
Journal of Computational and Applied Mathematics 18 (1987) 249-263
North-Holland

An iterative solution method for solving

f(A) x = 6, using Krylov subspace
information obtained for the symmetric
positive definite matrix A

H.A. VAN DER VORST
Faculteit Wiskunde en Informatica, TU De&, 2600 AJ Dei’ft, The Netherlands

Received 25 January 1986
Revised 10 April 1986

Abstract: The conjugate gradients method generates successive approximations xi for the solution of the linear system
Ax = b, where A is symmetric positive definite and usually sparse. It will be shown how intermediate information
obtained by the conjugate gradients (cg) algorithm (or by the closely related Lanczos algorithm) can be used to solve
f (A)x = b iteratively in an efficient way, for suitable functions f. The special case f(A) = A2 is discussed in
particular. We also consider the problem of solving Ax = b for different right-hand sides b. A variant on a well-known
algorithm for that problem is proposed, which does not seem to suffer from the usual loss of orthogonality in the
standard cg and Lanczos algorithms.

Keywords: Conjugate gradients method, Lanczos method, matrix equations, sparse matrices, Krylov subspace.

1. Introduction

Throughout this paper we will assume that the matrix A is symmetric and positive definite.
Then the conjugate gradients (cg) method and the Lanczos method are equivalent methods that
solve iteratively the linear system Ax = b. When A is symmetric indefinite the Lanczos method
can still be used in order to solve Ax = b, see, e.g. [7].

These methods generate an orthogonal basis for the Krylov subspace K’(A; ro) =
Span{ rO, Ar,,, . . . , A’-*r,,}, where r, = b -Ax,. The i th iterand xi is the element from K’(A; ro)
that minimizes (y - x, A(y - x)) over all y E K’(A; r,,), and the iterated vectors rj = b - AX,
constitute an orthogonal basis for the Krylov subspace (assuming exact arithmetic). For details
see, e.g. [1,6]. We will give the cg formulation of this algorithm in Section 2.

It is well-known that eigenvectors which have a significant component in the direction of b are
increasingly well approximated by vectors in the Krylov subspace for increasing i, see, e.g.
[3,6,10]. This leads one to expect that for a different right-hand side, which is also rich in these
eigenvectors directions, a satisfactory approximated solution can be obtained by solving the
projected equation onto K’(A; ro). Relevant situations where this may be of help include

0377-0427/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82810806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

250 H.A. van der Vorst / Solving matrix equations

discretised time-dependent p.d.e’s, domain decomposition methods, iterative solution methods
for 3D problems in which 2D subproblems are solved accurately in each step and in the solution
of non-linear problems. Still assuming exact arithmetic, Saad [ll] has given a quantitative
analysis for the error in the approximated solution for a different right-hand side. Parlett [7] has
taken into account the problems that arise when computing in finite precision. It is then
well-known that the orthogonality among the iterated basisvectors r, is going to be lost gradually
for increasing i [4,5,6,8]. Parlett [7] suggests to improve the Lanczos algorithm by an orthogonali-
zation technique. In [7] Parlett also proposes an algorithm for improving the accuracy of the
approximated solutions, obtained for subsequent right-hand sides, by continuing the Lanczos
algorithm in such a way that the new iterated Lanczos vectors are also orthogonal to the old
subspace K’(A; ro).

In Section 3 we give the standard algorithm for the computation of the approximated solution
for a different right-hand side and we propose a slight modification which seems to make the
algorithm insensitive to the loss of orthogonality among the basisvectors r,. Our formulation of
the algorithm is particularly useful when the new right-hand side does not depend on the
solution of the first one, since then the storage of the basis vectors can be avoided.

In Section 4 we consider the problem of solving A*x = b. This can be done in two steps via
Ay = b and Ax = y. Then if y, is the ith cg iterand approximating y, we have by construction
that y, E K’(A; ro). Though it is obvious that in this case the second right-hand side depends on
the solution of the first system it can be shown that excellent approximations Zi can be
computed with only little additional work, without storing the basisvectors. It is also not
necessary to compute the vectors yi explicitly.

In Section 5 we are led quite naturally to a generalization, namely the approximate solution of
j(A)x = b, for suitable functions j. The proposed algorithm requires the solution of an
eigensystem of low dimension as compared with the dimension of A.

Numerical examples that provide evidence, supporting the proposed ideas, are presented in

Section 6.

2. The conjugate gradients method for Ax = b

Among the many computational schemes for cg we have, quite arbitrarily, chosen for the
following variant [1,2]:

x0 is a start-vector, for convenience we will use x0 = 0 (which is not essential since an
arbitrary x,, # 0 can be translated by z = x - x0 to the problem AZ = b - Ax, = b” for which

z0 = 0); r. = b -Ax, and p0 = ro.
For j = 0, 1,. . . until some stopping criterion is fulfilled:

oL/ = (‘i, ‘j>/(Pj, APj),

xj+l =xj+cYjp,,

rj+ 1 = rj - ajApj,

Pj’ trj+l, rj+l>/(rj, ‘j>,

Pj+l = rj+l + PjPj-

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

H.A. van der Vorst / Solving matrix equations 251

The above scheme is not essential for the proposed new algorithms. In fact any Lanczos type
scheme might be used. We have not considered the question whether a specific scheme would be
preferable for some reason, e.g. stability. Possibly a stable Lanczos scheme, as proposed by Paige
[3,4], with some kind of reorthogonalisation [8] leads to better results.

It is well-known that in exact arithmetic the residual vectors 5 form an orthogonal basis

{%..., r,} for the Krylov space K’+‘(A; rO) = Span(r,, Ar,, . . . , A’r,}. The projected matrix A
has, with respect to the basis {r,,. . ., rj}, tridiagonal form. Paige [5] has shown that in finite
precision floating point arithmetic the stable Lanczos scheme leads to:

AR, = Ril; - ti+I,i’;+le,~+, + E,, (2.6)

in which: AEIW”~~, Ri E [Wnxci+l) is the matrix with columns r,,, . . , , r,, T. E [W(itl)x(i+l) is
tridiagonal, ti+ l,r. is the last subdiagonal element of q+ 1, c?,+~ is the (i + l)st &it vector in R’+l
and E, E lF8”‘” IS the erromatrix with I] E, 11 2 < ug. The constant u is the relative working
precision and g is a very moderate factor. For details, see [5]. In exact arithmetic we have that
E, = 0. In the derivation of our formulas we will always assume exact arithmetic. For the given cg
scheme (2.1)-(2.5) the tridiagonal matrix q., after i steps of the algorithm, can be written as:

1 PO - --
a0 QIO

1 ‘+m _’ P P --
a0 a1 a0 ffl

1 --
a1

B

Pi-1

(yi-l

0
1 1+I P.-l

--

ai- “r at-1 I

The cg approximation x, + I is the solution of the projected equation onto K’+‘(A; ro):

RTAx~,~ = Ryb. (2.8)

Since x,+r E K’+’ (A; ro), it follows that xi+i = Riyi+l, for y,,, E R’+‘, hence

R;ARiyi,I = RTR,qy,,, = R;b (2.9)
or

TY,+~ = (R;R,)-lR:b (2.10)

and

(2.7)

xi+l = R,q.-‘(R;R,)-‘R;b. (2.11)

We have r. = b since x0 = 0 has been assumed.Hence xi+l can be expressed as

Xi+l = R,T-lel, (2.12)

where e, is the first unit vector in lR’+l.
j = 0, 1, 2,.

Note that if we use a Lanczos scheme with)(rj II 2 = 1,

. * 3 i, then (2.12) should be replaced by

xi+l = 11 b 11 2Rir-1el. (2.13)

252 H.A. van der Vorst / Solving matrix equations

3. An approximate solution for AI = &

Once Ax = b has been solved approximately by the cg method or Lanczos method, the
generated basis for K’+i(A; b) and T, can be used to obtain a cheap approximation for A-‘6,
for 6 f b. To this end we project the equation AR = 6 onto the Krylov space K’+‘(A; b) and
solve the projected equation. Analogously to the derivation of (2.11) it follows that the solution

f;+, of the projected equation can be written as

2;+1 = R,q-‘(R;R,)-‘R;k (3.1)

We expect Zr+l to be close to 2 when 8 is close to K’+‘(A; b), for i so large that xifl is close
to x. For a quantitative analysis see [ll]. Note that we use the superscript a in order to stress the
fact that zZ~+~ differs from the ii+l that one would obtain when using the cg scheme for Ax” = 6.

Let the vector b be defined by

6= (6,, 6,)...) fiJT, (3.2)

with

gj=(rj> d)/(r~, 'I>, j=O, 1 ,.**, i. (3.3)

Equation (3.1) can be rewritten in the form:

J? r+l = RJ-‘&. (3.4)

It appears that the computation of the 6, from (3.3) leads to numerically very unstable results for
2 r+l, since in practice the set of basis vectors rj may be far from orthogonal for increasing i.

Parlett [7] suggests a selective orthogonalization technique for the vectors rj in order to overcome
this severe problem. We propose a slight modification to the formula (3.3) for the computation of
the gj.

In exact computation (RTRi)-‘RT& represents the projection of 6 onto K’(A; b), with respect
to the basisvectors rj. Therefore we want to have Pi, i.e., the projection of 6, in the form

P6 = Rig = &ro + &rl + . * . +giri.

The idea is now to determine, for each newly generated lanczos vector r,, the component of the
part of i which has not yet been spanned by the previous vectors ,yO, rl,. . . , rj_l. This leads to
the following algorithm for the computation of the components of b:

b,=6,

6,=(rj, b,)/(r,, r,), b,+l=Sj-.-6j’;, j=O,...,i.
(3.3a)

Algorithm (3.3a) is known as the Modified Gram-Schmidt Algorithm (MGSA), for orthogonaliz-
ing d against the set { rj}. Ruhe [9] discusses this algorithm for the situation in which the rI are
“less than perfectly orthogonal”, which is typically our case (it may even occur that the r- are
linearly dependent).

Now it is obvious that a component of b” in a direction of a previous vector r, does not reenter
the process, whether the new rJ is orthogonal to r, or not. From numerical experiments it appears
that the computation of 2, + 1 by (3.3a) and (3.4) is very stable, also in situations where a severe
loss of orthogonality among the Lanczos vectors is observed. See Section 6 for an example.

H.A. van der Vorst / Sol&g matrix equations 253

At first glance, (3.4) suggests that it is always necessary to store the vectors rj, which build R,,

in order to compute 2;+,. We will derive a version of the algorithm for the computation of 2;+r
for which the storage of the complete set of basisvectors is not required when b” and b are both
known at the same time (i.e., d does not depend on x).

The matrix T (we will drop the index i when it is obvious) can be written in factored form as:

T= LDU (3.5)
with

1

-1

-PI
1 . .

, D=

Hence T-l = U-‘D-lL-‘, with

‘1 PO POP1 PO&P2 .--
1 Pl PlP2 *. .

u-1 = 1 P2 .**

1 . . .

B

1

a0

1 -
a1

I

B

>
L-1 =

\
B

>

1 -
ai]

1

1 1

1 1

1 1

0

1

1

For the jth component of the vector D-‘L-l6 E [w’=*, it follows that

(D-‘L-‘6)j = aj i 6,, j=O,...,i.
k=O

The vector 2. r+l, given by (3.4) can be rewritten as

2 r+l = (RW)(D-IL-%).

From straight-forward computation it follows that the jth column
(RU-‘), j, can be computed recursively from the previous column:

(RU-‘).j=Pj_,(RU-‘),,-I + r,, j= l,..., i

with

of (RU-‘), denoted by

(3.9)

(RU-‘),, = ro.

(3.6)

(3.7)

(3.8)

254 H.A. van der Vorst / Solving matrix equations

The combination of (3.7) and (3.9) in formula (3.8) shows that the vectors Zr+i can be computed
recursively and that, when 6 is known before Ax = b has been solved, it is not necessary to store
all the r,-vectors:

ii,, = C (D-‘L-‘G)j(RU-l).j. (3.10)
j=O

In the practical situation that xi+ r is already sufficiently accurate for some value of i, but 2;+r is
not accurate enough, we suggest to use izi+r as a starting vector for the cg scheme applied to
AZ = 6, or to continue the Lanczos algorithm for AZ = 6, with starting vector Zi+r, in a way as
described by Parlett [7].

4. An efficient cg-like algorithm for the iterative solution of A2x = b

4.1. Introduction

A straight-forward approach for solving A*x = b iteratively by the cg method is to apply the
scheme (2.1)-(2.5), with A therein replaced by A*. This implies that two matrix vector
multiplications have to be carried out for each cg iteration step, since in general one may want to
avoid the explicit computation of the matrix A*. The cg iterands of this process will be denoted
by xitl, i = 0, 1, 2,. . . , x0 = 0.

Another approach is to solve A*x = b in two steps. First y is solved from Ay = b and then x
is solved from Ax = y. If Ay = b is solved by the cg method, leading to iterands y, + r (y, = 0),
then in view of Section 3 one might hope that Ax = y,, 1 can be solved efficiently so that it leads
to a sufficient accurate approximation Zj+ 1 for the solution of A*x = b. We will first present an
algorithm for the computation of Zzi+t in section 4.2. Accuracy aspects will be considered in
section 4.3.

4.2. Derivation of the computational scheme

In this subsection we will present a computational scheme which computes Ri+r, i = 0, 1, 2,. . . ,

simultaneously with the process for yi+t, without storing the rj’s (and even without computing
Yi+t explicitly). For y, = 0 we can, similarly to (2.12), write y,,, in the form

Y,+1 = RT-‘e, (indices for R and T have been dropped). (4.1)

The vector Zzi+r is now defined by

%+1 = RT-‘(RTR)-lRTy;+l (4.2)

As has been shown in Section 3, Zi+r is obviously the solution of the projected equation
Ax = Y,+~ onto K’(A; b).

Inserting (4.1) in (4.2) leads to

2i+l = RT-l(RTR)-lRTRT-‘e, = RT-‘e,. (4.3)

From (3.5) it follows that

2i+l = RU-‘D-l(UL)-‘D-lL-‘e,. (4.4)

H.A. van der Vorst / Solving matrix equations 255

The trick is now to rewrite UL in the form io and it will be shown that i and c can be
constructed recursively while carrying out the iteration process for Ay = b.

From straight-forward calculations it follows that

1+/-G -Po 0

-1 1+P1 -PI
UL= -1 *. . . = _L0’,

with

I
a0 fl

-1 a,

i= -1 _.

I 0 -1 a,

and

a,=l+Po, bo = - Bob, >

aj=l+Pj-/3-/a,_,, j=l,2 ,..., i,

bj = - &/a iy j=l,2 ,..., i-l. I

Equation (4.4) can be rewritten as
,T
xi+l = (IN-‘PP)(Pr’r.-‘e,).

From (3.5) and (3.6) we have that

D-‘L-lel = ((Y O,‘“, ai)T

0

bl

b 1-l

1 /

(44

(4.7)

(4.8)

With (4.6) it follows that the second part in parentheses in (4.7) can be written as

kl’D-lL-‘el = (f30,...,t?I)T, (4.9)
with

00 = ao/ao, 8j=(aj+Oj_l)/uj, j=l,2 ,..., i.

As we have seen in Section 3, relation (3.9), the columns of RU-’ can be computed recursively
from each other. Denoting the jth column of RU-‘D-’ by 5, it follows that

‘/ = (Yj(RU-‘),,a (4.10)

Finally, we have for the jth column of RU-‘D-‘o-l, denoted by $, that

F. = Y())

i?,=(Pj_l/a,_l)&l+~, j=l,2 ,..., i. (4.11)

Of course the vectors 5 need not be formed explicitly, and the 5 can be computed directly from
the vectors (R U- ‘) j. The vector 5Z2, + 1 can now be computed recursively from

z. = 0,
fi
Xj=Rj_l+Bj_l$_l, j=l,2 ,..., i+l. (4.12)

(4.5)

256 H.A. van der Vorst / Solving matrix equations

It is easily verified that it is not necessary to store all r,‘s and that by (4.12) we obtain an
approximation Z2, + 1 to the solution x of A*x = b, by only about 4 additional flops per
iterationstep per unknown extra, as compared with the computational work that is required for
i + 1 iterationsteps of cg for the equation AY = b. Note also that the vectors Y, need not be
computed.

4.3. Convergence analysis

It is obvious that the cg iterand yi+i is an element of Kifl(A; b). Saad [ll] has pointed out
that the accuracy of the solution Ri+i, of the projected equation Ax = y,,, onto K’+‘(A; b), has
the same order of accuracy as the iterand Zi+i, obtained by the cg method for Ax = yi+i with
x”O = 0.

We will show that the residuals)] Az?~+~ - yi+i)] and](AZi+i - yi+i 1) can be bounded by
approximately the same sharp upperbound. By I(x I] we denote the standard euclidean norm.
Also upperbounds for I) A*x,+i - b 11 and]I A2Zi+i - b)I are presented. These upperbounds
indicate that in many relevant situations it is much cheaper to compute Z;+, than to compute
X r+l-

Along the lines of the proof of Saad’s proposition 1 in [ll] we find that

]I AR,+1 -Y;+i 11’,-1 G ,*4~:‘+* I] b]]:-I, (4.13)

with

6-l x

pA= fi+1’
c is the conditionnumber of A, c = max

&in
, where X,,

and X,, are the smallest and largest eigenvalue respectively for which the corresponding
eigenvectors has a component in b. For (Y we obtain

(y= (Yi+l, b) = (ro, RT%)
(b, b) (ro, ro>

Hence

(4.14)

For the residual for Zi+i, obtained with the regular cg process for Ax = Y~+~, with starting value
x”, = 0, it follows that

< Pi,,4p:+*
x

II yi+l IL-1 5 4$7 P?+* II b II *. (4.15)
IlUll

(The latter inequality follows, provided i so large that I] yitl I(= I] A-lb II) Hence the residuals
for Hi+i and ii+i have approximately the same upperbound. These upperbounds are rather
sharp as we will argue now. A factor X2& in the denominator is realistic when the eigenvectors
corresponding to the smallest eigenvalues dominate in b, and the factor h,, is realistic when
these eigenvector components have been eliminated from the residual by the cg-process. The

x,, = 0), then it follows that

IIA2Xi+~-h112~XZ,a,llA2Xi+I-‘~l~-2

< 4 A2m, p;i2+ 2 (1 b [I& < 4c PA2 2 2r+2 11 b 11 2,

with

pA2 = (c - l)/(c + l), c defined as in (4.13).

For Zi+, we have that

A2&+1 -b=A(ARi+l -Yi+l) + AYi+l - b,

and hence

llA2Ri+i - bl12 G II A II 211ARi+l -Yi+lII’ + II AY~+I - ‘II 2.
The second term on the right-hand side of (4.18) can be bounded by

]I A_Yi+i - b (1 2 6 A,, I] A_Yi+i - ’]]$I G ~cP;‘+~ II ’ II 2*
From (4.14) (4.19) and (4.18) it then follows that

11 A2_?i+l - bll2 < 4p;‘+’ II b II 2(c3 + c) = 4c3piit2 II b II 2.

H.A. van der Vorst / Solving matrix equations 257

latter is usually the case for i not too small (see, e.g., [12]). The factor 4~2’~~ is a well-known
reduction factor for the cg-residual (see, e.g. [l]). This factor is realistic when the extremal
eigenvalues of A are not very well separated (for an analysis of the cg-convergence see [12]).

Finally we want to consider the question whether it might be preferable to apply the
cg-algorithm directly to A2x = b. Let x,+i denote the (i + 1)st iterand for this process (with

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Since each iterationstep for xifl is approximately twice as expensive as for gi+i, it follows that
,Y x2i+2 is as expensive to compute as xi+i. From (4.16) and (4.20) it follows that the upperbound
for the residual of ?2i+2 is smaller than the upperbound for the residual of xitl, if

3 4if4
’ PA

2 2i+2
<c PA2 . (4.21)

In practical situations c will be large enough as to allow for some simplifications:

c3 + c p;i+4
l>--=c

(1 - 2/Jp)4i+4 = c 1 4i+4 2

c2 P3+2 (1 - 2/c)2i+2 (i G
(4.22)

which leads to the following condition

i 2 g&ln c.

This indicates that for i not too small it may be much more efficient to determine Z2r+2 as it is
to compute an x,, which has comparable accuracy as z?2i+2, for practical values of c.

For numerical evidence that the computation of ii has to be preferred over the computation
of xi, from an efficiency standpoint, see Example 4 in Section 6.

5. The solution of more general systems f(A)x = b

Analogously to A2x = b, the linear system A”x = b can be solved using the iteration results
from Ax = b. The successive approximations xi for the solution x of A”x = b can then be

258 H.A. van der Vorst / Solving matrix equations

computed each at the cost of only one matrix vector product with the matrix A, instead of A”,

which implies a considerable saving in general per iteration step. Of course, for increasing values
of m, the recurrence relations for the x, will be gradually more complicated and more expensive
too. In this section we suggest an alternative algorithm that avoids the construction of these
recurrence relations.

We will now assume that an orthonormal basis for the Krylov subspace K’+‘(A; b) is
obtained (e.g., by a Lanczos type method). It should be noted that in practice the iterated basis
vectors r, may be far from orthogonal for increasing i due to rounding errors. The algorithm that
we will describe does not.seem to suffer seriously from this loss of orthogonality, except that it
possibly needs a few iteration steps more than would have been necessary in exact computation.
The orthonormality implies that 7; is symmetric.

It is well-known, e.g., see [6], that the Krylov subspace is invariant with respect to translations,
i.e. K’+‘(A; b) = K’+‘(A + al; b), for (Y a complex scalar. In fact, let Ri, T,, ti+l,i, rl+l be
quantities as in (2.6), obtained for Ax = b, with x0 = 0, then for A + cu1 it follows that

(A + cyl)Ri = R,(q + CYI) - ti+l,irl+,e~+,. (5.1)

Provided q. + a1 is non-singular, we have, similarly as in Section 2, for jZi+i, which is the
projection of the solution of (A + aI)2 = b onto K’+‘(A + a1; b) that

‘i+l = 11 blI ,R,(q + al)-‘e,. (5.2)

For the case when q. + cr1 is singular, or near singular, one has to replace an expression like
(7; + al)-‘e, by a suitable solution of (T, + a1)z = e,, which leads to obvious changes in our

algorithms.
From Section 4 it is now obvious that an approximation xi+1 to the solution x of

(A + a,I)(A + a,l)x = b can be obtained by projecting the equation onto K’+‘(A; b), which
gives

Zj+l = II b II 2Ri(K + a21)-1(q + cY,I)-‘e,, (5 -3)

provided the factors are non-singular.
This approach can be generalized to kth degree matrix polynomials Pk(A) in A. An

approximate solution xi + 1 for Pk(A)x = b, with respect to K’+l(A; b), can be written as

Z;+i = II b II ,Ri(P,(T))-‘el~ (5.4
provided Pk(A) and Pk(T) are non-singular.

For such more general polynomials it will be very unattractive to factor explicitly a given
matrix polynomial (e.g., for stability reasons), and also the derivation and computation of the
subsequent recurrence relations for the projected factors will be increasingly complex. This can,
however, be avoided by forming Pk(q) explicitly and to compute (Pk(T,))-’ via, e.g., Choleski
factorization.

We will now show how it can be avoided to compute the matrix Pk(T) explicitly. Since z is
symmetric, it can be written as Tj = Q,D,QT, where Di is a diagonal matrix and Qi is orthogonal.
Hence it follows for Pk(T) that

P,(T) = QiP,c(oi>QT, (5.5)

and

(P&))-’ = Q,(p,(~;))-lQ:. (5 4

H.A. van der Vorst / Solving matrix equations 259

Note that, at the cost of the reduction of T, (and not of Pk(T,)) to diagonal form, we have
avoided the factorization of Pk, the construction of the recurrence relations for x,+ 1 and the
explicit construction of Pk(Tj). Since i will be in general small as compared with the order of A,
the reduction of T. to diagonal form is considered to be a small problem with regard to, e.g.,
computer time and memory space.

In combination with (5.4), (5.6) leads to

&+r = Ilbll ,'iQi(P/c(Di))-'QIre,* (5.7)
It seems wise not to evaluate Zj for each value of j, but to do so after a couple of iteration steps
(i.e., after a couple of the r,‘s have been generated). Strategies for selecting the appropriate
value(s) for j have not been investigated yet.

We have used the above described approach also for general functions f(A), which are not
finite degree polynomials in A. In that case (5.7) changes in

&+i = llbll2RiQi(f(~,))-‘QTe,~ w
which serves as an approximation to the solution of f(A)x = b. In our experiments this led to
nice results when f(A) ‘behaved’ like a low degree polynomial. We believe that this approach
might turn out to be useful in connection with, e.g., higher-order single or multistep implicit
schemes for certain non-stationary p.d.e.‘s.

Note again, that the approach of generating a basis for the Krylov subspace K’+‘(A; b),
represented by Ri, and the projection of A onto K’+r (A; b), given by Ti, has the big advantage
that, when solving f(A)x = b, one does not need to form f(A), nor matrix vector products like
f(A)p,. These quantities are in general much more expensive to compute than Apj.

In Section 6 we give numerical evidence for the nice convergence behaviour of the xi’s for
eAx = b. In the specific example A has been chosen, for reasons of simplicity and so that the
experiments could be easily checked on small computers, as a diagonal matrix. Hence, for this
special A, f(A)x = b could have been solved, much more efficiently, directly. However, the
displayed convergence behaviour, observed when using our algorithm, does not depend on the
special structure of A and thus we get some feeling for what we might expect for matrices with a
similar spectrum but with a more general non-zero structure. This example suggests that an
approach via (5.8) deserves serious consideration for the computation of u(t) = exp(-At) y,, e.g.
arising in initial value problems (provided A is symmetric).

6. Numerical examples

General introduction to the examples
In this section we present a few examples that serve as illustrations to the ideas presented in

previous sections. All the computations have been carried out in 48-bit floating point precision
(14 - 15 decimal places) on a CRAY X-MP 24 computer.

Both the cg and the Lanczos algorithm do not require the matrix A in explicit form as an
array containing the elements of A. They only require a rule (subroutine) which produces the
vector y = Ax for any given input vector x and hence they do not take any advantage from a
special form of A. Therefore it is quite usual to select matrices in diagonal form for numerical
experiments, since then the complete eigensystem of A is known (as well as the solution, so that
an observed convergence behaviour can be better understood (e.g., see [12]).

260 H.A. van der Vorst / Solving matrix equations

Of course, this implies that in all our examples A, A2 and f(A) are diagonal matrices which
could have been solved efficiently (even without any cg or Lanczos scheme, but directly).
However, as said before, the Lanczos type algorithms do not take advantage from this with
respect to their convergence behaviour. A Krylov subspace for A and b is generated in which the
structure of A does not play any role at all. With the obtained Krylov subspace information for
A, we have solved systems like A2x = b or f(A)x = b along the lines presented in Sections 4 and
5. This means that neither A2 nor f(A) had to be computed explicitly, though this should have
been rather trivial for our sample matrices. It should be mentioned that these methods have also
been tested in more realistic and practical situation that A is a non-diagonal matrix, giving then
essentially the same kind of results, with regard to the convergence behaviour. In fact the model
matrices have been chosen so that their diagonal elements reflect the spectra of the more
complex problems that we have solved.

Our examples are restricted to two different diagonal matrices A, and A,,.

A,=diag(&, &,...,&OO),

A, = 0.034, A, = 0.082, X, = 0.127, h, = 0.155, x, = 0.19,

X,=O.Z+(j-5)/895, j=6,7,8 ,..., 900.

This spectrum is, with regard to its extremal smallest eigenvalues, modelled roughly on the type
of spectra that is typical for the preconditioned matrix in ICCG. It has been observed that
orthogonality among the vectors rj is maintained quite well for the number of iteration steps that
is necessary to solve A,x = b with acceptable accuracy.

A,i=diag(~i, P~,...J+&,

/_Q = 214.827, p2 = 57.4368, pX = 48.5554, /J‘, = 35.0624,

E”~ = 27.3633, pLs = 21.8722, /Jo = 17.7489,

p, = 1 .O + 15.6624 * (j - 8)/892, j = 8, 9,. . . ,900.

This spectrum has been modelled roughly on a spectrum that has been encountered in an
application of the MICCG method. For this spectrum the orthogonality among the rj vectors is
lost very soon (after 15 iteration steps, say), long before A,,x = b has been solved with a

reasonable accuracy.

Example 1. AIi = b and A,x = 6 are solved simultaneously, using the relations (3.1), (3.3) and
(3.4). b= (1, 1, l,..., l)= and in order to demonstrate the instability of (3.3), d has been chosen
equal to b. The results are given in Table 1.

Example 2. Now A,,x = b and <,,x = 6 are solved, using (3.3a) instead of (3.3). Again we have
chosen b = (1, 1, 1,. _ _ , l)= and b = b. Though the type of spectrum of A,, leads to an early loss
of orthogonality among the r, vectors, we do not observe the instability in the solution of the
second system as observed in Example 1. The results in Table 2 illustrate the superiority of (3.3a)
over (3.3).

Example 3. Now we give an example of two s.stems with right-hand sides that are not very
similar. A,x = b, b= (1, 1,. .., I)= and A,x = b, (b)k = (l/k). The relations (3.1), (3.3a) and

(3.4) are used. For the results see Table 3.

H.A. van der Vorst / Solving matrix equations 261

Table 1
Example 1

i II AIX, - b II 2 IIA& -q

0 30.0 30.0
5 1.326 1.326

10 0.3988 0.3988
20 0.1636 lop2 0.1636 1O-2
30 0.7286 10 -6 0.7286 10C6

40 0.1464 1O-9 0.1588 lo+
47 0.3371 lo-l2 0.4080 1O-4

Note: the orthogonality among the ‘J’S is significantly lost around i = 35.

Table 2
Example 2

i II AIIX, - b II 2 IIA,,% - ill2

0 30.0
10 1.759
20 0.1922 10-l
30 0.4110 1o-3
40 0.8440 lo-’
50 0.1617 1O-6
60 0.2765 lo-’
70 0.6080 lo-r0

30.0
1.759
0.1922 10-r
0.4110 10-s
0.8440 1O-5
0.1617 1O-6
0.2765 lo-’
0.6079 10 - lo

Table 3
Example 3

0 30.0 1.28

5 1.33 1.59
10 0.399 0.576
15 0.421 10-l 0.201
20 0.164 1O-2 0.120

30 0.729 1O-6 0.555 10-t

Note: Obviously the vector 6 is not very well contained in the Krylov space K’(A; b), for i f 30.

Table 4
Example 4

i I(A:% - b II2 11 Ah - blj2 i][A:% - b II2 I\A:x, - bl12

0 0.21 lo2 0.21 lo2 40 0.16 lo-’ 0.28 1O-2

5 0.34 0.75 45 0.22 lo-‘0 0.29 1O-2

10 0.18 0.15 50 0.36 lo-*

15 0.49 10-I 0.34 10-l 60 0.10 1o-2

20 0.27 1O-2 0.16 10-l 70 0.49 1o-4
25 0.20 10-s 0.97 10-2 80 0.18 1O-5

30 0.53 10-s 0.63 lop2 100 0.21 10-s

35 0.99 10-7 0.45 10-l 115 0.13 lo-lo

Note: For this situation we have that c = 35.3 (cf. (4.13)).

262 H.A. van der Vorst / Solving matrix equations

Table 5
Example 5

i IIA:IK - bllz i IIA:I% - b 112

0 4.65 lo4 35 2.02 lo-*
5 1.16 lo3 40 4.89 1O-3

10 8.98 10’ 45 6.22 1O-4
15 1.51 10’ 50 8.85 10-s
20 5.78 55 2.12 1o-5
25 5.59 10-l 60 7.33 1o-6
30 1.03 10-l 65 2.94 lo-’

Note: Also about 60 iteration steps are required to reduce 11 Ay, - b 11 2 by a factor lo-“.

Table 6
Example 6

i IIf(- bll2

30 1.13 10-b
40 2.21 1o-9
50 1.44 lo-”

Note: We could not obtain a smaller residual norm by carrying out more Lanczos steps.

Example 4. For the equation Atx = b, (b)k = Xi (hence (x)~ = l), the residual norms for 2; and
xi (see Section 4) are listed in Table 4.

Example 5. The equation Afrx = b, (b)k = Ai (hence (x)~ = l), is solved with the algorithm given
in Section 4. The results are given in Table 5.

Example 6. f(A,)x=b, b such that (~)~=l, k=l,... ,900, and f(A) = (A - 0.51)2 + 0.11.
The iterands xi have been computed via (5.8). We have used Paige’s stable Lanczos algorithm [4],
with starting vector b, in order to generate the Krylov space. For the results see Table 6.

Example 7. Finally we solve f(A,)x = b, b such that (x)~ = 1, k = 1,. . . ,900, and f(A) = eA.
Since Ar’s eigenvalues are all relatively small, (they are in the range [0.034, 1.2), the right-hand
side b is rather close to the solution x = (1, . . . , l)T. This may explain that after 20 Lanczos steps
we found that]I f(Ar)Z,, - b 11 2 = 8.66 10-12, and this was as accurate as we could get using this
algorithm in our working precision of 48 bits.

Acknowledgements

I would like to thank the Royal Dutch Meteorological Institute, KNMI, for their kind
permission to carry out the numerical experiments with their computational facilities. Specially I
am grateful for the help offered by mr. H. Hendriks and mr. T. van Dijk, both at KNMI.

H.A. van der Vorst / Solving matrix equations 263

References

[l] G.H. Golub and CF. Van Loan, Matrix Computations (North Oxford Academic Press, Oxford, 1983).
[2] M.R. Hesteness and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand.

49 (1952) 409-436.
(31 C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph.D. Thesis,

University of London, 1971.
[4] C.C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Applies. 10 (1972)

373-381.
[5] C.C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math.

Applies. 18 (1976) 341-349.
[6] B.N. Parlett, The Symmetric Eigenvahe Problem (Prentice Hall, Englewood Cliffs, 1980).
[7] B.N. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear equations, Lin. Alg.

Appl. 29 (1980) 323-346.
[8] B.N. Parlett and D.S. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comp. 33 (1979)

217-238.

[9] A. Ruhe, Numerical aspects of the Gram-Schmidt orthogonalization of vectors, Lin. Alg. Appl. 52/53 (1983)
591-601.

[lo] Y. Saad, On the rate of convergence of the Lanczos and block Lanczos methods, SIAM J. Num. Anal. 17 (1980)
687-706.

[ll] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right-hand sides, Techn.
Report YALEU/DCS/RR-396, Yale University, New Haven, June 1985.

[12] A. van der Sluis and H.A. van der Vorst, The rate of convergence of conjugate gradients, Numer. Math. 48 (1986)
543-560.

