Discrete Mathematics 113 (1993) 269-274 North-Holland

Note

Regular factors in regular graphs

P. Katerinis

Department of Informatics, Athens University of Economics and Business, Patission 76, 10434 Athens, Greece

Received 24 October 1988 Revised 14 June 1991

Abstract

Katerinis, P., Regular factors in regular graphs, Discrete Mathematics 113 (1993) 269-274.

Let G be a k-regular, (k-1)-edge-connected graph with an even number of vertices, and let m be an integer such that $1 \le m \le k-1$. Then the graph obtained by removing any k-m edges of G, has an m-factor.

All graphs considered are finite. We shall allow graphs to contain multiple edges and we refer the reader to [1] for standard graph theoretic terms not defined in this paper.

Let G be a graph. We say that G has a k-factor, if there exists a k-regular spanning subgraph of G. If S, $T \subseteq V(G)$, then $e_G(S, T)$ denotes the number and $E_G(S, T)$ the set of edges having one end-vertex in S and the other in set T. If $S \subseteq V(G)$ then $\omega(G - S)$ denotes the number of components of the graph G - S.

Given an ordered pair (D, S) of disjoint subsets of V(G) and a component C of (G-D)-S, put $r_G(D, S; C) = e_G(V(C), S) + k |V(C)|$. We say that C is odd or even component of (G-D)-S according to whether $r_G(D, S; C)$ is odd or even. The number of odd components of (G-D)-S is denoted by $q_G(D, S; k)$.

Tutte [5] proved the following theorem.

Tutte's k-factor theorem. A graph G has a k-factor if and only if

$$q_G(D, S; k) + \sum_{x \in S} (k - d_{G-D}(x)) \le k |D|$$
(1)

for all $D, S \subseteq V(G), D \cap S = \emptyset$.

Correspondence to: P. Katerinis, Department of Informatics, Athens University of Economics and Business, Patission 76, 10434 Athens, Greece.

0012-365X/93/\$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

Í

P. Katerinis

He also noted that for any graph G and any positive integer k,

$$q_G(D, S; k) + \sum_{x \in S} (k - d_{G-D}(x)) - k |D| \equiv k |V(G)| \pmod{2}.$$
 (2)

The first results on factors in graphs were obtained by Petersen [2].

Petersen's decomposition theorem. A graph G can be decomposed into d 2-factors if and only if G is 2d-regular.

Petersen's 1-factor theorem. Every 3-regular graph without cut-edges has a 1-factor.

Petersen's 1-factor theorem can be generalised in the following way ([1, p. 80, ex.5.3.2]).

Theorem 1. If G is k-regular, (k-1)-edge-connected with an even number of vertices, then G has a 1-factor.

Plesnik [3] obtained the following stronger result.

Theorem 2. Let G be k-regular, (k - 1)-edge-connected and with an even number of vertices. Then the graph, obtained by removing any k - 1 edges of G, has a 1-factor.

Some related results can also be found in another paper of Plesnik [4]. We shall prove the following generalization of Theorem 2.

Theorem 3. Let G be a k-regular, (k-1)-edge-connected graph with an even number of vertices, and let m be an iteger such that $1 \le m \le k - 1$. Then the graph, obtained by removing any k - m edges of G, has an m-factor.

Lemma 4. Let G be a (k-1)-edge-connected graph and let D, S be two disjoint subsets of V(G). Remove k - m edges of G and let G_1 be the remaining graph. Then:

(i) $\sum_{x\in S} d_{G_1-D}(x) \ge \sum_{x\in S} d_G(x) - \sum_{x\in D} d_G(x) - 2(k-m),$

(ii)
$$2\sum_{x\in S} d_{G_1-D}(x) \ge (k-1)(\omega(G_1-D)-S) + \sum_{x\in S} d_G(x) - \sum_{x\in D} d_G(x) - 2(k-m).$$

Proof. (i) $\sum_{x \in D} d_G(x) \ge e_G(D, S) = \sum_{x \in S} d_G(x) - \sum_{x \in S} d_{G-D}(x)$. But $\sum_{x \in S} d_{G-D}(x) \le \sum_{x \in S} d_{G-D}(x) + 2(k-m)$ because every edge that we delete, contributes at

270

most two, to the summation $\sum_{x \in S} d_{G-D}(x)$. So

$$\sum_{x\in D} d_G(x) \geq \sum_{x\in S} d_G(x) - \sum_{x\in S} d_{G_1-D}(x) - 2(k-m).$$

(Note that we did not use the hypothesis that G is (k-1)-edge-connected.)

(ii) Define $X = E(G) \setminus E(G_1)$ and $H = (G_1 - D) - S$. Let C_1, C_2, \ldots, C_z be the components of H and $a_i(b_i)$ the number of edges of X joining C_i to $D \cup S$ (to the other C_j 's). Clearly

$$e_G(D, S) = \sum_{x \in S} d_G(x) - \sum_{x \in S} d_{G-D}(x).$$
(3)

But

$$\sum_{x \in S} d_{G-D}(x) = \sum_{x \in S} d_{G_1 - D}(x) + 2 |E_G(S, S) \cap X| + |E_G(S, V(H)) \cap X| \quad (4)$$

and

$$|E_G(S, V(H)) \cap X| \leq \sum_{i=1}^{2} a_i.$$
(5)

Further, since |X| = k - m, $\sum_{i=1}^{z} a_i + (\frac{1}{2}) \sum_{i=1}^{z} b_i + |E_G(S, S) \cap X| \le k - m$. So

$$2|E_G(S,S) \cap X| \le 2k - 2m - 2\sum_{i=1}^{z} a_i - \sum_{i=1}^{z} b_i$$
(6)

Substituting (4), (5) and (6) in (3), we have

$$e_G(D,S) \ge \sum_{x \in S} d_G(x) - \sum_{x \in S} d_{G_1 - D}(x) - 2k + 2m + \sum_{i=1}^{z} a_i + \sum_{i=1}^{z} b_i.$$
(7)

Also

$$\sum_{c \in D} d_G(x) \ge e_G(D, S) + \sum_{i=1}^{z} e_{G_i}(V(C_i), D).$$
(8)

Since G is (k-1)-edge-connected we have $\sum_{i=1}^{z} e_G(V(C_i), V(G-V(C_i))) \ge (k-1)z$. But

$$\sum_{i=1}^{z} e_{G}(V(C_{i}), V(G - V(C_{i})))$$

$$\leq \sum_{i=1}^{z} a_{i} + \sum_{i=1}^{z} b_{i} + \sum_{x \in S} d_{G_{1} - D}(x) + \sum_{i=1}^{z} e_{G_{1}}(V(C_{i}), D).$$

So

$$\sum_{i=1}^{z} a_i + \sum_{i=1}^{z} b_i + \sum_{x \in S} d_{G_1 - D}(x) + \sum_{i=1}^{z} e_{G_1}(V(C_i), D) \ge (k-1)z.$$

Thus $\sum_{i=1}^{z} e_{G_i}(V(C_i), D) \ge (k-1)z - \sum_{i=1}^{z} a_i - \sum_{i=1}^{z} b_i - \sum_{x \in S} d_{G_i - D}(x)$ and so (8) implies,

P. Katerinis

$$\sum_{x \in D} d_G(x) - (k-1)z + \sum_{i=1}^{z} a_i + \sum_{i=1}^{z} b_i + \sum_{x \in S} d_{G_1 - D}(x) \ge e_G(D, S).$$
(9)

From (7) and (9),

$$\sum_{x\in D} d_G(x) - (k-1)z + 2\sum_{x\in S} d_{G_1-D}(x) \ge \sum_{x\in S} d_G(x) - 2(k-m).$$

Thus

$$2\sum_{x\in S} d_{G_1-D}(x)$$

$$\geq (k-1)(\omega((G_1-D)-S) + \sum_{x\in S} d_G(x) - \sum_{x\in D} d_G(x) - 2(k-m). \square$$

Lemma 5. Let G be a graph having a 1-factor and m be an integer. If there exists $D, S \subseteq V(G), D \cap S = \emptyset$, such that

$$q_G(D, S; m) + \sum_{x \in S} (m - d_{G-D}(x)) > m |D|, \qquad (10)$$

then $|S| \ge |D| + 1$.

Proof. Suppose that *m* is even and let *C* be a component of (G - D) - S. Then by definition, if *C* is an odd component, e(V(C), S) is odd. Thus $e(V(C), S) \ge 1$ and so $q_G(D, S; m) \le \sum_{x \in S} d_{G-D}(x)$. Therefore using (10) we have $|S| \ge |D| + 1$. Now suppose that *m* is odd. From (10)

Now suppose that m is odd. From (10)

$$q_G(D, S; m) + \sum_{x \in S} (1 - d_{G-D}(x)) > |D| + (m - 1)(|D| - |S|)$$
(11)

By hypothesis G has a 1-factor. Thus by Tutte's theorem,

$$q_G(D, S; 1) + \sum_{x \in S} (1 - d_{G-D}(x)) \le |D|$$
(12)

Since *m* is odd, $q_G(D, S; m) = q_G(D, S; 1)$. Thus (11) and (12) imply that |D| < |S|. So Lemma 5 holds. \Box

Proof of Theorem 3. Let X be the set of edges of G that we delete and define $G_1 = G - X$. If m = k - 1 the theorem holds because Theorem 2 implies that G possesses a 1-factor containing any given edge and this in turn implies that G possesses a (k - 1)-factor avoiding a given edge. Hence we may assume that $m \le k - 2$.

Suppose that G_1 does not have an *m*-factor. Then by Tutte's theorem and (2), there exist $D, S \subseteq V(G), D \cap S = \emptyset$ such that

$$q_{G_1}(D, S; m) + \sum_{x \in S} (m - d_{G_1 - D}(x)) \ge m |D| + 2.$$
(13)

So

$$\omega((G_1 - D) - S) + m(|S| - |D|) - 2 \ge \sum_{x \in S} d_{G_1 - D}(x).$$
(14)

272

Thus using Lemma 4(i) and since G is k-regular, (14) implies

$$k |D| \ge k |S| - \omega((G_i - D) - S) - m(|S| - |D|) + 2 - 2(k - m).$$

Thrus

$$\omega((G_1 - D) - S) \ge (k - m)(|S| - |D| - 2) + 2.$$
(15)

Also using Lemma 4(i), (i4) implies

$$2(k-m) - 4 - (k-2m)(|S| - |D|) + (k-3)\omega((G_1 - D) - S).$$
(16)

By Theorem 2, G_1 has a 1-factor and since (13) holds using Lemma 5, $|S| \ge |D| + 1$. Also since $1 \le m \le k - 2$ we have $k \ge 3$.

Suppose that |S| = |D| + 1. Then clearly $\omega((G_1 - D) - S) \ge 1$ since |V(G)| is even. S (16) implies $2(k - m) - 4 \ge (k - 2m) + (k - 3)$ which is a contradiction. If $|S| \ge |D| + 2$, (15) implies

$$\omega((G_1 - D) - S) \ge (k - m - 1)(|S| - |D| - 2) + (|S| - |D| - 2) + 2$$

and so $\omega((G_1 - D) - S) \ge |S| - |D|$. Hence from (16) we have $2(k - m) - 4 \ge (k - 2m + k - 3)(|S| - |D|)$ which implies that $-4 \ge -2$ since $m \le k - 2$ and $|S| \ge |D| + 2$. This contradiction completes the proof of the theorem. \Box

Petersen's decomposition theorem has the following corollary which is similar to Theorem 3.

Corollary 6. Let G be a k-regular graph where k is an even integer. Then for every subset M of E(G) of cardinality k/2 - 1, the graph G - M has a 2-factor.

Proof. By Petersen's decomposition theorem G can be decomposed into k/2 2-factors. So there exists at least one 2-factor, say H, such that $E(H) \cap M = \emptyset$. Hence the corollary follows. \Box

We next examine if Theorem 3 is best possible. The condition that |V(G)| must be even is necessary, because there exists a graph G on an odd number of vertices which is k-regular, k-edge-connected and has a subset M of E(G), where |M| = k/2, such that G - M does not have a 2-factor. In other words we cannot get a better result than the one which follows from Corollary 6.

We form G as follows. We start from a complete bipartite graph T with bipartition (X, Y), where $X = \{u_1, \ldots, u_k\}$ and $Y = \{v_1, \ldots, v_k\}$. Remove the edges $(u_1, v_1), \ldots, (u_{k/2}, v_{k/2})$ from T and add a new vertex w. Join w to $u_1, u_2, \ldots, u_{k/2}, v_1, \ldots, v_{k/2}$. Clearly the new graph G is k-regular and k-edge-connected. Now define R = E(w, Y), and let $C_1 = G - R$, D = X and $S = Y \cup \{w\}$. Then

$$q_{G_1}(D, S; 2) + \sum_{x \in S} (2 - d_{G_1 - D}(x)) = 2 |D| + 2,$$

since $q_{G_1}(D, S; 2) = 0$, $\sum_{x \in S} (2 - d_{G_1 - D}(x)) = 2(k + 1)$, and |D| = k. Thus by Tutte's theorem, G_1 does not have a 2-factor.

P. Katerinis

The condition that the graph must be (k-1)-edge-connected is also necessary. Let k be an even integer and m be an integer such that $m \le k - 1$. We will describe a graph G which has an even number of vertices, is k-regular, (k-2)-edge-connected and has a subset M of E(G), where |M| = k - m, such that G - M does not have an *m*-factor. We form G as follows. We start again from a complete bipartite graph T with bipartition (X, Y) where X = $Y = \{v_1, \ldots, v_k\}.$ $\{u_1, \ldots, u_k\},\$ Remove the edges $(u_1, v_1),$ $(u_2, v_2), \ldots, (u_{k-m}, v_{k-m})$ from T and add a vertex w and a graph H with odd number of vertices which is (k-1)-edge-connected having k-2 vertices of degree k - 1 and all the other vertices are of degree k. Let $r_1, r_2, \ldots, r_{k-2}$ be the vertices of H which have degree k-1. Join w, to v_1, \ldots, v_{k-m} to r_1, \ldots, r_{m-1} and to u_1 . Also join r_m, \ldots, r_{k-2} to u_2, \ldots, u_{k-m} respectively. The resulting graph G is k-regular, (k - 2)-edge-connected and has an even number of vertices. Let X = D, $S = Y \cup \{w\}$, $M = E_G(w, Y)$ and $G_1 = G - M$. Now $m |V(H)| + C_G(w, Y)$ $e_G(V(H), S)$ is an odd number since |V(H)| is odd and $e_G(V(H), S) = m - 1$. Thus $q_{G_i}(D, S; m) = 1$. Also |D| = k and

$$\sum_{x \in S} (m - d_{G_1 - D}(x)) = mk + 1.$$

So

$$q_{G_1}(D, S; m) + \sum_{x \in S} (m - d_{G_1 - D}(x)) > m |D|.$$

Thus G_1 does not have an *m*-factor.

We should also point out that Theorem 3 has the following corollary.

Corollary 7. Let G be a k-regular, (k-1)-edge-connected graph with an even number of vertices, and let m be an integer such that $1 \le m \le k - 1$. Then any m edges of G are contained in an m-factor of G.

Proof. Let *M* be a set of *m* edges of *G*. We define $G_1 = G - M$. Then by Theorem 3, G_1 has a (k - m)-factor, say *F*. Clearly G - E(F) is an *m*-regular graph which contains all elements of *M* and so the corollary holds. \Box

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
- [2] J. Petersen, Die Theory der regulären graphs, Acta Math. 15 (1891) 193-220.
- [3] J. Plesník, Connectivity of regular graphs and the existence of 1-factors, Mat. Cas. Slov. Akad. Vied. 22 (1972) 310-318.
- [4] J. Plesník, Remarks on regular factors of regular graphs, Czech. Math. J. 24 (1974) 292–300.
- [5] W.T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952) 314-328.

274