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Abstract

Katerinis, P., Regular factors in regular graphs, Discrete Mathematics 113 (1993) 269-274.

et G be a k-regular, (k — 1)-edge-connected graph with an even number of vertices, and let m
be an integer such that 1<m <k — 1. Then the graph obtained by removing any k — m edges
of G, has an m-factor.

All graphs considered are finite. We shall allow graphs to contain muitiple
edges and we refer the reader tc [1] for standard graph theoretic terms not
defined in this paper.

Let G be a graph. We say that G has a k-factor, if there exists a k-regular
spanning subgraph of G. If S, T ¢ V(G), then es(S, T) denoies the number and
EG(S, T) the set of edges having one end-vertex in S and the other in set T. If
S ¢ V(G) then w(G — S) denotes the number of components of the graph G — §.

Given an ordered pair (D, S) of disjoint subsets of V(G) and a component C of
(G—-D)-S§, put rg(D, S; C)=es(V(C), S)+ k |V(C)|. We say that C is odd or
even component of (G — D) — § according to whether rs(D, §; C) is odd or even.
The number of odd components of (G — D) — § is denoted by gs(D, S; k).

Tutte [5] proved the following theorem.

Tutte’s k-factor theorem. A graph G has a k-factor if and only if
q6(D, $;k) + 2, (k= dg_p(x)) <k |D| (1)

xeS
forall D,ScV(G), DNS =4.
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He also noted that for any graph G and any positive integer &,

4D, S; k) + 2, (k — dg_p(x)) =k D} =k [V(G)| (mod 2).
xeS

I~~~
N
e’

The first results on factors in graphs were obtained by Petersen [2].

Petersen’s decomposition theorem. A graph G can be decomposed into d
2-factors if and only if G is 2d-regular.

Petersen’s 1-factor theorem. Every 3-regular graph withoi.t cut-edges has a
1-factor.

Petersen’s 1-factor theorem can be generalised in the following way ([1, p. 80,
ex.5.3.2]).

Theorem L. If G is k-regular, (k — 1)-edge-connected with an even number of
vertices, then G has a l-factor.

Plesnik {3] obtained the following stronger result.

Theorem 2. Let G be k-regular, (k — 1)-edge-connected and with an even number
of vertices. Then the graph, obtained by removing any k — 1 edges of G, has a
1-factor.

Some related results can also be found in another paper of Plesnik [4].
We shall prove the following generalization of Theorew. 2.

Theorem 3. Let G be a k-regular, (k — 1)-edge-connected graph with an even
number of vertices, and let m be an iteger such that 1 <m <k — 1. Then the graph,
obtained by removing any k — m edges of G, has an m-factor.

Lemma 4. Let G be a (k — 1)-edge-connected graph and let D, S be two disjoint
subsets of V(G). Remove k —m edges of G and let G, be the remaining graph.
Then:

) 3 do_p(x) =2 da(x) = 3, de(x) - 2(k —m),

@ 23 de,nlx)= (k= D(@(G, ~ D) =) + 3, di(x)
— 2, de(x) —2(k — m).

Proof. (i) X.cpds(x)=eg(D, S) =X esda(x) = Lrcsd-p(x). But X, ovde;-nlx)
< Y,esde,—p(x) + 2(k —m) because every edge that we delete, contributes at
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most two, to the summation ¥, s d;_p(x). So

2, d(x) = Y do(x) = 2 d,-plx) = 2(k —m).
xeD xeS xe8
(Note that we did not use the hypothesis that G is (k — 1)-edge-connected.)
(ii) Define X = E(G)\E(G,) and H=(G,—-D)-S. Let C,,C,,...,C, be
the components of H and a,(b;) the number of edges of X joining C; to DU S (to
the other C;’s). Clearly

ec(D, S) = }3$ dg(x)— Zs d;_p(x). 3)
But

ZY dplx)= Zs_ d,-p(x) + 2|EG(S, YN X| +|Ea(S, V(H) N X| (4)
and

|Ea(S, V(H)) O X|< X a;. )
i=}
Further, since | X|=k—m, Xi_;a,+ (3) L2, b; + |E(S, )N X|<k —m. So
21Eq(S, S)NX|<2%k-2m—2D a;— >, b, (6)

i=1 i=1

Substituting (4), (5) and (6) in (3), we have

ec(D, §)= Y, da(x)— > dg,_p(x) — 2k +2m + 2 a; + Z b,. (7)
XES xeSs i=1 i=1
Also
_ED dg(x) =ea(D, S) + 2} e, (V(C), D). ®)

Since G is (k — 1)-edge-connected we have Y7, es(V(C),V(G ~V(C)))=
(k —1)z. But

ec(V(C), V(G - V(()))

2z
i=

=, 4;+ Z b, + E dg,-p(x)+ E] eq(V(C;), D).
= i~ i=

i=1 xe§

So
Sat Db+ do o)+ S ea(VIC), D)=k 1)z.
i--1 i=1 i=1

xes

Thus Xi-, eq(V(C), D)= (k- )z —Xi a;i — Yio1 b — Liesdg,-plx) and so (8)
implies,
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> do(x)— (k- 1)z + Z a;+ 2_: b+ 2, dg,-p(x) =eq(D, S). )

From (7) and (9),
D da(x)—(k—1)z+2 D dg_px)= D dg(x) — 2(k — m).

xeD xX€S XeS

Thus
2 2 d(:.—o(x )

X€ES

=(k—1)(@((G,— D) =)+ 2, do(x) = X, do(x) ~2(k—m). O

xeD

Lemma 5. Let G be a graph having a 1-factor and m be an integer. If there exists
D, S cV(G), DNS =9, such that
46(D, S;m)+ Y, (m —dg_p(x))>m |D], (163

X€eS

then |S| = |D| + 1.

Proof. Suppose that m is even and let C be a component of (G — D) — S. Then
by definition, if C is an odd component, e(V(C), S) is odd. Thus e(V(C), S) =1
and 50 (D, S; m) < ¥, sd;_p(x). Therefore using (10) we have |S|=|D| + 1.
Now suppose that m is odd. From (10)
q6(D, $;m) + 2, (1-dg_p(x)) > |D| + (m ~ 1)(ID| - |S]) (1)

x€S

By hypothesis G has a 1-factor. Thus by Tutte’s theorem,

96(D, $;1) + 3, (1 —dg_p(x)) <|D| (12)
xeS
Since m is odd, qg(D, S;m)=qs(D, S;1). Thus (11) and (12) imply that
|D|<|S|. So Lemma 5 holds. O

Proof of Theorem 3. Let X be the set of edges of G that we delete and define
G,=G - X. If m=k— 1 the theorem holds because Theorem 2 impiies that G
possesses a 1-factor containing any given edge and this in turn implies that G
possesses a (k — 1)-factor avoiding a given edge. Hence we may assume that
m<k-2.
Suppose that G, does not have an m-factor. Then by Tutte’s theorem and (2),
there exist D, S ¢ V(G), D NS =@ such that
9D, S:m)+ 3, (m —dg,_p(x)) =m |D| +2. (13)

X€S

So
o((G,—D)—-8)+m(|S|—-|D|)-2= ng(;.—o(x)- (14)
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Thus using Lemma «(i) and sinice G is k-regular, (14) implies
kID|z kS~ o{(Gi~ D) =) —m(1S| — |D|) +2 - 2(k — m).

Tiris

(G, =1y S)y=(k-21)(S|—|D|-2)+2. (15)
Also using Lemma 47.4), (14} unplies

2(k—m) -4 (k -2m)(|S| - |D|} + (k = 3)w((G, — D) - S). (16)

Ry Theorem 2, f, has a l-factor and since (13) holds using Lemma 5,
1Si=|D|+ 1. Also since 1 =m <k -2 we have k=3.

Suppose ihas 1$j=|D|+ 1. Then clearly w((G, — D)~ S)=1 since |V(G)| is
even. S. (16 isaplies 2(k —m) — 4 = (k — 2m) + (k — 3) which is a contradiction.

If vy = {042, (15) implies

w((Gi=D)=8)=(k—m—1)(IS| = |D|=2)+ (IS| - |D| -2) +2

and >0 w((G,—D)—S)=|S|—|D|. Hence from (16} we have 2(k —m)—4=
(! =2m+k —3)(|S| —|D|) which implies that —4= -2 since m<k —2 and
{81 = |D| + 2. This contradiction completes the proof of the theorem. O

Petersen’s decomposition theorem has the following corollary which is similar
to Theorem 3.

Corollary 6. Let G be a k-regular graph where % is an even integer. Then for every
subset M of E(G) of cardinality k/2 — 1, the greaph G — M has a 2-factor.

Proof. By Petersen’s decomposition theorem G can be decomposed into k/2
2-factors. So there exists at least one 2-factor, say H, such that E(H)NM =4@.
Hence the corollary follows. O

We next examine if Theorem 3 is best possible. The condition that |V (G)| must
be even is necessary, because there exists a graph G on an odd number of vertices
which is k-regular, k-edge-connected and has a subset M of E(G), where
|M| =k/2, such that G — M does not have a 2-factor. In other words we cannot
get a better result than the one which follows from Corollary 6.

We form G as follows. We start from a complete bipartite graph T with

bipartition (X, Y), where X = {u,, ..., u:} and Y ={vy, ..., vs}. Remove the
edges (u,, V1), ..., (U2, Urpp) from T and add a new vertex w. Join w to
Up, Uy« ooy U, Uy, « - -, Urpp. Clearly the new graph G is k-regular and k-edge-

connected. Now define R=E(w, Y), and let C;,=G—R, D=X and S=Y U
{w}. Then
4D, $;2) + 2, 2 —dg,_p(x)) =21D| +2,

x€eS

since qG,(D, $;2)=0, Y.es(2—dg-px))=2(k+1), and |D|=k. Thus by
Tutte’s theorem, G, does not have a 2-factor.
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The condition that the graph must be (k — 1)-edge-connected is also necessary.
Let k be an even integer and m be an integer such that m=<k—1. We will
describe a graph G which has an even number of vertices, is k-regular,
(k — 2)-edge-connected and has a subset M of E(G), where |M|=k —m, such
that G — M does not have an m-factor. We form G as follows. We start again
from a complete bipartite graph 7T with bipartition (X, Y) where X =
UTHRNN 7S & Y={v,,...,u} Remove the edges (u,, vy),
(a3, V), - . -, (Ug—m> Ux—m) from T and add a vertex w and a graph H with odd
number of vertices which is (k — 1)-edge-connected having k —2 vertices of
degree k£ — 1 and all the other vertices are of degree k. Letr, s, . .., r._> be the
vertices of H which have degree k — 1. Join w, tov,, ..., vy, tOr, ..., Hh_,
and to u,. Also join 7,,, ..., 7> 10 Uy, ..., U;_, respectively. The resulting
graph G is k-regular, (k — 2)-edge-connected and has an even number of vertices.
Let X=D, S=YU{w}, M=FE;(w,Y) and G,=G - M. Now m |V(H)| +
ec(V(H), S) is an odd number since |V(H)| is odd and e, (V(H), S)=m — 1.
Thus q¢(D, S;m)=1. Also [D|=k and

>, (m —dg,_p(x)) = mk + 1.

x€S

So
qc(D, Sm)+ 2, (m —dg,_p(x))>m |D.
xes
Thus G, does not have an m-factor.
We should also point cut that Theorem 3 has the following corollary.

Corollary 7. Let G be a k-regular, (k — 1)-edge-connecied graph with an even
number of vertices, and let m be an integer such that 1 <m <k — 1. Then any m
edges of G are contained in an m-factor of G.

Proof. Let M be a set of m edges of G. We define G,=G — M. Then by
Theorem 3, G, has a (k —m)-factor, say F. Clearly G — E(F) is an m-regular
graph which contains all elements of M and so the corollary holds. O

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam,
1976).

[2] 1. Petersen. Die Theory der reguliiren graphs, Acta Math. 15 (1891) 193-220.

[3] 3. Plesnik. Conncctivity of regular graphs and the existence of 1-factors, Mat. Cas. Slov. Akad.
Vied. 22 (1972) 310-318.

[4] J. Piesnik, Remarks un regular factors of regular graphs, Czech. Math. J. 24 (1974) 292-300.

[5] W.T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952) 314-328.



