
in many nontrivial cases. In contrast with this we get:

Corollary 33. The following conditions are equivalent:

(1) Cp(X) is mL,
(2) Cp(X) is mL at any point,
(3) X is countable.

6. βω is not mL

Proposition 34. βω \ ω is not mL.

Proof. Let A be an uncountable independent family of subsets of ω. For A ∈ A, put A0 = clβω(A) ∩ (βω \ ω) and
A1 = clβω(ω \ A) ∩ (βω \ ω). For C ⊂ A, put C̃ = {Ai : A ∈ C and i ∈ 2}. If C �= ∅, then C̃ is an open cover of βω \ ω.
Suppose there is a mL operator r for βω \ ω.

We inductively define nonempty subfamilies Uα ⊂ A for 0 � α � ω so that Uβ ⊂ Uα whenever α < β . Put U0 = A.
Now let 0 � α < ω, and Uα has been defined. For every R ∈ r(Ũα) pick AR ∈ Uα so that R ⊂ (AR)i for some i ∈ 2.
Put Uα+1 = Uα \ {AR: R ∈ r(Ũα)}. Then for every α < ω, Uα is a co-countable subfamily of A, and hence so is
Uω = ⋂{Uα: α < ω}.

Notice that for every R ∈ r(Ũα), there is AR ∈ Uα \ Uα+1 and i ∈ 2 such that R ⊂ (AR)i . Then by monotonicity,

(∗) if 0 � α < β � ω, then for every R ∈ r(Ũβ), there is A ∈ Uα \ Uα+1 and i ∈ 2 such that R ⊂ (A)i .

By compactness, there is a finite subcover D ⊂ r(Ũω). Let |D| = M . Pick m so that 2m > M . For each D ∈ D and
each α ∈ {0, . . . ,m−1} by (∗) one can pick AD,α ∈ Uα \Uα+1 so that D ⊂ (AD,α)i for some i ∈ 2, then AD,α �= AD,β

whenever α �= β . Put K = {AD,α: D ∈ D, 0 � α < m}. Then |K| � m. Now we note that
∧{Ã: A ∈ K} is a partition

of βω \ ω into 2|K| nonempty clopen sets, call them blocks, and each D ∈ D intersects at most 2|K|−n blocks. So
elements of D, together, cannot intersect all blocks, a contradiction. �

Since monotone Lindelöfness is preserved by closed subspaces, we get

Corollary 35. βω is not mL.
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