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1. Introduction

Let n be a positive integer, and let Sn denote the symmetric group on n letters. For any field F,
the Specht modules form an important family of modules for FSn . If F has characteristic zero, then
the Specht modules are precisely the irreducible modules for FSn . If F has positive characteristic, the
simple FSn-modules arise as quotients of certain Specht modules. In addition, the Specht modules
arise as the ‘cell modules’ for Murphy’s cellular basis of FSn .

A great deal of effort is devoted to determining the structure of Specht modules; in particular, find-
ing the composition factors of Specht modules and the dimensions of the spaces of homomorphisms
between Specht modules. In this paper, we consider the question of which Specht modules are de-
composable. It is known that in odd characteristic the Specht modules are all indecomposable, so
we can concentrate on the case where char(F) = 2. In fact, since any field is a splitting field for Sn ,
we can assume that F = F2. In this case, there are decomposable Specht modules, but remarkably
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few examples are known. Murphy [M1] analysed the Specht modules labelled by ‘hook partitions’,
i.e. partitions of the form (a,1b), computing the endomorphism ring of every such Specht module
(and thereby determining which ones are decomposable). However, in the last thirty years no more
progress seems to have been made.

Our main result is the discovery of a new family of decomposable Specht modules, the first exam-
ples of which were discovered by the two authors independently using computations with GAP and
MAGMA. These new decomposable Specht modules are labelled by partitions of the form (a,3,1b),
where a,b are even. So in this paper we make a case study of partitions of this form; we are unable
to apply Murphy’s method to determine exactly which of these Specht modules are decomposable,
but by considering homomorphisms between Specht modules, we are able to show which irreducible
Specht modules arise as summands of these Specht modules. We then apply this result to determine
which of our Specht modules have a summand isomorphic to an irreducible Specht module.

We now briefly indicate the layout of this paper. In the next section, we recall some basic def-
initions and results in the representation theory of the symmetric group, which enable us to state
our main results in Section 3. In Section 4 we go into more detail on homomorphisms between
Specht modules. In Sections 5 and 6 we consider the two classes of irreducible Specht modules
which can occur as summands of our decomposable Specht modules. We then apply these results
in Section 7 to complete the proof of our main results. Finally, we make some concluding remarks in
Section 8.

2. Background results

In this section, we summarise some basic results on the representation theory of the symmetric
group. For brevity, we specialise some results to characteristic 2, referring the reader to the literature
for general results.

We begin by fixing a field F; all our modules will be modules for the group algebra FSn . We
assume familiarity with James’s book [J2]; in particular, we refer the reader there for the definitions
of partitions, the dominance order, the permutation modules Mλ , the Specht modules Sλ and the
simple modules Dλ . We shall also briefly use the Nakayama Conjecture [J2, Theorem 21.11] which
describes the block structure of the symmetric group.

We also need the following two results; recall that if λ is a partition then λ′ denotes the conjugate
partition.

Lemma 2.1. Suppose char(F) = 2 and λ is a partition such that Sλ is irreducible. Then Sλ ∼= Sλ′
.

Proof. By [J2, Theorem 8.15] we have Sλ ∼= (Sλ′
)∗ , since the sign representation is trivial in character-

istic 2. But by [J2, Theorem 11.5], all simple modules for the symmetric group are self-dual. �
Lemma 2.2. If λ,μ are partitions of n, then

dimF HomFSn

(
Sλ, Sμ

) = dimF HomFSn

(
Sμ′

, Sλ′)
.

Proof. This also follows from [J2, Theorem 8.15]. �
2.1. Regularisation

We recall here a useful lemma which we shall use later; this is due to James, although it does not
appear in the book [J2]. We concentrate on the special case where F has characteristic 2, referring
to [J1] for the full result.

For any l � 1, the lth ladder in N
2 is

Ll = {
(i, j)

∣∣ i + j = l + 1
}
.
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If λ is a partition, the 2-regularisation of λ is the partition λreg whose Young diagram is obtained by
moving the nodes in [λ] as high as possible within their ladders. For example, (8,3,16)reg = (8,7,2),
as we see from the following Young diagrams, in which nodes are labelled according to the ladders
in which they lie.

.

It is a simple exercise to show that λreg is a 2-regular partition, and we have the following result.

Theorem 2.3. (See [J1, Theorem A].) Suppose λ and μ are partitions of n, with μ 2-regular. Then
[Sλ : Dλreg ] = 1, while [Sλ : Dμ] = 0 if μ � λreg .

In this paper we shall be concerned with the Specht modules labelled by partitions of the form
(a,3,1b); so we compute the regularisations of these partitions.

Lemma 2.4. Suppose a � 4 and b � 2. Then

(
a,3,1b)reg =

{
(a,b + 1,2) (a > b),

(b + 2,a − 1,2) (a � b).

2.2. Irreducible Specht modules

It will be very helpful to know the classification of irreducible Specht modules, which (in charac-
teristic 2) was discovered by James and Mathas [JM2]. If k is a non-negative integer we let l(k) denote
the smallest positive integer such that 2l(k) > k.

Theorem 2.5. (See [JM2, Main Theorem].) Suppose μ is a partition of n and char(F) = 2. Then Sμ is irreducible
if and only if one of the following occurs:

• μi − μi+1 ≡ −1 (mod 2l(μi+1−μi+2)) for each i � 1;
• μ′

i − μ′
i+1 ≡ −1 (mod 2l(μ′

i+1−μ′
i+2)) for each i � 1;

• μ = (22).

Note that μ satisfies the first condition in the theorem if and only if μ′ satisfies the second. In
view of Lemma 2.1 (and since we shall only be considering values of n greater than 4) we may
assume that any irreducible Specht module is of the form Sμ where μ satisfies the first condition in
the theorem.

3. The main results

In this section, we describe the new family of decomposable Specht modules discussed in this
paper, and the method we use to prove decomposability. For the rest of this paper, we assume that F has
characteristic 2.

Computer calculations show that the first few decomposable Specht modules which are not la-
belled by hook partitions have labelling partitions of the form (a,3,1b) (and their conjugates) with



238 C.J. Dodge, M. Fayers / Journal of Algebra 357 (2012) 235–262
a,b even positive integers. So in this paper we make a case study of this family of partitions. Our
technique is different from that of Murphy [M1], and is weaker in the sense that we cannot always
when tell for certain whether one of our Specht modules is decomposable. However, in the cases
where we can show decomposability, we have the advantage of being able to describe one summand
explicitly.

More specifically, our main result is a determination of exactly which irreducible Specht modules
occur as summands of the Specht modules S(a,3,1b) . The technique we use is to consider homomor-
phisms between Specht modules, and the set-up for computing such homomorphisms is described in
Section 4.

We use homomorphisms between Specht modules in the following way. Suppose λ,μ are parti-
tions of n. Then it is a straightforward result that Sμ occurs as a summand of Sλ if and only if there
are homomorphisms γ : Sμ → Sλ and δ : Sλ → Sμ such that δ ◦γ is the identity on Sμ . If we assume
in addition that Sμ is irreducible, then by Schur’s Lemma we just need to show that δ ◦γ is non-zero.

Some effort has been devoted to computing the space of homomorphisms between two Specht
modules, beginning with the paper of the second author and Martin [FM]. In fact, there is now an ex-
plicit algorithm which computes the homomorphism space HomFSn (Sλ, Sμ) except when char(F) = 2
and λ is 2-singular. Even in this exceptional case, this technique can be used to construct some ho-
momorphisms between Sλ and Sμ , though only if λ dominates μ.

In our situation, the partitions μ we shall consider are always 2-regular, because (as long as n �= 4)
every irreducible Specht module in characteristic 2 has the form Sμ for μ 2-regular. So we are able
to compute the space HomFSn (Sμ, Sλ). Computing the space HomFSn (Sλ, Sμ) is harder, because λ

is 2-singular, so we fall foul of the exception above. To circumvent this, we use Lemma 2.1, which
allows us to take δ to be an element of HomFSn (Sλ, Sμ′

). By Lemma 2.2 this has the same dimension
as HomFSn (Sμ, Sλ′

), which we can compute because μ is 2-regular. Having established the dimen-
sion of this space, we can construct all possible homomorphisms δ, and then check the condition
δ ◦ γ �= 0.

In this way, we can find all summands of Sλ which are isomorphic to irreducible Specht mod-
ules Sμ . In fact, we can restrict attention to a small set of candidate Specht modules Sμ , as fol-
lows. Assuming Sμ is irreducible and μ is 2-regular, Sμ is isomorphic to the simple module Dμ;
therefore in order for Sμ to appear as a summand of Sλ , the decomposition number [Sλ : Dμ]
must be non-zero. Therefore by Theorem 2.3, μ must dominate λreg, and by Lemma 2.4 this has
the form (x, y,2) for some x, y. So we may assume that μ has the form (u, v, w) for some
u > v > w � 2. Furthermore, Sμ and Sλ must lie in the same block of FSn . Using the Nakayama
Conjecture, this means that u, w must be even, while v is odd. So we can restrict attention to
μ of the form (u, v) or (u, v,2) where u is even (and hence v is odd). We apply the technique
described above to these two types of partition in Sections 5 and 6. Our main result is the follow-
ing.

Theorem 3.1. Suppose λ = (a,3,1b) is a partition of n, where a,b are positive even integers with
a � 4, and suppose μ is a partition of n such that Sμ is irreducible. Then Sλ has a direct summand
isomorphic to Sμ if and only if one of the following occurs.

1. μ or μ′ equals (u, v), where v ≡ 3 (mod 4) and
(

u−v
a−v

)
is odd.

2. μ or μ′ equals (u, v,2), where
(

u−v
a−v

)
is odd.

Using this result, we can show that most of the Specht modules under consideration are decom-
posable. Specifically, we have the following result.
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Corollary 3.2. Suppose a,b are positive even integers with a � 4, and let λ = (a,3,1b). Then Sλ has
a summand isomorphic to an irreducible Specht module if and only if at least one of the following
occurs:

• a + b ≡ 0 or 2 (mod 8), a � 6 and b � 4;

• a + b ≡ 2 (mod 4) and
(

a+b−3
a−3

)
is odd;

• a + b ≡ 0 (mod 4) and
(

a+b−9
a−5

)
is odd.

4. Computing the space of homomorphisms between two Specht modules

In this section, we explain the set-up for computing the space of homomorphisms between two
Specht modules. We begin with a revision of some material from [J2], before citing some results of
the second author and Martin.

4.1. Homomorphisms from Specht modules to permutation modules

Suppose μ and λ are partitions of n. Since Sλ � Mλ , any homomorphism from Sμ to Sλ can
be regarded as a homomorphism from Sμ to Mλ . This is very useful, because if μ is 2-regular (or if
char(F) �= 2), then the space HomFSn (Sμ, Mλ) can be described explicitly. Furthermore, using the Ker-
nel Intersection Theorem below, one can check whether the image of a homomorphism θ : Sμ → Mλ

lies in Sλ .
We now make some more precise definitions. We take λ,μ as above, but we now allow λ to be

any composition of n, not necessarily a partition. A μ-tableau of type λ is a function T from the Young
diagram [μ] to N with the property that for each i ∈ N there are exactly λi nodes of [μ] mapped to
i. Such a tableau is usually represented by drawing [λ] with a box for each node n, filled with the
integer T (n). T is row-standard if the entries in this diagram are weakly increasing along the rows,
and is semistandard if the entries are weakly increasing along the rows and strictly increasing down
the columns.

We write Tr(μ,λ) for the set of row-standard μ-tableaux of type λ, and T0(μ,λ) for the
set of semistandard μ-tableaux of type λ. For each T ∈ Tr(μ,λ), James defines a homomorphism
ΘT : Mμ → Mλ (over any field), whose precise definition we do not need here. The restriction of ΘT
to Sμ is denoted Θ̂T . Now we have the following.

Theorem 4.1. (See [J2, Lemma 13.11 and Theorem 13.13].) The set

{
Θ̂T

∣∣ T ∈ T0(μ,λ)
}

is linearly independent, and spans HomFSn (Sμ, Mλ) if μ is 2-regular.

4.2. The Kernel Intersection Theorem

Now return to the assumption that λ is a partition. As a consequence of Theorem 4.1, in order
to compute HomFSn (Sμ, Sλ) when μ is 2-regular, we just need to find all linear combinations θ of
the homomorphisms Θ̂T for T ∈ T0(μ,λ) for which the image of θ lies in Sλ . Even when μ is not
2-regular, homomorphisms from Sμ to Sλ can very often be expressed in this way.

In order to determine whether the image of such a homomorphism θ lies in Sλ , we use another
theorem of James which provides an alternative definition of Sλ . For any pair (d, t) with d � 1 and 1 �
t � λd+1, there is a homomorphism ψd,t : Mλ → Mν , where ν is a composition depending on λ,d, t .
Again, we refer the reader to [J2, §17] for the definition; we warn the reader that the homomorphism
ψd,t is called ψd,λd+1−t in [J2]. The importance of the homomorphisms ψd,t is in the following.
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Theorem 4.2 (The Kernel Intersection Theorem). (See [J2, Corollary 17.18].) Suppose λ is a partition of n. Then

Sλ =
⋂
d�1

1�t�λd+1

ker(ψd,t).

This provides a clear strategy for computing HomFSn (Sμ, Sλ): find all linear combinations θ of
the homomorphisms Θ̂T such that ψd,t ◦ θ = 0 for every d, t . Fortunately, it is known how to compute
the composition ψd,t ◦ Θ̂T when T ∈ Tr(μ,λ). For our next few results, we need to introduce some
more notation. For any multiset A of positive integers, let Ai denote the number of is in A. If A, B
are multisets, we write A 
 B for the multiset with (A 
 B)i = Ai + Bi for all i. Given a row-standard
tableau T , we write T j for the multiset of entries in row j of T .

Lemma 4.3. (See [FM, Lemma 5].) Suppose λ,μ are partitions of n, T ∈ Tr(μ,λ), d ∈N and 1 � t � λd+1 . Let
S be the set of all row-standard tableaux which can be obtained from T by replacing t of the entries equal to
d + 1 in T with ds. Then

ψd,t ◦ ΘT =
∑
S∈S

∏
j�1

(
S j

d

T j
d

)
ΘS .

The slight difficulty with using this lemma to compute homomorphism spaces is that the tableaux
S in the lemma are not always semistandard; so it can be difficult to tell whether a particular linear
combination is zero when restricted to Sμ . To circumvent this, we recall another lemma from [FM]
which gives certain linear relations between the homomorphisms Θ̂T , and often enables us to write
a homomorphism Θ̂T in terms of semistandard homomorphisms.

Lemma 4.4. (See [FM, Lemma 7].) Suppose μ is a partition of n and λ a composition of n, and i, j,k are positive
integers with j �= k and μ j � μk. Suppose T ∈ Tr(μ,λ), and let S be the set of all S ∈ Tr(μ,λ) such that:

• S j
i = T j

i + T k
i ;

• S j
l � T j

l for every l �= i;
• Sl = T l for all l �= j,k.

Then

Θ̂T = (−1)T k
i

∑
S∈S

∏
l�1

(
Sk

l

T k
l

)
Θ̂S .

Informally, a tableau in S is a tableau obtained from T by moving all the is from row k to row j,
and moving some multiset of entries different from i from row j to row k.

One very simple case of Lemma 4.4 which we shall apply frequently is the following: if T ∈
Tr(μ,λ) and for some i, j,k we have T j

i + T k
i > max{μ j,μk}, then Θ̂T = 0.

Lemma 4.4 turns out to be very useful for expressing a tableau homomorphism in terms of semi-
standard homomorphisms. However, we shall occasionally need to use the following alternative.

Lemma 4.5. Suppose λ and μ are partitions of n, and T is a row-standard λ-tableau of type μ. Suppose i � 1,
and A, B, C are multisets of positive integers such that |B| > λi and A 
 B 
 C = T i + T i+1 . Let B be the set
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of all pairs (D, E) of multisets such that |D| = λi − |A| and B = D 
 E. For each such pair (D, E), define T D,E

to be the row-standard tableau with

T j
D,E =

⎧⎨
⎩

A 
 D ( j = i),

C 
 E ( j = i + 1),

T j (otherwise).

Then

∑
(D,E)∈B

∏
i�1

(
Ai + Di

Di

)(
Ci + Ei

Ei

)
Θ̂T D,E = 0.

This lemma appears in the second author’s forthcoming paper [F] where it is proved in the wider
context of Iwahori–Hecke algebras; however, a considerably easier proof exists in the symmetric group
case. In [F], Lemma 4.5 is used to provide an explicit fast algorithm for writing a tableau homomor-
phism as a linear combination of semistandard homomorphisms.

We now give another result which will help us in showing that a linear combination of row-
standard homomorphisms is non-zero without having to go through the full process of expressing
it as a linear combination of semistandard homomorphisms. This concerns the dominance order on
tableaux.

Suppose μ is a partition, and S, T are row-standard μ-tableaux of the same type. We say that S
dominates T , and write S � T , if it is possible to get from S to T by repeatedly swapping an entry of
S with a larger entry in a lower row (and re-ordering with each row). We warn the reader that this is
not quite the same as the dominance order described in [J2, 13.8]. For example, the dominance order
on Tr((3,2), (22,1)) is given by the following Hasse diagram.

.

Now we have the following lemma.

Lemma 4.6. Suppose μ is a partition of n and λ a composition of n, and T ∈ Tr(μ,λ). If we write

Θ̂T =
∑

S∈T0(μ,λ)

aSΘ̂S ,

then aS �= 0 only if S � T .

Proof. For this proof, we adopt the set-up of [J2, §13]. If we fix a μ-tableau t (of type (1n)), then
t determines a natural bijection between the set of λ-tabloids and the set of μ-tableaux of type λ.
We identify tabloids with tableaux according to this bijection. We also let et denote the polytabloid
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indexed by t , which generates Sμ . Given λ-tableaux U , V , we write U
row←→ V if V can be obtained

from U by permuting entries within rows, and we define U
column←→ V similarly. Now given U ∈ Tr(μ,λ),

we have

Θ̂U (et) =
∑

(V ,W )

W ,

where we sum over all pairs (V , W ) of λ-tableaux such that U
row←→ V

column←→ W and V has distinct
entries in each column. (In general there are also signs determined by the column permutations, but
in characteristic 2 we can neglect these.)

Now if S is a semistandard tableau with U
row←→ V

column←→ S for some V , then (since the entries
in each column of S are increasing) we must have S � U . On the other hand, if U is semistandard,

then the only tableau V such that U
row←→ V

column←→ U is U itself. Hence for any semistandard U , the
coefficient of U in Θ̂U (et) is 1.

Now suppose S0 ∈ T0(μ,λ) is such that aS0 �= 0 and S0 is minimal (with respect to �) with this
property. Then the coefficient of S0 in

Θ̂T (et) =
∑

S∈T0(μ,λ)

aSΘ̂S(et)

is aS0 . So the coefficient of S0 in Θ̂T (et) is non-zero, and hence S0 � T . Any S ∈ T0(μ,λ) for which
aS �= 0 dominates some such minimal tableau S0, and so dominates T . �

Using the results in this section, it will be possible to compute HomFSn (Sμ, Sλ) in the cases of in-
terest to us. We remark that it is often easier to express such homomorphisms as linear combinations
of non-semistandard homomorphisms; in particular, the conditions ψd,t ◦θ = 0 can be easier to check.
Of course, when doing this we have to be careful to show that the homomorphisms we construct are
non-zero.

4.3. Composition of tableau homomorphisms

It will also be important in this paper to compute compositions of homomorphisms between
Specht modules. It is well understood how to compose two tableau homomorphisms; indeed, com-
puting this composition is the same as computing the structure constants for the Schur algebra. We
give this result, of which Lemma 4.3 is a special case. This result is easy to prove and well known
(indeed, ‘quantised’ versions appear in the literature) but it does not seem to appear explicitly. How-
ever, translating to the language of the Schur algebra (where ΘT corresponds to a basis element ξi, j )
it amounts to the Multiplication rule (2.3b) in Green’s monograph [G].

Recall that if S is a tableau, then S j denotes the multiset of entries in row j of S , and in particular
S j

i denotes the number of entries equal to i in row j of S . If x1, x2, . . . are non-negative integers with

finite sum x, we write
(

x
x1,x2,...

)
for the corresponding multinomial coefficient.

Proposition 4.7. Suppose λ,μ,ν are compositions of n, S is a λ-tableau of type μ and T is a μ-tableau of
type ν . Let X be the set of all collections X = (Xij)i, j�1 of multisets such that

∣∣Xij
∣∣ = S j

i for each i, j,
⊔
j�1

Xij = T i for each i.
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For X ∈X , let U X denote the row-standard λ-tableau with (U X ) j = ⊔
i�1 Xij . Then

ΘT ◦ ΘS =
∑
X∈X

∏
i, j�1

(
X1 j

i + X2 j
i + X3 j

i + · · ·
X1 j

i , X2 j
i , X3 j

i , . . .

)
ΘU X .

5. Irreducible summands of the form S (u,v)

In this section, we find all cases where one of our Specht modules S(a,3,1b) has a summand isomor-
phic to an irreducible Specht module of the form S(u,v) , where u is even and v is odd. Throughout,
we continue to assume that a,b are positive even integers with a � 4, and we let n = a + b + 3.
By Theorem 2.3 and Lemma 2.4, D(u,v) cannot appear as a composition factor of S(a,3,1b) unless
(u, v) � (a,3,1b)reg, which is the partition (max{a,b + 2},min{a − 1,b + 1},2). So we may assume
that this is the case, which is the same as saying v � min{a + 1,b + 3}. For easy reference, we set out
notation and assumptions for this section.

Assumptions and notation in force throughout Section 5:
λ = (a,3,1b) and μ = (u, v), where a,b, u, v are positive integers with a,b, u even,
a � 4, u > v , n = a + b + 3 = u + v and v � min{a + 1,b + 3}.

5.1. Homomorphisms from Sλ to Sμ′

In this subsection we consider FSn-homomorphisms from Sλ to Sμ′
. We begin by constructing

such a homomorphism in the case where 3 � v � a − 1.
Let U be the set of λ-tableaux having the form

in which the 
s represent the numbers from 2 to u, and in which

• the entries along each row are strictly increasing,
• the entries down each column are weakly increasing.

Now define

σ =
∑
T ∈U

Θ̂T .

Proposition 5.1. With the assumptions and notation above, we have ψd,t ◦ σ = 0 for each d, t.

Proof. First take v < d � u and t = 1. If T ∈ U , then T contains a single d and a single d + 1.
If these occur in the same row or the same column of T , then ψd,1 ◦ Θ̂T = 0 by Lemma 4.3 and
Lemma 4.4. Otherwise, there is another tableau T ′ ∈ U obtained by interchanging the d and the d + 1.
By Lemma 4.3 we have ψd,1 ◦ (Θ̂T + Θ̂T ′) = 0. Hence by summing ψd,1 ◦ Θ̂T over all T ∈ U , we get
zero. A similar argument applies in the case d = v .
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If 1 � d < v and t = 2, then we have ψd,t ◦ Θ̂T = 0 for each T ∈ U just using Lemma 4.3. Now
take 2 � d < v and t = 1, and consider a tableau T ∈ U . There are a single d and a single d + 1 below
row 1. If these lie in the same row or column, then ψd,1 ◦ Θ̂T = 0. Otherwise, let T ′ be the tableau
obtained by interchanging the d and the d + 1 below row 1. Then ψd,1 ◦ (Θ̂T + Θ̂T ′), and we are done.

We are left with the case d = t = 1. Applying Lemma 4.3, we find that ψ1,1 ◦ θ is the sum of
homomorphisms labelled by tableaux

in which the 
s now represent the numbers from 3 to u, and where the entries are strictly increasing
along rows and weakly increasing down columns. Now we apply Lemma 4.4 to each of these homo-
morphisms to move the 1 from row 3 to row 2, and then to reorder rows 3, . . . ,b + 2. We obtain a
sum of tableaux of the form

but each tableau occurs b times in this way. Since b is even, we have zero. �
Now we need to check that σ �= 0, which is not obvious because the tableaux involved are not

semistandard.

Proposition 5.2. With the notation above, σ �= 0.

Proof. We’ll use Lemma 4.6. Consider the semistandard tableau

.

We’ll show that when σ is expressed as a linear combination of semistandard homomorphisms,
Θ̂S occurs with non-zero coefficient, and hence σ �= 0. Consider expressing Θ̂T as a linear combina-
tion of semistandard homomorphisms, for T ∈ U . By Lemma 4.6, Θ̂S can only occur if S � T ; so we
can ignore all T ∈ U for which S � T . Since the a − v largest entries in S (namely b +4, . . . , u) appear
in the first row, they must also appear in the first row of T if S � T . Hence we can concentrate only
on those T ∈ U whose first row is
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Furthermore, the next largest entry in S , namely b + 3, occurs in row 2 (or in rows 1 and 2, if
v = b + 3). So if T ∈ U and S � T , then T must also have b + 3 in its second row. So we can ignore
all T ∈ U except those of the form

for 2 � i � b + 2; the ı̂ in the first column indicates that i does not appear in this column.
Consider applying Lemma 4.4 to T [i], to move the 1 from row 2 to row 1. Of the tableaux obtained

in this way, the only one dominated by S is the tableau

(For any other tableau U appearing in Lemma 4.4, the sum of the entries in the first row of U is
less than the sum of the entries in the first row of S , which certainly implies S � U .) So σ equals∑b+2

i=2 Θ̂T ′[i] plus a combination of homomorphisms indexed by tableaux not dominated by S .
In the case i = 2 we have T ′[i] = S . For i � 3 we apply Lemma 4.4 again, and we find that Θ̂T ′[i] =

Θ̂T ′′[i] + Θ̂T ′′′[i] , where

We have S � T ′′′[i], while another i − 3 applications of Lemma 4.4 give Θ̂T ′′[i] = Θ̂S . So, modulo

homomorphisms Θ̂U with S � U , Θ̂T ′[i] equals Θ̂S . Hence the coefficient of Θ̂S in σ is b + 1, which
is non-zero since b is even. �

It turns out that up to scaling, σ is the only homomorphism from Sλ to Sμ .
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Proposition 5.3. With λ,μ as above,

dimF HomFSn

(
Sλ, Sμ′) =

{
0 (v = 1 or v = a + 1),

1 (3 � v � a − 1).

Proof. The construction of the homomorphism σ above shows that the dimension of the homomor-
phism space is at least that claimed. So we just have to show the reverse inequality. By Lemma 2.2,
we have

dimF HomFSn

(
Sλ, Sμ′) = dimF HomFSn

(
Sμ, Sλ′)

,

and we can use the technique outlined in Section 4 to compute the right-hand side, since μ is 2-
regular. So suppose θ is a linear combination of semistandard homomorphisms Θ̂T : Sμ → Mλ′

such
that ψd,t ◦ θ = 0 for all d, t .

To begin with, we consider ψ2,1 ◦ Θ̂T for each T . Using Lemma 4.3, this equals zero if T has a 2
in each row, because the homomorphisms occurring in Lemma 4.3 each appear with a coefficient

(2
1

)
,

which is zero in F. Otherwise, ψ2,1 ◦ Θ̂T is either a single semistandard homomorphism or a sum of
two semistandard homomorphisms. Moreover, the semistandard tableaux that occur for the various
T are distinct. Hence in order to have ψ2,1 ◦ θ = 0, θ can only involve semistandard homomorphisms
Θ̂T for those T having a 2 in each row. In particular, θ = 0 when v = a + 1, since in this case there is
only one semistandard tableau, whose first row consists entirely of 1s.

Now we consider ψ2,2 ◦ Θ̂T for each of these T . If T has a 2 and a 3 in each row, we get
ψ2,2 ◦ Θ̂T = 0, while if T has a 2 in each row and two 3s in the same row, ψ2,2 ◦ Θ̂T is a semistandard
homomorphism. Again, all the semistandards that occur in this way are different, so θ cannot involve
any tableaux of the latter type. In particular, if v = 1 then θ = 0.

Next consider ψd,1 ◦ Θ̂T where 4 � d < a and T is a semistandard tableau having a 2 and a 3
in each row. T contains a single d and a single d + 1. If these both lie in the same row of T , then
ψd,1 ◦ Θ̂T = 0. Otherwise, ψd,1 ◦ Θ̂T is a semistandard homomorphism Θ̂T ′ . If U is another semis-
tandard tableau and ψd,1 ◦ Θ̂U is a semistandard homomorphism Θ̂U ′ , then T ′ = U ′ if and only if
U is obtained from T by interchanging d and d + 1; hence any two such tableaux must occur in θ

with equal coefficients. Applying this for all d � 4 and all T , we find that θ must be a scalar multiple
of the sum of all semistandard homomorphisms Θ̂T for T having a 2 and a 3 in each row. Hence
dimF HomFSn (Sμ, Sλ) � 1, and we are done. �
Example. We provide an example to illustrate the above proof for the benefit of the reader who may
not be familiar with this technique. We take (a,b, u, v) = (4,6,8,5). (In fact, the Specht module S(8,5)

is reducible, so is ultimately irrelevant to our main theorem, but it serves well for this example.)
We suppose we have a linear combination θ of semistandard homomorphisms such that ψd,t ◦ θ =

0 for all d, t . For this example, we abuse notation by identifying a tableau with the corresponding
homomorphism. The first step of the proof is to eliminate most of the possible semistandard homo-
morphisms by taking d = 2, t = 1. For example, Lemma 4.3 gives

and no other semistandard tableau can give the semistandard tableau on the right in this way with
non-zero coefficient; note that the tableau
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does give this tableau, but with a coefficient of
(2

1

) = 0. So since ψ2,1 ◦ θ = 0, our initial tableau
cannot possibly occur in θ . Arguing in this way, one finds that the only semistandard tableaux which
can occur in θ are those with a 2 in each row, i.e. those of the form

Now the first and last of these three types can be ruled out using the same argument with ψ2,2. So θ

can only involve tableaux with a 2 and a 3 in each row; call these usable tableaux. Now we consider
ψd,1 ◦ θ for d � 4. Now for each usable tableau T , ψd,1 ◦ Θ̂T is either zero (if d and d + 1 occur in the
same row in T ) or a semistandard homomorphism. Furthermore, these semistandard homomorphisms
‘pair up’; for example, with d = 4 we have

Since the semistandard tableau on the right can only arise in this way from the two semistandard
tableaux on the left, these two semistandard homomorphisms must occur with equal coefficients
in θ . Now we observe that we can get from any usable tableau to any other by a sequence of steps
in which we interchange the integers d,d + 1 for various values of d � 4. So if we apply the above
argument for all d � 4, we see that all usable tableaux occur with the same coefficient in θ .

5.2. Homomorphisms from Sμ to Sλ

Now we consider homomorphisms from Sμ to Sλ , where λ,μ are as above. In view of Propo-
sition 5.3, we assume for the rest of this section that 3 � v � a − 1. It turns out that all such homo-
morphisms can be expressed as linear combinations of Θ̂A and Θ̂B , where A, B are the following
μ-tableaux of type λ:

Note that our assumptions on the parameters a,b, u, v mean that these tableaux really do exist, i.e.
there are enough 1s to fill the bottom row.

Lemma 5.4. Θ̂A and Θ̂B are non-zero, and are linearly independent if v � b + 1.

Proof. It is straightforward to express Θ̂A and Θ̂B as linear combinations of semistandard homo-
morphisms using a single application of Lemma 4.4; in each case we get at least one semistandard
appearing, so the homomorphisms are non-zero. If in addition v � b + 1, then in the expression for
Θ̂A there is at least one semistandard tableau with two 2s in the first row; there is no such tableau
appearing in the expression for Θ̂B , so Θ̂A, Θ̂B are linearly independent. �
Proposition 5.5.

• If a − v ≡ 3 (mod 4) or v = b + 3, then ψd,t ◦ Θ̂A = 0 for all admissible d, t.
• If v ≡ 1 (mod 4), then ψd,t ◦ Θ̂B = 0 for all admissible d, t.
• If a ≡ 0 (mod 4), then ψd,t ◦ (Θ̂A + Θ̂B) = 0 for all admissible d, t.
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Proof. Lemma 4.3 immediately gives ψd,1 ◦ Θ̂A = ψd,1 ◦ Θ̂B = 0 for d � 2. Using the fact that A, B
each have an odd number of 1s in each row, we also get

ψ1,t ◦ Θ̂A = ψ1,t ◦ Θ̂B = 0

for t = 1,3. Finally, we have ψ1,2 ◦ Θ̂B = 0 if v ≡ 1 (mod 4), and ψ1,2 ◦ Θ̂A = 0 if a − v ≡ 3 (mod 4)

or v = b + 3 (where we apply Lemma 4.4 in the latter case), and ψ1,2 ◦ Θ̂A = ψ1,2 ◦ Θ̂B if a ≡ 0
(mod 4). �
Proposition 5.6.

dimF HomFSn

(
Sμ, Sλ

) =
{

2 (if a ≡ 0 (mod 4), v ≡ 1 (mod 4) and v � b + 1),

1 (otherwise).

Proof. By Lemma 5.4 and Proposition 5.5 the dimension of the homomorphism space is at least that
claimed. Now we show the reverse inequality, by considering linear combinations of semistandard
homomorphisms.

Throughout this proof, we’ll write T [i] for the set of semistandard μ-tableaux of type λ having
exactly i 2s in the first row, for i = 0,1,2,3, and let τi = ∑

T ∈T [i] Θ̂T .

Suppose we have a linear combination θ of semistandard homomorphisms Θ̂T : Sμ → Mλ such
that ψd,t ◦ θ = 0 for all applicable d, t .

First consider ψd,1 ◦ Θ̂T for T ∈ T0(μ,λ) and d � 3. By Lemma 4.3, ψd,1 ◦ Θ̂T is either zero or a
semistandard homomorphism (according to whether the d and the d + 1 in T occur in the same row).
If it is non-zero, then there is exactly one other T ′ ∈ T0(μ,λ) such that ψd,1 ◦ Θ̂T = ψd,1 ◦ Θ̂T ′ , namely
the tableau obtained by interchanging the d and the d + 1 in T . Hence Θ̂T and Θ̂T ′ must occur with
the same coefficient in θ . Applying this for all d � 3, we find that for a fixed i ∈ {0,1,2,3}, all the
homomorphisms Θ̂T for T ∈ T [i] occur with the same coefficient in θ . In other words, θ is a linear
combination of τ0, τ1, τ2, τ3.

We can apply a similar argument in which we consider ψ3,1 ◦ Θ̂T for T ∈ T0(μ,λ). Again ψ3,1 ◦ Θ̂T
is either zero or a semistandard homomorphism; and if it is non-zero, then the only other T ′ having
ψ3,1 ◦ Θ̂T ′ = ψ3,1 ◦ Θ̂T is the tableau obtained by exchanging the 3 in T with a 2 in the other row. Θ̂T

and Θ̂T ′ occur with the same coefficient in θ , and we deduce that θ must be a linear combination of
τ0 + τ1 and τ2 + τ3.

Finally, we consider ψ1,2 ◦ θ . Each μ-tableau T of type
(
a + 2,1b+1

)
contains a single 2; let φ

denote the sum of Θ̂T for all those T having the 2 in row 1, and χ the sum of all Θ̂T for T having
the 2 in row 2. Using Lemma 4.3 and Lemma 4.4 (and recalling that a is even and v is odd), we have

ψ1,2 ◦ τ0 =
(

v − 1

2

)
χ,

ψ1,2 ◦ τ1 =
(

v

2

)
φ,

ψ1,2 ◦ τ2 =
((

a + 2

2

)
+ 1

)
φ + χ,

ψ1,2 ◦ τ3 =
(

a + 2

2

)
φ.

So if v ≡ 3 (mod 4), then ψ1,2 ◦ (τ0 + τ1) �= 0, so θ cannot equal τ0 + τ1. If a ≡ 2 (mod 4), then
ψ1,2 ◦ (τ2 + τ3) �= 0, so θ cannot be τ2 + τ3. Hence dimF HomFSn (Sμ, Sλ) � 1 in these cases. We also
have dimF HomFSn (Sμ, Sλ) � 1 in the case where b = d − 3, since in this case T [2] and T [3] are
empty, so τ2 + τ3 = 0. �
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5.3. Composing the homomorphisms

Now we complete the analysis of when Sμ is a summand of Sλ , by composing the homomor-
phisms from the preceding subsections. This will be straightforward, using Proposition 4.7.

Recall that the space of homomorphisms from Sλ to Sμ′
is one-dimensional, spanned by the ho-

momorphism σ = ∑
T ∈U Θ̂T . On the other hand, the space of homomorphisms from Sμ to Sλ has

dimension one or two, each homomorphism being a linear combination of the homomorphisms Θ̂A

and Θ̂B . So it suffices to compute the compositions σ ◦ Θ̂A and σ ◦ Θ̂B .
Let D be the μ-tableau

D = 1 2 3 · · · · · · · · · u
1 2 3 · · · v

of type μ′ . Then we have the following.

Lemma 5.7. Suppose T ∈ U , and let x be the entry in the (2,2)-position of T . Then

Θ̂T ◦ Θ̂A = Θ̂D , Θ̂T ◦ Θ̂B =
{

Θ̂D (x � v),

0 (x > v).

Furthermore, Θ̂D �= 0.

Proof. The fact that Θ̂D �= 0 is a simple application of Lemma 4.4. To show that the compositions of
homomorphisms are as claimed, take T ∈ U and recall the notation of Proposition 4.7, with S equal
to either A or B .

Suppose X ∈ X . Since each T i is a proper set, each Xij must be as well. This means that if some

integer i appears in two sets Xkj, Xlj , then the multinomial coefficient

(
X1 j

j +X2 j
j +X3 j

j +···
X1 j

j ,X2 j
j ,X3 j

j ,...

)
from Propo-

sition 4.7 will include a factor
(2

1

)
, which gives 0.

So in order to get a non-zero coefficient in Proposition 4.7, we must have X1 j, X2 j, X3 j, . . . pair-
wise disjoint for each j, which means that we will have

X11 
 X21 
 . . . = {1, . . . , u}, X12 
 X22 = {1, . . . , v}; (†)

so U X will equal D .
If S = A, the only way to achieve this is to have

X11 = T 1 \ {1, . . . , v}, X12 = {1, . . . , v}, Xi1 = T i for i � 2.

Thus we have Θ̂T ◦ Θ̂A = Θ̂D .
In the case S = B , let y be the (2,3)-entry of T . Then y > x. X22 must contain either x or y,

so if x > v then we cannot possibly achieve (†). So we get Θ̂T ◦ Θ̂B = 0 in this case. If x � v < y,
then the only way to achieve (†) is to have X22 = {1, x} and X12 = {2, . . . , x̂, . . . , v}, and this yields
Θ̂T ◦ Θ̂B = Θ̂D . Finally, if y � v , then there are three possible ways to achieve (†); each of these gives
a coefficient of 1, and again we have Θ̂T ◦ Θ̂B = Θ̂D . �

This result is very helpful: it tells us that the composition of σ with a combination of Θ̂A and Θ̂B

is a scalar multiple of Θ̂D ; hence this composition is non-zero if and only if this scalar is non-zero.
In order to use this result, we need to find the number of tableaux in U , and also the number of
tableaux in U in which the (2,2)-entry is at most v . This is a straightforward count.
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Lemma 5.8.
• The number of tableaux in U is

(u−v
a−v

)(u+v−a−1
2

)
.

• The number of tableaux in U whose (2,2)-entry is greater than v is
(u−v

a−v

)(u−a
2

)
.

Proof of Theorem 3.1(1). Suppose Sμ = S(u,v) is irreducible, with u + v = a + b + 3. Throughout this
proof, all congruences are modulo 4.

Suppose first that u, v satisfy the given conditions, i.e. v ≡ 3 and
(u−v

a−v

)
is odd. The second condi-

tion implies in particular that 0 � a − v � u − v , which gives v � min{a −1,b +3}; so the assumptions
in force in this section are satisfied. In addition, Theorem 2.5 gives u ≡ 2.

We need to show that there are homomorphisms Sμ γ−→ Sλ δ−→ Sμ′
such that δ ◦ γ �= 0. Since

3 � v � a − 1, we can take δ = σ .
If a ≡ 0, take γ = Θ̂A + Θ̂B . By Proposition 5.5, γ is a homomorphism from Sμ to Sλ . By

Lemma 5.7 and Lemma 5.8,

δ ◦ γ =
(

u − v

a − v

)(
u − a

2

)
Θ̂D .

The first term is odd by assumption; the second term is odd because u − a ≡ 2, and Θ̂D �= 0 by
Lemma 5.7.

If a ≡ 2, take γ = Θ̂A . Then γ is a homomorphism from Sμ to Sλ , and

δ ◦ γ =
(

u − v

a − v

)(
u + v − a − 1

2

)
Θ̂D .

Again, the first term is odd by assumption, the second term is odd because now u + v − a − 1 ≡ 2,
and Θ̂D �= 0.

Conversely, suppose we have homomorphisms γ , δ such that δ ◦ γ �= 0. By Proposition 5.3 we can
assume that 3 � v � a − 1 and take δ = σ . From Proposition 5.6 we can take γ to be Θ̂A , Θ̂B or
Θ̂A + Θ̂B , according to the congruences in Proposition 5.5. Then δ ◦ γ will be a scalar multiple of
Θ̂D , and the scalar will include

(u−v
u−a

)
as a factor. So this binomial coefficient must be odd, and all

that remains is to show that v ≡ 3 (mod 4). We consider the three cases of Proposition 5.5. Note that
because v > 1, Theorem 2.5 gives u − v ≡ 3.

a − v ≡ 3 or v = b + 3, γ = Θ̂A In this case the coefficient of Θ̂D in δ ◦ γ is

(
u − v

a − v

)(
u + v − a − 1

2

)
.

The second binomial coefficient must be odd, so u + v − a ≡ 3. In the case a − v ≡ 3, this is
the same as saying u ≡ 2, so that v ≡ 3. In the case v = b + 3, we have a = u, so that again
v ≡ 3.

a ≡ 0, γ = Θ̂A + Θ̂B Now the coefficient of Θ̂D in δ ◦ γ is

(
u − v

a − v

)(
u − a

2

)
.

The second binomial coefficient is odd only if u ≡ a + 2, which is the same as saying v ≡ 3.
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v ≡ 1, γ = Θ̂B In this case the coefficient of Θ̂D in δ ◦ γ is

(
u − v

a − v

)((
u + v − a − 1

2

)
+

(
u − a

2

))
.

Since v ≡ 1, we have u + v − a − 1 ≡ u − a, so that
(u+v−a−1

2

)
and

(u−a
2

)
have the same

parity. Hence δ ◦ γ = 0, a contradiction. �
6. Irreducible summands of the form S (u,v,2)

In this section, we find when one of our Specht modules S(a,3,1b) has a summand isomorphic to
an irreducible Specht module of the form S(u,v,2) , where u is even and v is odd. By Theorem 2.3 and
Lemma 2.4, D(u,v,2) cannot appear as a composition factor of S(a,3,1b) unless (u, v,2) � (a,3,1b)reg.
So we may assume that this is the case, which is the same as saying v � min{a − 1,b + 1}. We set
out notation and assumptions for this section.

Assumptions and notation in force throughout Section 6:
λ = (a,3,1b) and μ = (u, v,2), where a,b, u, v are positive integers with a,b, u even,
a � 4, u > v > 2, n = a + b + 3 = u + v + 2 and v � min{a − 1,b + 1}.

6.1. Homomorphisms from Sλ to Sμ′

We begin by constructing a homomorphism from Sλ to Sμ′
. As in Section 5.1, we construct this

using non-semistandard tableaux.
Let U be the set of λ-tableaux having the form

in which the 
s represent the numbers from v +1 to u, and in which the entries are weakly increasing
along the first row and down the first column. Let σ = ∑

T ∈U Θ̂T .

Proposition 6.1. With the notation and assumptions above, we have ψd,t ◦ σ = 0 for all d, t.

Proof. For d � v and t = 1, we use the same argument as that used in several proofs above: for T ∈ U
either ψd,1 ◦ Θ̂T = 0, or there is a unique other T ′ ∈ U with ψd,1 ◦ Θ̂T ′ = ψd,1 ◦ Θ̂T .

The cases where 2 � d � v are easier: in this case Lemma 4.3 and Lemma 4.4 imply that we have
ψd,t ◦ Θ̂T = 0 for all T ∈ U .
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So we are left with the cases where d = 1 and t ∈ {1,2,3}. For T ∈ U we have ψ1,3 ◦ Θ̂T immedi-
ately from Lemma 4.3, while ψ1,2 ◦ Θ̂T is a homomorphism labelled by a tableau of the form

But this homomorphism is zero by Lemma 4.4. Finally, ψ1,1 ◦ Θ̂T is the sum of the homomorphisms
labelled by two tableaux

But these two homomorphisms are equal by Lemma 4.4, and we are done. �
Now, as in Section 5.1 we have to show that σ �= 0. Again, we use a dominance argument.

Proposition 6.2. With the notation above, σ �= 0.

Proof. We’ll show that when σ is expressed as a linear combination of semistandard homomor-
phisms, the homomorphism Θ̂S occurs with non-zero coefficient, where

Recall that when Θ̂T is expressed as a linear combination of semistandard homomorphisms, the coef-
ficient of Θ̂S is zero unless S � T . The only elements of U which are dominated by S are the tableaux
of the form
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for v + 1 � i � b + 2. Consider applying Lemma 4.4 to T [i], to move the two 1s from row 2 to row 1.
Of the tableaux appearing in that lemma with non-zero coefficient, the only ones dominated by S are
those having no more than four entries less than 4 in the first row; these are the tableaux T ′[i] and
T ′[i, j] for 4 � j � v , where

So, modulo homomorphisms labelled by tableaux not dominated by S , we have σ = ∑
i Θ̂T ′[i] +∑

i, j Θ̂T ′[i, j] . However, two application of Lemma 4.4 show that Θ̂T ′[i, j] = 0 for all i, j, and Lemma 4.4

also gives Θ̂T ′[i] = Θ̂S .
So the coefficient of Θ̂S in σ is b + 2 − v , which is odd; so σ �= 0. �
As before, we find that σ is the only homomorphism from Sλ to Sμ′

up to scaling.

Proposition 6.3. With λ,μ as above,

dimF HomFSn

(
Sλ, Sμ′) = 1.
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Proof. The existence of the homomorphism σ shows that the space of homomorphisms is non-zero.
To show that it has dimension at most 1, we again use the fact that

dimF HomFSn

(
Sλ, Sμ′) = dimF HomFSn

(
Sμ, Sλ′)

.

So suppose θ is a linear combination of semistandard homomorphisms Θ̂T : Sμ → Sλ′
such that ψd,t ◦

θ = 0 for all d, t .
First of all, consider ψ2,1 ◦ θ . Given a semistandard tableau T , we can use Lemma 4.3 to compute

ψ2,1 ◦ Θ̂T , and then if necessary use Lemma 4.4 (to move a 2 from row 3 to row 2) to express this
composition as a linear combination of semistandard homomorphisms. We find that if T has two 2s
in its first row, then ψ2,1 ◦ Θ̂T involves a semistandard tableau which does not occur in any other
ψ2,1 ◦ Θ̂T ′ ; hence the coefficient of Θ̂T in θ must be zero.

Now we do the same thing with ψ2,2: in this case we find that if T is a semistandard tableau
having two 3s in its first row, then ψ2,2 ◦ Θ̂T involves a semistandard homomorphism which does
not occur in any other ψ2,2 ◦ Θ̂T ′ (except possibly for a tableau T ′ already ruled out in the paragraph
above). So we may restrict attention to those T having at most one 2 and one 3 in the first row.

Now return to ψ2,1 ◦ Θ̂T , for T of the form

where x1, . . . , xs, z1, . . . , zt ,k are the integers 4, . . . ,a in some order. When we express ψ2,1 ◦ Θ̂T as a
linear combination of semistandard homomorphisms, we find that the homomorphism labelled by

occurs with non-zero coefficient; but this homomorphism does not occur in any other ψ2,1 ◦ Θ̂T ′
(except for T ′ having two 3s in its first row). So for any T of the above form, the coefficient of Θ̂T in
θ must be zero.

Now any semistandard tableau which contributes to θ must be of one of the following eight forms.

In each case, the 
s represent the numbers from 4 to a. Note that in each of these tableaux, the
entries 4, . . . ,a must all occur in different columns (the assumption v � b + 1 means that any column
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of length at least two has a 1 at the top). So we can consider the homomorphisms ψd,1 for d � 3, and
repeat the argument used in the last paragraph of the proof of Proposition 5.3, to show that if T , T ′
are two tableaux which have their 1s, 2s and 3s in the same positions, then Θ̂T and Θ̂T ′ occur with
the same coefficient in θ . Hence θ is a linear combination of the homomorphisms τ1, . . . , τ8, where
τi is the sum of all homomorphisms Θ̂T for T of type i.

Once more we can consider ψ2,1 ◦ θ : when we compute ψ2,1 ◦ τ5, we obtain (in addition to some
other semistandard tableaux) the sum of the semistandard tableaux of the form

which do not occur in any other ψ2,1 ◦ τi (note these tableaux do occur when we compute ψ2,1 ◦ Θ̂T
for T of type 4, but each one occurs twice when we sum over tableaux of type 4, so the contributions
cancel). So τ5 does not appear in θ .

Next we consider ψ3,1 ◦ τi for each i. For i = 3,6 or 8, we find that ψ3,1 ◦ τi involves semistandard
tableaux which do not occur in any other ψ3,1 ◦ τi ; so τ3, τ6, τ8 cannot occur in θ . Moreover, we find
that ψ3,1 ◦ τ1 = ψ3,1 ◦ τ7 and ψ3,1 ◦ τ2 = ψ3,1 ◦ τ4, and that these two homomorphisms are linearly
independent. So θ must be a linear combination of τ1 + τ7 and τ2 + τ4.

Finally we return once more to ψ2,1 ◦ θ . We find that ψ2,1 ◦ τ1 = ψ2,1 ◦ τ4 �= 0, while ψ2,1 ◦ τ2 =
ψ2,1 ◦τ7 = 0. So τ1 and τ4 must appear with the same coefficient in θ ; so θ must be a scalar multiple
of τ1 + τ2 + τ4 + τ7, and so the homomorphism space has dimension at most 1. �
6.2. Homomorphisms from Sμ to Sλ

Now we consider homomorphisms from Sμ to Sλ . We begin by constructing a non-zero homo-
morphism. Let C be the μ-tableau

of type λ.

Proposition 6.4. With C as above, we have ψd,t ◦ Θ̂C = 0 for all d, t, and Θ̂C �= 0.

Proof. Showing the first statement is very easy, using Lemma 4.3. The only homomorphisms that
occur in that lemma with non-zero coefficient are labelled by tableaux with more than v 1s in rows
2 and 3, and therefore by Lemma 4.4 are zero.

Showing that Θ̂C �= 0 is also straightforward using Lemma 4.4. We apply this lemma to move the
1s from row 2 to row 1, and then again to move the 2s from row 3 to row 2. The tableau

(for example) labels a homomorphism occurring with non-zero coefficient. �
Proposition 6.5. With λ,μ as above,

dimF HomFSn

(
Sμ, Sλ

) = 1.
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Proof. The existence of the homomorphism Θ̂C above shows that the space of homomorphisms is
non-zero. So we just need to show the upper bound on the dimension. So suppose θ is a linear
combination of semistandard homomorphisms Θ̂T : Sμ → Sλ such that ψd,t ◦ θ = 0 for all d, t .

For 3 � d � b + 1, say that a semistandard tableau T is d-bad if the entries d,d + 1 appear in
the same column of T . Note that this must be column 1 or 2, because the assumption v � a − 1
guarantees that any column of length greater than 1 has a 1 at the top.

We claim that if T is d-bad, then Θ̂T cannot appear in θ . To show this, we consider ψd,1 ◦ Θ̂T for
every semistandard T . If T is not d-bad, then by Lemma 4.3 ψd,1 ◦ Θ̂T is either zero or a homomor-
phism labelled by a semistandard tableau with two ds in different rows. If T is d-bad, then we can
express ψd,1 ◦ Θ̂T as a linear combination of semistandard homomorphisms using Lemma 4.3 together
with Lemma 4.5. For example, if

then ψ6,1 ◦ Θ̂T = Θ̂T ′ , where

and we can semistandardise this using Lemma 4.5, taking

A = {3}, B = {5,6,7,9,11,12}, C = ∅

to express Θ̂T ′ as a sum of fourteen semistandard homomorphisms.
Doing this for each d-bad tableau T , we find that ψd,1 ◦ Θ̂T is a sum of homomorphisms labelled

by semistandard tableaux with the same first row as T ; furthermore, at least one of these tableaux
will have two ds in the second row. Moreover, each d-bad tableau will yield a tableau of this kind
which does not occur for any other d-bad tableau T ′ . To see this, suppose first of all that d,d+1 occur
in the second column of T . Then there is no other d-bad tableau with the same first row as T , so any
tableau occurring in ψd,1 ◦ Θ̂T with two ds in the second row can only possibly occur in ψd,1 ◦ Θ̂T .
Alternatively, if d,d + 1 occur in the first column of T , then T has the form

There are v − 2 other d-bad tableaux with the same first row as T , and they all also have the same
(2,2)-entry as T . Hence when we apply Lemma 4.3 and Lemma 4.5 (or equivalently Lemma 4.4), we
find that the homomorphism labelled by

occurs in ψd,1 ◦ Θ̂T but not in ψd,1 ◦ Θ̂T ′ for any other T ′ .
So in θ the coefficient of Θ̂T is zero for any d-bad tableau. In particular, this means that for any

Θ̂T occurring in θ , ψd,1 ◦ Θ̂T is either zero or a single semistandard homomorphism. Now we claim
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that the coefficient of Θ̂T is zero whenever T has two or three 2s in its first row. Supposing this is
false, take a T with at least two 2s in its first row such that Θ̂T appears with non-zero coefficient
in θ , and suppose that T is minimal (with respect to the dominance order) subject to this property.
Suppose the (3,1)-entry of T is greater than 3; then this entry equals d + 1 for some d � 3, and the
entry equal to d cannot be the (2,1)-entry (because T is not d-bad). So the d and the d +1 in T lie in
different rows and different columns, and ψd,1 ◦ Θ̂T is the semistandard homomorphism obtained by
replacing the d + 1 with a d. The only other semistandard tableau T ′ such that ψd,1 ◦ Θ̂T ′ = ψd,1 ◦ Θ̂T

is the tableau obtained by interchanging the d and the d + 1 in T , so Θ̂T ′ must also occur with
non-zero coefficient. But T � T ′ , contradicting the choice of T .

So the (3,1)-entry in T must be 3 (and hence the (2,1)-entry is 2). Now consider the (3,2)-entry;
call this d +1. Then d � 4, and the d in T cannot occur in the (2,2)-position (because T is not d-bad).
So we can repeat the above argument and show that there is a tableau T ′ � T such that Θ̂T ′ occurs
in θ ; contradiction.

We now know that every semistandard homomorphism occurring in θ has at least two 2s in
the second row. This means in particular that the entries 3, . . . ,b + 2 lie in different columns. So
we can repeat the argument from Proposition 5.3 and Proposition 6.3 to show that θ must be a
linear combination of τ0 and τ1, where τi is the sum of all homomorphisms labelled by semistandard
tableau with i 2s in the first row. If u = a, then τ1 = 0, and so the space of homomorphisms Sμ → Sλ

has dimension at most 1. if u > a, then ψ2,1 ◦ τ0 = ψ2,1 ◦ τ1 �= 0, so θ must be a scalar multiple of
τ0 + τ1 and again the homomorphism space has dimension at most 1. �
6.3. Composing the homomorphisms

We have constructed homomorphisms Sμ Θ̂C−→ Sλ σ−→ Sμ′
, and shown that these homomorphisms

are unique up to scaling. To complete this section, we just need to compute the composition of these
homomorphisms.

Let E be the μ-tableau

of type μ′ . Then we have the following.

Proposition 6.6. For T ∈ U , we have Θ̂T ◦ Θ̂C = Θ̂E �= 0, and therefore we have σ ◦ Θ̂C �= 0 if and only if(u−v
a−v

)
is odd.

Proof. It is easy to express Θ̂E as a linear combination of semistandard homomorphisms using three
applications of Lemma 4.4, from which it follows that Θ̂E �= 0.

To prove that Θ̂T ◦ Θ̂C = Θ̂E , use the notation of Proposition 4.7, with S = C . Suppose X ∈ X is
such that the coefficient of Θ̂U X in Proposition 4.7 is non-zero. Since X31 must be {2}, we cannot
have X21 = {2} (because this would give a factor

(2
1

)
), so X21 = {1} and hence X23 = {1,2}. Now if

X11 contains any of the numbers 1, . . . , v then again we get a factor
(2

1

)
. So we have X12 = {1, . . . , v},

which determines X , and we find that Θ̂T ◦ Θ̂C = Θ̂E as required.
So we have σ ◦ Θ̂C = |U |Θ̂E , which is non-zero if and only if |U | is odd. But it is easy to see that

|U | = (u−v
a−v

)
, and the proposition is proved. �

Proof of Theorem 3.1(2). Suppose Sμ = S(u,v,2) is irreducible.
Suppose first that

(u−v
a−v

)
is odd. This implies in particular that 0 � a − v � u − v , so v �

min{a − 1,b + 1}. So the assumptions of this section are valid, and we have homomorphisms
Θ̂C : Sμ → Sλ and σ : Sλ → Sμ′

. By Proposition 6.6, σ ◦ Θ̂C �= 0, so Sμ is a summand of Sλ .
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Conversely, suppose we have homomorphisms Sμ γ−→ Sλ δ−→ Sμ′
with δ ◦ γ �= 0. By Proposi-

tions 6.3 and 6.5, δ must be a scalar multiple of σ , and γ must be a scalar multiple of Θ̂C . Hence by
Proposition 6.6,

(u−v
a−v

)
is odd. �

7. Decomposability of Specht modules

In this section, we prove Corollary 3.2, which answers the question of which Specht modules are
shown to be decomposable by Theorem 3.1. First we consider the case where a + b ≡ 0 (mod 8).

Proposition 7.1. Suppose n ≡ 3 (mod 8), and a is even, with 6 � a � n − 7. Let b = n − a − 3. Then S(a,3,1b)

has an irreducible summand of the form S(u,v,2) .

Proof. Using Theorem 3.1, we need to show that there is a pair u, v with u + v + 2 = n such that
S(u,v,2) is irreducible and

(u−v
u−a

)
is odd. By Theorem 2.5, (u, v,2) is irreducible if and only if

v ≡ 1 (mod 4), u − v ≡ −1
(
mod 2l(v−2)

)
,

where l(k) = 
log2(k + 1)� for an integer m.
We use induction on n, with our main tool being the following well-known relations modulo 2 on

binomial coefficients:(
2x

2y

)
≡

(
2x + 1

2y

)
≡

(
2x + 1

2y + 1

)
≡

(
x

y

)
,

(
2x

2y + 1

)
≡ 0 (mod 2).

We consider three cases.

a = 6,8,n − 9 or n − 7 In this case, take v = 5 (so u = n − 7). Since n ≡ 3 (mod 4), we get u ≡
0 (mod 4), which means that u − v ≡ 3 (mod 4), so S(u,v,2) is irreducible. Furthermore, the
binomial coefficients (

u − 5

0

)
,

(
u − 5

1

)
,

(
u − 5

2

)
,

(
u − 5

3

)

are all odd, which means that
(u−5

u−a

)
must be odd.

n ≡ 11 (mod 16) In this case, let

n′ = n + 11

2
, a′ =

{
a+6

2 (a ≡ 2 (mod 4)),

a+4
2 (a ≡ 0 (mod 4)).

Then n′,a′ satisfy the conditions of the proposition, and n′ < n (note that the conditions on
a mean that n > 11). So by induction there is a pair u′, v ′ such that

v ′ ≡ 1 (mod 4), u − v ≡ −1
(
mod 2l(v ′−2)

)
,

(
u′ − v ′

u′ − a′

)
≡ 1 (mod 2).

Note that because u′ − v ′ is odd and u′ − a′ is even, this also gives
( u′−v ′

u′−a′+1

)
odd.

We let u = 2u′ − 4 and v = 2v ′ − 5. Then u + v + 2 = n, and we have v ≡ 1 (mod 4) and

u − v = 2
(
u′ − v ′) + 1 ≡ −1

(
mod 2l(v ′−2)+1),
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with l(v − 2) � l(v ′ − 2) + 1. So S(u,v,2) is irreducible. Furthermore(
u − v

u − a

)
=

(
2u′ − 2v ′ + 1

2u′ − 2a′(+2)

)
≡

(
u′ − v ′

u′ − a′(+1)

)
≡ 1 (mod 2),

and we are done.

n ≡ 3 (mod 16), 10 � a � n − 11 In this case, let

n′ = n + 3

2
, a′ =

{
a+2

2 (a ≡ 2 (mod 4)),
a
2 (a ≡ 0 (mod 4)).

Then n′,a′ satisfy the conditions of the proposition, and n′ < n. So by induction there is a
pair u′, v ′ such that

v ′ ≡ 1 (mod 4), u − v ≡ −1
(
mod 2l(v ′−2)

)
,

(
u′ − v ′

u′ − a′

)
≡ 1 (mod 2).

Again, because u′ − v ′ is odd and u′ − a′ is even,
( u′−v ′

u′−a′+1

)
is also odd.

We let u = 2u′ and v = 2v ′ − 1. Then u + v + 2 = n, v ≡ 1 (mod 4), and

u − v = 2
(
u′ − v ′) + 1 ≡ −1 mod

(
2l(v ′−2)+1),

with l(v − 2) � l(v ′ − 2) + 1. So S(u,v,2) is irreducible. Furthermore(
u − v

u − a

)
=

(
2u′ − 2v ′ + 1

2u′ − 2a′(+2)

)
≡

(
u′ − v ′

u′ − a′(+1)

)
≡ 1 (mod 2). �

The next result addresses most of the cases where a + b ≡ 2 (mod 8).

Proposition 7.2. Suppose n ≡ 5 (mod 8), and a is even, with 8 � a � n − 7. Let b = n − a − 3. Then S(a,3,1b)

has an irreducible summand of the form S(u,v) with v � 7.

Proof. The proof is very similar to the proof of Proposition 7.1. We need to show that there is a pair
u, v such that S(u,v) is irreducible, v � 7, v ≡ 3 (mod 4) and

(u−v
u−a

)
is odd. The condition for S(u,v) to

be irreducible is u − v ≡ −1 (mod 2l(v)).
Again, we need three cases.

a = 8,10,n − 9 or n − 7 In this case, take v = 7 (so u = n − 7). Since n ≡ 5 (mod 8), we get u ≡
6 (mod 8), which means that u − v ≡ 7 (mod 8) (so S(u,v) is irreducible), and the binomial
coefficients (

u − 7

0

)
,

(
u − 7

1

)
,

(
u − 7

2

)
,

(
u − 7

3

)

are all odd, which means that
(u−7

u−a

)
will be odd.

n ≡ 5 (mod 16), 12 � a � n − 11 In this case, let

n′ = n + 5

2
, a′ =

{
a+2

2 (a ≡ 2 (mod 4)),

a+4 (a ≡ 0 (mod 4)).
2
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Then n′,a′ satisfy the conditions of the proposition, and n′ < n. So by induction there is a
pair u′, v ′ such that

v ′ ≡3 (mod 4), v ′ �7, u − v ≡ − 1
(
mod 2l(v ′)), (

u′ − v ′

u′ − a′

)
≡1 (mod 2).

Note that because u′ − v ′ is odd and u′ − a′ is even, this also gives
( u′−v ′

u′−a′+1

)
odd.

We let u = 2u′ − 2 and v = 2v ′ − 3. Then u + v = n, and we have

u − v = 2
(
u′ − v ′) + 1 ≡ −1

(
mod 2l(v ′)+1)

and l(v) � l(v ′) + 1. So S(u,v) is irreducible. Furthermore, v � 7, v ≡ 3 (mod 4) and

(
u − v

u − a

)
=

(
2u′ − 2v ′ + 1

2u′ − 2a′(+2)

)
≡

(
u′ − v ′

u′ − a′(+1)

)
≡ 1 (mod 2),

as required.

n ≡ 13 (mod 16) In this case, let

n′ = n + 13

2
, a′ =

{
a+6

2 (a ≡ 2 (mod 4)),

a+8
2 (a ≡ 0 (mod 4)).

Then n′,a′ satisfy the conditions of the proposition, and n′ < n. So by induction there is a
pair u′, v ′ such that

v ′ ≡1 (mod 4), v ′ �7, u − v ≡ − 1
(
mod 2l(v ′)), (

u′ − v ′

u′ − a′

)
≡1 (mod 2).

Because u′ − v ′ is odd and u′ − a′ is even, this also gives
( u′−v ′

u′−a′+1

)
odd.

We let u = 2u′ − 6 and v = 2v ′ − 7. Then u + v = n, and we have

u − v = 2
(
u′ − v ′) + 1 ≡ −1

(
mod 2l(v ′)+1),

and l(v) � l(v ′) + 1. So S(u,v) is irreducible. Furthermore, we have v ≡ 3 (mod 4), v � 7 and

(
u − v

u − a

)
=

(
2u′ − 2v ′ + 1

2u′ − 2a′(+2)

)
≡

(
u′ − v ′

u′ − a′(+1)

)
≡ 1 (mod 2). �

Now we can prove our main result.

Proof of Corollary 3.2. Suppose we have a pair a,b of positive even integers with a � 4. If a � 6,
b � 4 and a + b ≡ 0 (mod 8), then the result follows from Proposition 7.1. If a � 8, b � 4 and a + b ≡
2 (mod 8), then the result follows from Proposition 7.2. If a = 6 and a + b ≡ 2 (mod 8), then by
Theorem 3.1 the Specht module S(a+b,3) is an irreducible summand of Sλ .

The second case of the corollary is precisely the condition for S(a+b,3) to be an irreducible sum-
mand of Sλ , while the third case is the condition for S(a+b−4,5,2) to be a summand. So in any of the
given cases, Sλ certainly has an irreducible Specht module as a summand. To complete the proof, it
suffices to show that if a = 4, b = 2 or a + b ≡ 4 or 6 (mod 8), then the only possible Specht modules
which can occur as irreducible summands of Sλ are S(a+b,3) and S(a+b−4,5,2) .
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Suppose Sλ has an irreducible summand S(u,v) with v > 3. Then v ≡ 3 (mod 4) and u − v ≡ 7
(mod 8), which means that u + v ≡ 5 (mod 8) and hence a + b ≡ 2 (mod 8). Furthermore, (u, v) �
λreg, which implies that a � 6 and b � 4.

Similarly, if Sλ has an irreducible summand S(u,v,2) with v > 5, then v ≡ 1 (mod 4), u − v ≡ 7
(mod 8) and hence u + v + 2 ≡ 3 (mod 8), which gives a + b ≡ 0 (mod 8). Furthermore, the fact that
(u, v,2) � λreg implies that a � 6 and b � 4. �
8. Concluding remarks

The results in this paper do not give anything like a complete picture; this work is intended as a
re-awakening of a long-dormant subject. Given how small the first example of a decomposable Specht
module in this paper is, it is surprising that it has taken thirty years for this example to be found.
We hope that this paper will be the start of a longer study of decomposable Specht modules.

We conclude the paper by making some speculations about decomposable Specht modules; these
are based on calculations and observations, but we do not have enough evidence to make formal
conjectures.

8.1. Specht filtrations

Our main results show that in certain cases summands of Specht modules are isomorphic to irre-
ducible Specht modules. In fact, reducible Specht modules can also occur as summands; for example,
the first new decomposable Specht module S(4,3,12) found in this paper decomposes as S(6,3)⊕ S(4,3,2) ,
with the latter Specht module being reducible.

However, it is certainly not the case that every summand of a decomposable Specht module is
isomorphic to a Specht module. But in the cases we have been able to calculate, every summand
appears to have a filtration by Specht modules. If this is true in general, it means that our main
results are stronger, in that we have found all irreducible summands of Specht modules in our family.

In fact, we speculate that every Specht module has a filtration in which the factors are isomorphic
to indecomposable Specht modules; this would imply in particular that every indecomposable sum-
mand has a Specht filtration. This speculation is certainly true in the case of Specht modules labelled
by hook partitions; this follows from [M2, §2].

8.2. 2-quotient separated partitions

In [JM1, Definition 2.1], James and Mathas make the following definition: a partition λ is 2-quotient
separated if it can be written in the form

(
c + 2xc, c − 1 + 2xc−1, . . . ,d + 2xd,d2yd , (d − 1)2yd−1+1, . . . ,12y1+1),

where c + 1 � d � 0, xc � · · · � xd � 0 and y1, . . . , yd � 0. (Note that the definition includes the case
c = 0, where we have λ = (2x0) if d = 0, or (12y1 ) if d = 1.)

Informally, the 2-quotient separated condition means that the Young diagram of λ can be decom-
posed as in the following diagram, where horizontal ‘dominoes’ can appear in the first c −d + 1 rows,
and vertical ‘dominoes’ can appear in the first d columns.
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The definition of a 2-quotient separated partition was made as part of the study of decomposition
numbers: for the Iwahori–Hecke algebra HC,−1(Sn), whose representation theory is very similar to
that of Sn in characteristic 2, the composition factors of a Specht module labelled by a 2-quotient
separated partition are known explicitly. The reason we recall the definition here is that every known
example of a decomposable Specht module is labelled by a 2-quotient separated partition. (Note that
the partition (a,3,1b) considered in this paper is 2-quotient separated precisely when a and b are
even.) It is interesting to speculate whether the 2-quotient separated condition is necessary for a
Specht module to be decomposable.
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