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While it is straightforward to simulate a very general class of random pro-
cesses space-efficiently by non-unitary quantum computations (e.g., quantum
computations that allow intermediate measurements to occur), it is not
currently known to what extent restricting quantum computations to be
unitary affects the space required for such simulations. This paper presents a
method by which a limited class of random processes��random walks on
undirected graphs��can be simulated by unitary quantum computations in a
space-efficient (and time-efficient) manner. By means of such simulations, it
is demonstrated that the undirected graph connectivity problem for regular
graphs can be solved by one-sided error quantum Turing machines that run
in logspace and require a single measurement at the end of their computa-
tions. It follows that symmetric logspace is contained in a quantum analogue
of randomized logspace that disallows intermediate measurements. � 2001

Academic Press

1. INTRODUCTION

This paper addresses the problem of space-efficient quantum simulations of
probabilistic computations. We take as our model of computation the quantum
Turing machine, where we assume measurements may not occur during the com-
putation, and that a single measurement (yielding one of the results: accept or
reject) takes place at the end of the computation. While it has been shown that
restricting measurements in this way does not affect computational power with
respect to time-bounded computation [1], it is not known if this restriction affects
computational power in the space-bounded case. Indeed, while it can easily be
shown that a quantum machine running in logspace, for instance, that allows local
measurements at any point in its computation can simulate a given logspace
probabilistic computation, it is not known if this can be done in the case where
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measurements are not allowed during the computation. The apparent difficulty in
simulating probabilistic computations with space-bounded quantum machines in
this restricted setting by means of the most straightforward technique (i.e., directly
simulating coin-flips with appropriately defined quantum transformations) lies in
the problem of reusing the space required for each coin-flip, of which there may be
a number exponential in the space-bound.

Our primary motivation for investigating this issue is as follows. Arguably the
most ``natural'' definitions for quantum variants of classical space-bounded classes
are based on a non-unitary quantum computational model in which measurements
during the computation are permitted��a priori there is no clear physical reason to
disallow measurements during a computation, and from such definitions we have
the desirable property that the resulting quantum classes generalize their classical
counterparts. However, the assumption that any such quantum computation can be
performed without intermediate measurements (if it is a valid assumption) would
likely be a powerful tool for analyzing the given quantum classes for the simple
reason that a unitary quantum computation can be inverted, while in general a
non-unitary computation cannot. For instance, the ``tidy'' subroutine calling techni-
que of Bennett, Bernstein, Brassard, and Vazirani [5] relies on the ability to invert
computations, and it is not clear that such a technique can be applied to non-
unitary computations. Strangely, even the (apparently) much simpler class of classi-
cal probabilistic computations seems difficult to simulate by unitary quantum
computers in the space-bounded case, as mentioned above.

Another source of motivation for our inquiry comes from Landauer's Principle
[10], and is based on the fact that unitary quantum computations are reversible,
whereas non-unitary computations in general are not. Landauer's Principle may be
informally stated as follows: reversible computations can be performed without
expenditure of heat, while any irreversible computation step necessarily generates
some amount of thermal energy proportional to kT (see Bennett [4] for further
information regarding thermodynamic issues of computation). While existing
computers generate heat far in excess of this amount, it is nevertheless interesting
to consider heat generation (in conjunction with some space bound) as a resource
for the purpose of classifying problems. For example, given a particular problem
and space-bound, we may ask what the minimal amount of heat is that must be
dissipated for the problem to be solved by a quantum machine running in the given
space-bound. If the computation is unitary, we may say the required heat dissipation
is constant, while a non-unitary computation may necessarily require non-constant
(e.g., polynomial) heat dissipation.

In order to discuss this further, let us focus on logarithmic space bounds in
particular. Consider a quantum analogue of the class RL, which we may call
QRL. This is the class of languages that can be recognized by quantum Turing
machines running in logspace that have one-sided error and allow intermediate
measurements.2 As our focus will in fact be on the unitary variant of this class that
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disallows intermediate measurements (which we call UQRL), we will not give a
formal definition for QRL in this paper. If it is the case that UQRL is properly
contained in QRL, this suggests that certain tasks require heat generation to be
solved in (quantum) logspace. If it is the case that RL is not contained in UQRL,
this suggests that some logspace randomized computations must necessarily
produce heat.

In this paper we prove that quantum Turing machines can simulate a limited
class of random processes��random walks on regular, undirected graphs��in a
time-efficient and space-efficient manner without relying on measurements during
the computation. A random walk on a regular, undirected graph G of degree d is
a Markov chain defined as follows: the states of the Markov chain correspond to
the vertices of G, and the transition probability from vertex u to vertex v is defined
to be 1�d in case v is adjacent to u, and 0 otherwise. While this leaves open the more
general question of whether it is possible to simulate arbitrary probabilistic
computations in this way, random walks on graphs are an important class of
random processes from the standpoint of complexity theory and have had a
number of important applications. From the perspective of this paper, perhaps the
most important application of random walks in complexity theory is due to
Aleliunas, Karp, Lipton, Lova� sz and Rackoff [2], who used random walks to show
that the undirected graph connectivity (USTCON) problem is in RL. Since USTCON
is complete for symmetric logspace (SL) with respect to logspace reductions [12],
the relation SL�RL follows.

We define the d-regular undirected graph connectivity problem (d-USTCON) to
be the variant of USTCON in which the graph in question is regular of a fixed
degree d:

d-USTCON

Instance: A regular, undirected graph G=(V, E ) of degree d and s, t # V.

Question: Are s and t connected in G?

For d�3, d-USTCON is SL-complete, as a straightforward reduction shows
USTCON� log

m d-USTCON.
By considering suitable quantum variants of random walks on graphs we prove

d-USTCON # UQRL. This is done in two steps: we first show d-USTCON can be
solved with one-sided error (unitary) logspace quantum Turing machines having
considerably worse acceptance probability than 1�2 for positive instances, and then
demonstrate that UQRL is robust with respect to acceptance probabilities.

The most space-efficient known deterministic algorithm for d-USTCON requires
space O((log n)4�3) [3], which suggests the problem can be solved with constant
heat dissipation in space O((log n)4�3) (as DSPACE(s)=reversible-DSPACE(s) for
any space bound s [11]). The fact d-USTCON # UQRL suggests that in fact the
problem can be solved in space O(log n) with constant heat dissipation by a
quantum computer.

Given that d-USTCON # UQRL, the following theorem may be proved by
noting that UQRL is closed with respect to � log

m -reductions.

Theorem 1.1. SL�UQRL.
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Symmetric logspace is closed under complementation [14], which, together with
Theorem 1.1, implies SL�UQRL & co-UQRL.

From our technique to simulate classical random walks with logspace quantum
Turing machines, we obtain the following somewhat stronger result: given an
undirected, regular graph G and a vertex u, in polynomial time and logarithmic
space we may approximate a uniform superposition over all vertices in the connected
component of u in G with high probability and with a high degree of accuracy.
Possibly this fact may be of use for developing efficient space-bounded quantum
algorithms for other graph problems.

In a previous paper [16], we have developed various tools for proving
relationships among space-bounded quantum and classical complexity classes. As
we use some of these tools in the present paper, the reader may wish to consult
[16] for further details. It should be noted that in the abovementioned paper we
define complexity classes in terms of machines that allow a restricted class of
measurements during their computations: after each step the internal state of the
quantum Turing machine is observed, yielding one of the results accept, reject, or
continue. (Alternately this may be formulated by allowing for an output tape that
is observed after each step.) The computation continues until one of the results
accept or reject is obtained. As in the classical case, we may define a notion of
halting absolutely for such computations; a computation halts absolutely if it has
finite worst-case running time. We proved that any logspace quantum Turing
machine allowing for these limited intermediate measurements that halts absolutely
can be simulated by one in which no intermediate measurements occur, and under
the assumption that the running time in the single-measurement case is a logspace
time-bound (i.e., the running time of some deterministic logspace Turing machine)
the converse holds as well. Thus, the notion of a logspace quantum computation
not allowing measurements during the computation and the notion of a logspace
quantum computation that halts absolutely (with respect to measurements of the
accept�reject�continue type during the computation) are equivalent.

The remainder of this paper has the following organization. In Section 2 we
review relevant facts concerning space-bounded quantum computation. In Section 3
we define a number of quantum operators and prove a lemma regarding these
operators that will be useful in Section 4, which contains the construction of
quantum Turing machines for simulating classical random walks on d-regular
graphs. In Section 5 we address the issue of the robustness of UQRL with respect
to error bounds, and in Section 6 we show that UQRL is closed with respect to
� log

m -reducibility. These facts, along with the machine constructed in Section 4,
allows us to prove Theorem 1.1. Section 7 contains some concluding remarks.

2. SPACE-BOUNDED QTMS

We begin by briefly discussing some relevant facts concerning space-bounded
quantum computation; for further information see [16]. For background on quantum
computation more generally, we refer the reader to Bernstein and Vazirani [6] and
Berthiaume [7], and for classical space-bounded computation see Saks [15].
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The model of computation we use is the quantum Turing machine (QTM). Our
QTMs have two tapes: a read-only input tape and a work tape. The input and
work tape alphabets are denoted 7 and 1, respectively. The internal states of a
QTM are partitioned into two sets: accepting states and rejecting states.

As usual, the behavior of a QTM is determined by a transition function. There
are strict conditions the transition function of a QTM must satisfy, as the evolution
of a QTM must correspond to a unitary operator on the Hilbert space spanned by
classical configurations of the machine (see [6, 16] for further discussion).

In order to define the language accepted by a particular QTM M, we associate
with M a function T specifying the number of steps for which M is to be run on
each input. The probability that a pair (M, T ) accepts a given string x is the prob-
ability that an accepting state results if the internal state of M on input x is
measured, given that the machine has run for precisely T(x) steps. A QTM M runs
in logspace with respect to a given T if there exists a function f (n)=O(log n) such
that, for every input x, the position of the work tape head of M is never outside
the range [&f ( |x| ), f ( |x| )] with nonzero amplitude during the first T(x) steps of
the computation of M on x.

The class UQRL consists of all languages A for which there exists a QTM M and
a function T such that the following hold:

1. There exists a logspace DTM MT such that on each input x, MT runs for
precisely T(x) steps (T is a logspace time-bound, for short).

2. M runs in logspace with respect to T.

3. If x # A, then (M, T ) accepts x with probability at least 1�2.

4. If x � A, then (M, T ) accepts x with probability 0.

This definition is equivalent to the definition of RQH SPACE(log n) given in [16],
stated in terms of QTMs allowing observations of the accept�reject�continue type
on each step. Note also that the class UQRL does not change if we restrict T to
depend only on the length of x. In Section 5 we show that the value 1�2 in the
above definition for UQRL may be replaced by any function f ( |x| ) satisfying
1�g( |x| )� f ( |x| )�1&2&g( |x| ) for some polynomial g( |x| )>0. Substituting PTM
for QTM in this definition yields the class RL.

We will describe quantum Turing machines using pseudo-code in a manner typical
for classical Turing machine descriptions. Computations will be composed of
transformations of two types: quantum transformations and reversible transforma-
tions, both necessarily inducing unitary operators on the associated Hilbert space.
Quantum transformations will consist of a single step, so it will be trivial to argue
that each quantum transformation can be performed as claimed. For reversible
transformations, we rely on the result of Lange, McKenzie, and Tapp [11], which
implies that any logspace deterministic computation can be simulated reversibly in
logspace. However, because the interference patterns produced by a given QTM
depend greatly upon the precise lengths of the various computation paths compris-
ing that machine's computation, we must take care to insure that these lengths are
predictable in order to correctly analyze machines. In the remainder of this section,
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we discuss reversible transformations somewhat more formally, and state a theorem
based on the main result of [11] that will simplify our analyses greatly.

For a given space-bound f and work tape alphabet 1, define Wf ( |x| )(1 ) to be the
set of all mappings of the form w: Z � 1 taking the value * (blank) outside the
interval [&f ( |x| ), f ( |x| )] (i.e., those mappings representing the possible contents
of the work tape of a machine on input x having work tape alphabet 1 and running
in space f ). By a reversible transformation, we mean a one-to-one and onto
mapping of the form 8: Wf ( |x| )(1 ) � Wf ( |x| )(1) for some f, x and 1.

Let M be a deterministic Turing machine having internal state set Q, which
includes an initial state q0 and a final state qf , and work tape alphabet 1 $$1. For
w # Wf ( |x| )(1), define c(q, w) to be that configuration of M for which the work tape
contents are described by w, the input and work tape heads are scanning the
squares indexed by 0, and the internal state is q. We say that M on input x
performs transformation 8 on Wf ( |x| )(1 ) if the following holds: if M on input x is
placed in configuration c(q0 , w) for any w # Wf ( |x| )(1), then there exists t=t(x, w)
such that if M is run for precisely t steps, it will then be in configuration
c(qf , 8(w)). Furthermore, at no time prior to step number t is the internal state of
M equal to qf . Naturally, we say that t is the number of steps required for M on
x to perform 8. If the work tape head of M never leaves the region indexed by
numbers in the range [&g( |x| ), g( |x| )] during this process, we say that M on x
performs transformation 8 in space g.

Theorem 2.1. Let f (n)=O(log n) and let M be a deterministic Turing machine
that, on each input x, performs reversible transformation 8x on Wf ( |x| )(1 ) in space
O(log |x| ). Then there exists a reversible Turing machine M$ that, on each input x,
performs 8x on Wf ( |x| )(1 ) in space O(log |x| ). Furthermore, the number of steps
required for M$ to perform 8x depends only on x and not on the particular argument
of 8x .

The proof of this theorem is based on the main result of [11], with added
consideration paid to the number of steps required for transformations. See [16],
along with [11], for details.

3. QUANTUM OPERATORS

In this section we define some operators and prove a lemma that will be used in
the analysis of the machines presented in the next section. Throughout this section,
assume G=(V, E) is an undirected, regular graph of degree d that is not necessarily
connected. The operators we define act on the Hilbert space H=l2(V_V ), i.e., the
classical states of our space are ordered pairs of vertices of G. Let n=|V |, m=|E | ,
and for each u # V define S(u)=[v # V : [u, v] # E] and B(u)=S(u) _ [u]. Each
operator we consider is linear: we define the action of operators on the basis
[ |u, v) : u, v # V ] and extend them to H by linearity.
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First, define F as follows:

F |u, v)={ |u, v) &
2

d+1
:

v$ # B(u)

|u, v$) v # B(u)

|u, v) v � B(u).

We now verify that F is both unitary and hermitian. Define

|�u) =
1

- d+1
:

v # Bu

|u, v)

for each u # V, and note that [ |�u) : u # V ] is an orthonormal set. We may rewrite
F as

F=I&2 :
u # V

|�u)(�u |,

from which it is immediate that F=F - and FF -=I. The operator F is related to
the operator D defined on l2([0, ..., d]) as follows:

D |a) =|a)&
2

d+1
:
d

b=0

|b) .

Up to a sign change, this is the ``diffusion'' operator used in the Grover quantum
searching technique [9].

Next, define X as follows.

X= :
u, v # V

|v, u)(u, v|.

The operator X simply exchanges the vertices u and v. Clearly X is both unitary and
hermitian.

Finally, define P as follows.

P= :
u # V

|u, u)(u, u|.

The operator P is the projection onto the subspace of H spanned by ``self-loops.''

Lemma 3.1. Let G=(V, E) be a regular graph of degree d�2, let F, X and P be
as defined above, define Q=PFXFP, and let k�(d(d+1)2 n2 log(1�=))�8 for given
=>0. For each u # V, let Gu=(Vu , Eu) denote the connected component of G containing
u, and write nu=|Vu |. Then for every u # V we have

"Qk |u, u) &
1

nu
:

v # Vu

|v, v) "<=.
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Proof. First, note that

Q |u, u)=\1&
2

d+1+
2

|u, u) +\ 2
d+1+

2

:
v # S(u)

|v, v) (1)

for each u # V, and that Q |u, v) =0 for u{v. If we consider a (classical) random
walk on G in which the probability to move from any given node to each of its
neighbors is (2�(d+1))2 and the probability to remain on each node is
(1&2�(d+1))2, we see that an operator for such a walk has a form very similar to
(1). Note however that the quantities in (1) represent amplitudes rather than
probabilities.

Now let us analyze the behavior of this walk. For given u # V we have that v � Vu

implies (v, v| Ql |u, u) =0 for l=1, and a simple induction shows that this holds
for any l�1. For each u, define Pu to be a projection operator as follows:

Pu= :
v # Vu

|v, v)(v, v|.

Defining Qu=PuQPu , we therefore have Q l
u |u, u) =Ql |u, u) for l�0. Note that

Qu is hermitian: Q-
u=(Pu PFXFPPu)-=Pu PFXFPPu=Qu , following from the fact

that Pu , P, F, and X are hermitian.
Let A denote the adjacency matrix of Gu and let fA denote the characteristic

polynomial of A. By (1), we determine that fQu
, the characteristic polynomial of Qu ,

satisfies

fQu
(z)=z(n2&nu) det \zI&\1&

2
d+1+

2

I&\ 2
d+1+

2

A+
=z(n2&nu) \ 2

d+1+
2nu

det \(d+1)2 z&(d&1)2

4
I&A+

=z(n2&nu) \ 2
d+1+

2nu

fA \(d+1)2 z&(d&1)2

4 + .

Letting *1�*2� } } } �*nu
be the eigenvalues of A, we see that Qu has eigenvalues

+j=
4*j+(d&1)2

(d+1)2 ,

for j=1, ..., nu , as well as eigenvalues + j=0 for j=nu+1, ..., n2. Note that the eigen-
values of A (and hence the eigenvalues of Qu) are real since A is symmetric. Since
Gu is connected and regular of degree d, we have *1=d, *j<d for j=2, ..., nu , and
*nu

� &d (see, e.g., Biggs [8], p. 14). Furthermore, it follows from Lova� sz and
Winkler [13] that *j�d&2�dn2

u , for j=2, ..., nu . Hence +1=1, and

|+j |�1&
8

d(d+1)2 n2
u

(2)

for j=2, ..., nu .
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Next, define |,1)=1�- nu �v # Vu
|v, v) , and note that |,1) is an eigenvector of

Qu corresponding to the eigenvalue +1=1. As Qu is hermitian, we may choose
eigenvectors |,2), ..., |,n2) corresponding to eigenvalues +2 , ..., +n2 in such a way
that [ |,1) , ..., |,n2)] is an orthonormal basis of H. Letting cj=(,j | u, u) for
j=1, ..., n2, we may write |u, u) =�n2

j=1 cj | ,j) , and thus

Q l
u |u, u) = :

nu

j=1

cj+ l
j |,j)

for l�1. Consequently,

"Q l
u |u, u) &

1
nu

:
v # Vu

|v, v) "
2

=" :
nu

j=2

cj+ l
j |,j) "

2

= :
nu

j=2

|cj |
2 |+j |

2l�\1&
8

d(d+1)2 n2
u+

2l

. (3)

Since k�(d(d+1)2 n2 log(1�=)�8, for every u we have

\1&
8

d(d+1)2 n2
u+

k

�\1&
8

d(d+1)2 n2+
k

<=,

following from the fact that (1&1�x)x<1�e for x�1. Thus

"Qk
u |u, u) &

1
nu

:
v # Vu

|v, v) "<=

follows by (3). As Qk |u, u) =Qk
u |u, u) , this completes the proof. K

It should be noted that for certain graphs it suffices to choose a much smaller
value of k than given in the above theorem. For instance, graphs with large conduc-
tance (see Lova� sz and Winkler [13]) require a much smaller value of k; as the
second-largest eigenvalue of a regular graph with conductance 8 is at most d& d82

8 ,
we will have |+j |�1&(d82)�(2(d+1)2) instead of equation (2), and thus taking k
such that k�(2(d+1)2 log(1�=))�(d82) is sufficient.

By taking == 1
2n in Lemma 3.1, we obtain the following corollary.

Corollary 3.1. Let G=(V, E ) be a regular graph of degree d�2 with s, t # V,
let Q be as defined in Lemma 3.1, and let k�Wd(d+1)2 n2 log(2n)�8X. If s and t are
connected in G, then

|(t, t| Qk |s, s) |2�
1

4n2 ,

and otherwise |(t, t| Qk |s, s) | 2=0.
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4. QTM CONSTRUCTION AND ANALYSIS

We now construct, for each fixed d�2, a logspace QTM solving d-USTCON
that operates with one-sided error. Although the QTMs we construct have some-
what poor probabilities of acceptance for positive instances of d-USTCON, it will
be demonstrated in the next section that these machines may be modified to yield
logspace QTMs for d-USTCON having sufficiently small one-sided error to prove
d-USTCON # UQRL.

Lemma 4.1. For d�2, there exists a quantum Turing machine M and a logspace
time-bound T such that M runs in logspace with respect to T and operates as follows.
For any input (G, s, t), where G=(V, E ) is a regular, undirected graph of degree d,
s, t # V, and s is connected to t in G, (M, T ) accepts with probability at least
1�(4 |V |2), and for all other inputs (M, T ) accepts with probability zero.

Proof. The work tape of M will consist of four tracks, one for each of the
following variables: u, v, b and c. Each variable will contain an integer, with the
exception of v, which will store either an integer or a single symbol in the set
[0, ..., d ]. Integers are assumed to be encoded as strings over the alphabet [0$, 1$],
taken to be disjoint from [0, ..., d ]. We make the assumption that each integer has
exactly one encoding and that 0 is encoded by the empty string. Note that this
implies u, v, b and c are all initially set to 0, as the work tape initially contains only
blanks. Vertices of G are assumed to be labeled by integers having length at most
logarithmic in the input size, and each vertex has a unique label. When u or v
contains an integer, this integer is to be interpreted as the label of a vertex.

The execution of M is described as follows:

Algorithm 1 (Description of QTM M for Lemma 4.1).

1. Reject if the input does not encode (G, s, t) for G undirected and regular of
degree d.

2. Copy s to u and v.
3. Loop with starting�stopping condition ``b=0'':
4. If v # B(u), replace v with the symbol in [0, ..., d ] corresponding to its

index in B(u) modulo d+1.
5. If v # [0, ..., d ], perform transformation D (defined in Section 3) on v.
6. Invert step 4.
7. Exchange u and v.
8. If v # B(u), replace v with the symbol in [0, ..., d ] corresponding to its

index in B(u) modulo d+1.
9. If v # [0, ..., d ], perform transformation D on v.

10. Invert step 8.
11. If u{v, increment c modulo d(d+1)2 n3+1.
12. Increment b modulo d(d+1)2 n3.
13. End loop
14. If c=0 and u=t, then accept, else reject. K
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For each of the steps described in Algorithm 1 we may define an appropriate
reversible or quantum transformation corresponding to the action described. Each
transformation is to maintain the invariant that all tracks contain strings having no
embedded blanks and having leftmost symbol stored in the work tape square
indexed by 0. The quantum transformations are steps 5 and 9. These transforma-
tions require a single step and involve only the symbol in square 0 of the track
corresponding to v. The remaining transformations are reversible transformations.
It is straightforward to show that each such transformation may be performed by
a DTM running in space O(log n) in the manner described in Section 2 for a
suitable space-bound f (n)=O(log n). (It is for this reason that we increment c
modulo d(d+1)2 n3+1 instead of simply incrementing c in step 11, and similar for
incrementing b in step 12, although the same effects results; each transformation
must be defined on a bounded region of the work tape). We note that the quantity
d(d+1)2 n3 is somewhat arbitrary in steps 11 and 12; any quantity at least
Wd(d+1)2 n2 log(2n)�8X suffices. The loop may be implemented reversibly in the
manner described in [16]. By Theorem 2.1, it follows that each reversible step in
Algorithm 1 may be performed reversibly in logspace, requiring time depending
only on the input (G, s, t) and not on the particular contents of the work tape of
M when the step is performed. This implies that each step in Algorithm 1 may be
viewed as requiring unit time, insofar as the analysis of the machine is concerned.
When we say accept or reject, we naturally mean enter an accepting or rejecting
state, as appropriate. It is straightforward to define a function T, as in the definition
of UQRL, so that the observation of M takes place after the correct number of
steps in order to yield acceptance or rejection accordingly. It is also straightforward
to show that M runs in logspace with respect to this T.

Now we analyze the computation of M on a given input (G, s, t). When describing
superpositions of M, we will restrict our attention to the variables u, v, b and c;
since we will only care about superpositions between the transformations described
above, all other aspects of M (specifically, tape head positions and internal state)
are deterministic. It will be most convenient to express such superpositions in terms
of classical states of the form |u, v) |c) |b) for u, v # V, c, b # Z, which may be inter-
preted as being equivalent to classical states the form |u, v, c, b).

Assume that M does not reject during step 1, so that G is regular of degree d and
undirected. After step 2 is performed, the superposition of M is |s, s) |0) |0). Now
the loop starting at step 3 is performed. After one iteration of the loop, the super-
position of M is (Q |s, s) ) |0) |1) +|!1, 1) |1) |1) , where Q is defined in Section 3
and |!1, 1) is some vector (that we do not care about, as it will not affect our analysis).
More generally, after j<d(d+1)2 n3 iterations of the loop, the superposition is

(Q j |s, s) ) |0) | j) + :
c�1

|!c, j) |c) | j) ,

and after k=d(d+1)2 n3 iterations, the superposition is

(Qk |s, s) ) |0) |0)+ :
c�1

|!c, 0) |c) |0) .
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At this point, the loop terminates, so that upon completion of step 14 the probability
of accepting is |(t, t| Qk |s, s) |2. By Lemma 3.1, we conclude that M accepts
(G, s, t) with probability at least 1

4n2 in case s is connected to t, and probability 0
otherwise.

5. AMPLIFYING ACCEPTANCE PROBABILITIES

The complexity class RL is robust with respect to the probability with which
positive instances are accepted: the probability 1�2 in the definition of RL may
be replaced by any function f ( |x| ) satisfying 1�g( |x| )� f ( |x| )�1&2&g( |x| ) for
g( |x| )>0 a polynomial. It is not immediate that the analogous fact holds for
UQRL; repeated simulation of a given QTM computation requires that the
simulated machine be in its initial configuration at the start of each simulation, but
resetting this machine to its initial configuration constitutes an irreversible action
that cannot be performed by the quantum machine performing the simulation. In
this section, however, we prove that this fact does indeed hold.

Lemma 5.1. Let M be a QTM and let T be a logspace time-bound such that M
runs in logspace with respect to T. Let p(x) denote the probability that (M, T )
accepts x. Then for any polynomial f, there exists a QTM Mf and a logspace time-
bound Tf such that Mf runs in logspace with respect to Tf and (Mf , Tf) accepts each
input x with probability

1&(1& p(x))(1&2p(x))2f ( |x| ).

Proof. Given M, T, and f as in the statement of the theorem, we let Mf be a
quantum Turing machine functioning as described by the following algorithm:

Algorithm 2 (Description of QTM Mf for Lemma 5.1).

1. Repeat the following f ( |x| )+1 times:
2. Simulate the computation of M on x for T steps.
3. If M accepts x, increment a modulo f ( |x| )+2.
4. Invert step 2.
5. If the current configuration of M is not the initial configuration, and if

a=0, multiply the current amplitude by &1 (i.e., perform a conditional
phase shift based on a and the current configuration of M).

6. End loop
7. Accept if a{0, otherwise reject.

The machine Mf will store an encoding of some configuration of M on its work
tape, as well as an integer a, initially equal to zero. For each step in Algorithm 2,
a sequence of reversible and quantum transformations may be defined that have the
described effects. We will not describe in detail how this may be done, as this has
been discussed in [16]. Each required transformation can be performed in
logspace, so that we may assume Mf runs in logspace. It may also be assumed that
each step in Algorithm 2 requires a number of steps depending only on the input
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and not on any other aspect of the computation path being followed. An
appropriate logspace time-bound Tf can be defined so that the observation occurs
when step 7 has finished, yielding acceptance or rejection appropriately.

We now determine the probability that (Mf , Tf) rejects. Let us denote by E the
unitary operator corresponding to running M for T steps. Since the counter a is
incremented modulo f ( |x| )+2 at most f ( |x| )+1 times, we may determine the
probability, (Mf , Tf) rejects by examining the superposition of M represented by
the state of Mf projected onto the space spanned by classical configurations for
which a=0.

Initially, the state of M represented by Mf is |c0) , for c0 the initial configuration
of M. The first iteration of step 2 maps this state to |�) =E |c0) . Let us write
|�)=|�acc)+|� =

acc) , where |�acc) denotes the projection of |�) onto the space
spanned by accepting configurations of M. During step 3, a is incremented if M is
in an accepting configuration. Since we are interested in that part of the super-
position for which a=0, step 3 effectively projects the superposition of M represented
by Mf onto state |� =

acc).
Now we consider the sequence of steps 4, 5, 2, 3, which are at this point performed

f ( |x| ) times. The effect of each iteration of this sequence of steps is that |� =
acc) is

mapped to (1&2p(x)) |� =
acc), where still our attention is restricted to the subspace

on which a=0. This may be argued as follows. First, the effect of step 4 is to map
|� =

acc) to E - |� =
acc) . Since

(c0 | E - |� =
acc)=(� =

acc | E |c0) =1& p(x),

we may write E - |� =
acc) =(1& p(x)) |c0) +|!) , where |!) satisfies (! | c0)=0.

Step 5 maps this state to (1& p(x)) |c0)&|!) , and step 2 maps this resulting state
to (2&2p(x)) |�acc) +(1&2p(x)) |� =

acc). Finally, step 3 effectively projects this
state onto the space of non-accepting configurations, yielding (1&2p(x)) |� =

acc).
Therefore f ( |x| ) iterations of steps 4, 5, 2, 3 have the effect of mapping |� =

acc) to
(1&2p( |x| )) f ( |x| ) |� =

acc). During the last iteration of the loop, steps 4 and 5 do not
affect the norm of this vector, and hence (Mf , Tf) rejects with probability

&(1&2p( |x| )) f ( |x| ) |� =
acc)&2=(1& p(x))(1&2p(x))2f ( |x| )

and accepts otherwise, which completes the proof. K

By Lemmas 4.1 and 5.1, we may now conclude d-USTCON # UQRL.

6. CLOSURE OF UQRL UNDER � log
M -REDUCTIONS

Given that d-USTCON # UQRL, to prove Theorem 1.1 it suffices to show that
for any A satisfying A� log

m d-USTCON we have A # UQRL. It is, however, quite
straightforward to prove the following stronger claim.

Lemma 6.1. Let A and B be languages satisfying A� log
m B and B # UQRL. Then

A # UQRL.
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Proof. Let TB be a logspace time-bound and let MB be a QTM that runs in
logspace with respect to TB and recognizes B in the sense of the definition of
UQRL. Without loss of generality we make the assumption that the transition
function of MB is specified by a collection of unitary operators [V_] and mappings
Di and Dw as described in [16] (similar to unidirectionality as described in [6]);
that is, whenever a given input symbol _ is being scanned, transformation V_ is
applied to the current internal state and work tape symbol pair, then the tape heads
are moved according to Di and Dw , which are functions of the (new) internal state.
Let f # FL satisfy x # A if and only if f (x) # B for each x.

We define a QTM MA and a logspace time-bound TA such that MA runs in
logspace with respect to TA and recognizes A (in the UQRL sense) as described by
the following algorithm.

Algorithm 3 (Description of QTM MA for Lemma 6.1).

1. Loop with starting�stopping condition ``t=0'':
2. Compute _= f (x)hi

.
3. Swap the contents of { with whw

.
4. Perform transformation V_ on the pair (q, {).
5. Invert step 3.
6. Invert step 2.
7. Adjust hi and hw appropriately according to Di (q) and Dw(q).
8. Increment t modulo TB( f (x)).
9. End loop

10. Accept if q is an accepting state of MB , and reject otherwise.

We assume the work tape of MA consists of 6 tracks, one for each of the
variables hi , hw , w, _, {, and t. The variables hi , hw and t are integers (representing
the input tape head location, the work tape head location, and the number of steps
in a given computation of MB), and are represented as in the machine for
Lemma 3.1. The variable w represents the contents of the work tape of MB , and _
and { represent single symbols in the input or work tape alphabet of MB , respec-
tively. The variable q may be viewed as being part of the interval state of MA . (We
may also view _ and { in this way, although this requires a slight variant on
Theorem 2.1 when defining reversible transformations for each step as mentioned
below.) Initially we have that hi=0, hw=0, _=*, {=*, w contains all blanks,
and t=0. Let the initial state of MA be such that the computation of MA begins
with q being the initial state of MB .

Similar to the previous QTM constructions, reversible logspace transformations
and quantum transformations may be defined for each step in Algorithm 3, and the
loop may be implemented reversibly. By Theorem 2.1 each step may therefore be
viewed as requiring unit time, independent of each particular computation path.
Letting TA(x) be the number of steps required for MA to reach step 10, it is clear
that MA simulates precisely the computation of MB on input f (x), and therefore
accepts x with the same probability that MB accepts f (x). K
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7. CONCLUDING REMARKS

We have shown that logspace quantum Turing machines can simulate a limited
class of probabilistic computations without relying on measurements during the
computation. This leaves open the question of whether probabilistic computations
can be simulated efficiently by unitary spare-bounded quantum machines (e.g., is
RL contained in UQRL?), and more generally whether arbitrary non-unitary spare-
bounded quantum computations can be simulated by unitary spare-bounded
quantum computations.

We have defined in this paper quantum processes that attempt to mimic classical
random walks on graphs. There are a number of ways in which to define quantum
walks on graphs having properties quite different from classical random walks. It
may be interesting to consider possible applications of such processes to quantum
complexity theory.
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