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Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacte-
rium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal
tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin
and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin medi-
ates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified
proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant
concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhe-
sion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific
HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed
with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large
but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alterna-
tively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated
fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C frag-
ments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleav-
age by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that
might lead to increased cell detachment and loss during periodontal disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Periodontitis is considered to be the most common inflammatory
disease in humans, and the role of bacterial infection in its etiology
is well established [1]. Although hundreds of bacterial species are
found in a periodontal plaque, only very few of these have been impli-
cated as pathogens in severe periodontitis. One of the most important
is Porphyromonas gingivalis, which expresses three cysteine proteases
called gingipains that are known to be its major virulence factors [2].
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Two arginine-specific gingipains possess practically identical catalytic
domains, but differ in a C-terminal hemagglutinin domain that is
present in HRgpA but not RgpB. The lysine-specific Kgp exhibits a
hemagglutinin domain similar to HRgpA but a distinct catalytic do-
main. In mature HRgpA and Kgp, the hemagglutinin domains are
cleaved but remain noncovalently complexed with the catalytic do-
mains [3]. Gingipains are normally attached to the outer membrane
of P. gingivalis via glycan moieties, but can be released into the envi-
ronment. Although other virulence factors are present in P. gingivalis,
the analysis of gingipain-defective strains has shown that these pro-
teases are essential for survival, proliferation, and infectious potential
of the pathogenic bacteria [3,4]. It has been shown recently that the
concentration of Rgps in the periodontal pockets of periodontitis pa-
tients can exceed 1 μM [5].

Gingipains are versatile tools essential for a variety of processes
that drive P. gingivalis infection, which explains their importance for
disease progression during periodontitis [3]. In a first step, HRgpA
and Kgp are required for bacterial adherence and colonization of
host tissue, which are mediated by their hemagglutinin domains
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binding specifically to major extracellular matrix (ECM) proteins such
as laminin, vitronectin and fibronectin [6–8]. Second, the bacteria use
gingipains to escape the host defense by degrading antimicrobial
peptides and components of the complement system [7,9], and to
manipulate the inflammatory response by deregulating the cytokine
signaling network and by interfering with the blood clotting cascade
[2]. Third, gingipains are able to agglutinate and lyse erythrocytes
and to digest the released heme proteins, which are an essential nu-
trient source for the bacteria [10]. Finally, gingipains appear to specif-
ically attack the interaction of gingival and periodontal fibroblasts
with their extracellular matrix, thus promoting detachment, apopto-
sis and tissue destruction [7].

Fibronectin [11] is a large dimeric (2×230 kDa) pericellular matrix
protein present in gingiva and periodontal ligament [12]. It mediates ad-
hesion, spreading and motility of fibroblasts by interacting with specific
cellular receptors, most notably integrins [13]. Interestingly, P. gingivalis
appears to use gingipains to specifically attack the interaction of fibronec-
tinwith its receptors on fibroblast surfaces [14,15]. Incubation of cultured
gingival fibroblasts with P. gingivalis culture supernatants or purified
gingipains lead to a rapid loss of fibronectin and α5β1 integrin from cell
surfaces, and to cell detachment. A similar study reported a loss of integrin
α2-, α5-, β1- and β3-chains in addition to fibronectin from the surface
of gingival fibroblasts after treatment with P. gingivalis supernatants.
Detached fibroblasts became committed to cell death. As expected, gingi-
val crevicular fluid (GCF) samples from periodontitis patients were
found to contain significantly increased amounts of fibronectin frag-
ments [16,17]. Immunoblottingwith domain-specific anti-fibronectin an-
tibodies showed that fragments (120, 68 and 40 kDa) including themajor
cell- and/or heparin-binding region of fibronectin were enriched in peri-
odontitis [16].

Tenascin-C is a large hexameric ECM protein known to modulate
cell adhesion by inhibiting the spreading of fibroblasts on fibronectin
[18,19]. Several splice variants of tenascin-C exist and are likely to be
relevant for the periodontal apparatus. A “small” form with 200 kDa
subunits is a normal constituent of tendons and ligaments [20] and
presumably the one enriched in the attachment zones of the healthy
periodontal ligament [12]. A large form (250 kDa subunits [20]) is
known to be induced de novo and actively involved in many inflam-
matory processes [21]; mice deficient for tenascin-C show a reduced
inflammatory response [22]. However, there are no reports yet
whether tenascin-C levels are increased in periodontitis, and if this
is the case, which splice variant is induced.

Fibroblast attachment and motility within the ECM are regulated
by the balance between adhesive and anti-adhesive signals [19], and
gingipains presented and released by P. gingivalis might disturb this
balance in periodontitis. In this study, we therefore sought to address
the following open questions: 1. What is the functional consequence
of the reported cleavage of fibronectin by gingipains in terms of the
cell adhesion-promoting activity of this ECM protein? This is not a
trivial issue, since it is well known that many proteases can generate
cell-binding fibronectin fragments that retain their full activity when
still immobilized in the ECM [23]. To effectively destroy the adhesive
activity of fibronectin, a protease has to cleave at specific sites within
the cell-binding domain. 2. Is tenascin-C fragmented by gingipains,
and is there a difference in susceptibility between large and small
splice variants? 3. How does cleavage by gingipains affect the anti-
adhesive activity of tenascin-C? 4. Are proteolytic cleavage products
of tenascin-C found in GCF of periodontitis patients, as it has been
reported before for fibronectin?

To this aim, human fibronectin was digested with purified
gingipains, and fragments were tested in a standardized cell adhesion
assay. Human recombinant tenascin-C was equally treated with the
three enzymes, and its anti-adhesive activity was quantified before
and after cleavage. In addition, gingival crevicular fluid of periodonti-
tis patients was tested for the presence of fibronectin and tenascin-C
fragments. Our data indicate that by simultaneously destroying the
adhesion activity of fibronectin and generating tenascin-C fragments
with increased anti-adhesive activity, gingipains might very rapidly
and effectively induce detachment of gingival and periodontal fibro-
blasts from their ECM during periodontitis.

2. Materials and methods

2.1. Purification of fibronectin and recombinant cell-binding fragment

Fibronectin was purified from human serum (Gibco/Invitrogen,
Basel, Switzerland) by affinity chromatography to gelatin-agarose
(Sigma-Aldrich, Switzerland) as described [24]. Eluted fibronectin
was dialyzed against 150 mM NaCl, 20 mM Na-phosphate (PBS),
pH 7.4, and stored frozen in aliquots. A GST-tagged fibronectin frag-
ment comprising fibronectin type III domains 7–11 (FNIII7-11) was
expressed in Escherichia coli as described [25]. Bacteria harboring
the expression plasmid [26] were obtained from Dr. Gertraud Orend
(University of Strasbourg, France) with permission from Dr. R. O. Hynes
(MIT, Cambridge MA). The GST-tagged recombinant fragment was puri-
fied using glutathione-Sepharose beads (Qiagen, Basel, Switzerland),
dialyzed against PBS, and frozen in aliquots.

2.2. Cloning and purification of recombinant tenascin-C variants

A plasmid (pCEP-huTNC-his [27]) containing the his-tagged
human large variant of tenascin-C, cloned into pCEP-Pu vector [28]
using NotI/BamHI, was obtained from Dr. Gertraud Orend (University
of Strasbourg, France). This plasmid was further used to construct the
his-tagged human small variant of tenascin-C. A NotI/XhoI fragment
was subcloned into pSK(+) vector (Stratagene/Agilent Technologies,
Basel, Switzerland). Splicing by overlap extension [29] was performed
to excise the extra fibronectin type III repeats of the large tenascin-C
variant using overlapping primers (5′-AGTGGATGCCTTCACAC-3′,
5′-GTGTGAAGGCATCCACTGCCATGGGCTCCCCAAA-3′). The spliced
NotI/XhoI fragment was cloned back into the NotI/XhoI cut pCEP-
huTNC-his plasmid, giving rise to pCEP-human small TNC-his. The
construct was confirmed by restriction enzyme analysis and sequenc-
ing. After transfection of expression plasmids into HEK293-EBNA cells
(obtained from Dr. Ruth Chiquet-Ehrismann, Friedrich Miescher Insti-
tute, Basel, Switzerland), secretion of human large or small tenascin-C
variant, respectively, was determined by Western Blot analysis. Cells
were grown to confluency in the presence of 1.5 μg/ml puromycin
in DMEM/10% FCS, and starved for two days in serum-free DMEM
without puromycin. Recombinant proteins were precipitated from
collected conditioned medium with ammonium sulfate and dialyzed
against PBS/0.01% Tween 20. After chromatography on a gelatin-
agarose column (Sigma-Aldrich, Switzerland) to remove fibronectin,
the eluate was loaded on a nickel column (HIS-Select HF Nickel Affin-
ity Gel, Sigma-Aldrich, Switzerland). Bound large or small tenascin-C
variants were eluted with 300 mM imidazole, 250 mM sodium phos-
phate (pH 7.5), 450 mM NaCl, and 0.01% Tween 20 and dialyzed
against PBS/0.01% Tween 20.

2.3. Purification of gingipains

Arginine-specific (HRgpA and RgpB) and lysine-specific (Kgp)
gingipains were obtained from the P. gingivalis HG66 strain culture
fluid as described previously [30,31]. Briefly, Kgp and HRgpAwere puri-
fied using gel filtration and affinity chromatography on arginine-
Sepharose, whereas RgpBwas purified using a combination of gel filtra-
tion and anion-exchange chromatography onMono Q (GE Healthcare).
The purity of each enzymewas checked by SDS-PAGE. The amount of ac-
tive enzyme in purified gingipainswas determined by active site titration
using Phe–Pro–Arg–chloromethyl ketone and benzoyloxycarbonyl–Phe–
Lys–CH2OCO-(2,4,6-Me3)phenyl–HCl (Z-FK-ck) (both from Bachem AG,
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Bubendorf, Switzerland) as active site titrants for Rgps and Kgp, respec-
tively [32,33].

2.4. ECM protein digestion by gingipains and trypsin

The purified gingipains (HRgpA, RgpB and Kgp) were diluted in acti-
vation buffer (10 mM cysteine-HCl, 0.2 M Tris–HCl, 1 mMCaCl2, pH 7.6)
to get a 1 μM solution, which was then activated for 15 min at 37 °C.
From this, 100 nM, 10 nM and 1 nM solutionswere prepared by diluting
in activation buffer. The same concentrations including 0.1 nMwere pre-
pared for bovine pancreas trypsin (Serva, Heidelberg, Germany) in PBS.
Digestion of fibronectin and tenascin-C was performed in 20 μl aliquots,
taking 18 μl of 1 μM ECM protein in PBS and 2 μl of protease of the de-
sired concentration. The reaction mixture as well as a negative control
composed of 18 μl ECMprotein and 2 μl activation bufferwere incubated
for 1 h at 37 °C. For analysis of fragments by SDS-PAGE, the reactionwas
stopped by adding reducing electrophoresis sample buffer and boiling. In
digested samples later used for cell adhesion assays, proteases were
inactivated by adding FFRck (Phe-Phe-Arg-chloromethylketone; Bachem
AG, Bubendorf, Switzerland), an efficient inhibitor of gingipains [34], at a
concentration of 50 nM for 15 min at 37 °C.

2.5. Western blot analysis

Digested samples were separated by SDS-PAGE and blotted to ni-
trocellulose membranes. After a blocking step in 1% milk, membranes
were incubated with rabbit polyclonal anti-fibronectin antibody
(1:500) [35], mouse monoclonal antibody B28-13 raised against the
constant C-terminal domain of human tenascin-C (1:200) [36],
mouse monoclonal antibody C18-13 against the alternatively spliced
domain of tenascin-C (1:100) [36], or mouse anti-his antibody
(1:100, Quiagen, Switzerland). They were then incubated for 1 h
with anti-rabbit or anti-mouse IgG coupled to horseradish peroxidase
(1:2000; Jackson ImmunoResearch, Suffolk, UK). Blots were devel-
oped using ECL reagent (GE Healthcare, Buckinghamshire, UK) and
either exposed to Fuji X-ray films or scanned by a Storm 840
Phosphoimager (Glattbrugg, Switzerland).

2.6. Adhesion and anti-adhesion assay

Digestions of fibronectin and its cell-binding fragment (FNIII7-11)
were performed as described before and stopped by adding protease
inhibitor FFRck (see above). For adhesion assays, intact or digested
proteins were coated as a 20 μl drop on a non-adhesive plastic dish
(bacteriological petri dish; Sterilin Life Sciences, Newport, UK) for
1 h at room temperature. After washing three times with PBS,
5×105

fibronectin-deficient mouse embryo fibroblasts (MEF FN−/−

[25]) were seeded onto the dish in serum-free DMEM and allowed
to attach at 37 °C in a CO2-incubator. After 4 h, four randomly select-
ed fields were photographed from each coated region, using a Leica
inverted microscope with a 10× phase contrast objective. Quantifica-
tions were done by counting round and spread cells on each image.
The anti-adhesion assay with large tenascin-C variant was performed
as published [37,38]. Briefly, intact or gingipain-digested tenascin-C
(1 μM in 20 μl) was mixed 1:1 with fibronectin (1 μM in 20 μl) and
coated as a 40 μl drop on non-adhesive dishes for 1 h at 4 °C. One
hour after seeding MEF FN−/− as above, photographs were taken
for quantification as described before. Data in figures represent
the average and standard error of the mean of four measurements
(ca. 4×80 cells) per sample from one representative experiment.
Each adhesion and anti-adhesion assay was repeated at least twice
using independently digested protein samples, with very similar re-
sults. Statistical significance was determined by one-way ANOVA
and paired Student's t-test; differences with a value of pb0.05 were
considered significant.
2.7. Analysis of gingival crevicular fluid samples

Gingival crevicularfluid (GCF) samples of periodontally healthy sub-
jects and periodontitis patients were collected at the Iuliu Hatieganu
University, Cluj-Napoca, Romania. The collection of human samples
was carried out in accordance with The Code of Ethics of the World
Medical Association (Declaration of Helsinki) and approved by the
Ethics Committee of the Iuliu Hatieganu University. Ten periodontitis
patients (mean age 38.6±9.7; 7 women, 3men) and five periodontally
healthy subjects (mean age 33.6±6.2; 3 women, 2 men) from the
University of Cluj-Napoca were enrolled in the study (Supplementary
Table S1). In the periodontitis group, 5 patients (4 women, 1 man)
were suffering from severe chronic periodontitis, and 5 patients
(3 women, 2 men) from aggressive periodontitis [39]. In order to be in-
cluded, periodontitis patients had to have probing pocket depths of at
least 6 mm in each mouth quadrant, signs of radiographic bone loss,
and no previous periodontal treatment. All periodontally healthy pa-
tients had probing pocket depths of ≤4 mm; two of the five (one
male, one female) were diagnosed with plaque-induced gingivitis. The
mean attachment loss (Supplementary Table S1) was 4.3±2.3 mm in
the periodontitis and 1.6±0.9 mm in the control group (significant dif-
ference, pb0.01). All patients were systemically healthy and gave their
informed written consent to participate in the study. Samples were
taken for GFC and microbiological analysis at the deepest site in each
quadrant. The sites were isolated with cotton rolls, air-dried, and
supragingival plaque was carefully removed. A standard sterile paper
strip (Periopaper, Oraflow Inc., Smithtown, NY, USA) was inserted
for 30 s into the gingival crevice until mild resistance was felt (GFC
sample). Afterwards, a sterile paper point was inserted into the same
site and left in place for 15 s (microbial sample). Sampleswere collected
in transportation plastic vials and stored at−70 °C (GCF samples) or
−20 °C (microbial samples), respectively.

The GCF samples were eluted from paper strips in 100 μl PBS over-
night at 4 °C and insolublematterwas removed by high-speed centrifu-
gation for 5 min. Fifteen microliter aliquots of each supernatant were
used for Western blot analysis with antibodies to fibronectin or
tenascin-C, respectively (see above). Band intensities on blots were
quantified by densitometric analysis from digital images using Image J
software (http://rsbweb.nih.gov/ij/). For determining Arg-gingipain
proteolytic activity, 2.5 μl GCF aliquots were diluted to 50 μl with
assay buffer (10 mM cysteine-HCl, 1 M HEPES, pH 7.5) in microtiter
plates. To each well, 100 μl substrate solution (0.5 mM benzoyl-
arginine p-nitroanilide [Sigma-Aldrich, Buchs, Switzerland], 10 mM
cysteine-HCl, 50 mM Tris–HCl, pH 7.5) was added. A standard curve
with purified, activated RgpB was run on the same plate. After incuba-
tion for 16 h at 37 °C, the absorption at 405 nm was measured with
an ELISA reader (Biotec EL808). Statistically significant differences
(pb0.05) between the periodontitis and the control group were deter-
mined by Wilcoxon rank sum test with continuity correction.

For microbiological analysis of selected periodontopathogens,
DNA was extracted by using the Chelex method [40]. Thereafter,
the microIDent® assay (Hain Lifescience, Nehren, Germany) was
performed according to the manufacturer's instructions. Of the peri-
odontitis patients, 9/10 were positive for P. gingivalis and 10/10 for
Tannerella forsythia, another important periodontopathogen. From
the periodontally healthy control group, one of the subjects with
gingivitis was positive for P. gingivalis and T. forsythia; the other
four were negative for both species.

3. Results

3.1. Fragmentation of fibronectin by gingipains and effect on cell-spreading
activity

It has been published before that P. gingivalis bacterial extracts elim-
inate fibronectin from the pericellular matrix of cultured fibroblasts

http://rsbweb.nih.gov/ij/
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[15,14]. However, actual fragmentation of fibronectin by gingipains has
not been demonstrated yet with the purified proteins. We therefore in-
cubated intact fibronectin isolated from human serum with purified
gingipains at different enzyme to substrate ratios for 1 h at 37 °C. For
control, fibronectin was digested under the same conditions with puri-
fied trypsin. Proteolytic fragments were analyzed by immunoblotting
using polyclonal anti-fibronectin antibody. As evident from Fig. 1, all
three gingipains (HRgpA, RgpB and Kgp) cleaved fibronectin into dis-
tinct patterns of differently sized fragments. Expectedly, the proportion
of smaller cleavage products was increased at higher enzyme to sub-
strate ratios. Typical for HRgpA and RgpB at lower enzyme concentra-
tions were intermediary fragments of about 100, 80 and 60 kDa,
whereas at higher enzyme to substrate ratios peptides between ca. 60
and 40 kDa were prominently detected on the gel. Trypsin treatment
generated similar cleavage patterns, however at ten times lower en-
zyme to substrate ratios. In contrast, digestion with Kgp produced a
somewhat different peptide pattern with major fibronectin fragments
in the range of 120–140 and 60–70 kDa, and the larger fragments
persisted even with the highest enzyme concentration.

We then tested the effect of gingipain digestion on themajor biolog-
ical activity of fibronectin, namely its ability to promote cell adhesion
and spreading offibroblasts.When disheswere coatedwith intactfibro-
nectin, cells assumed an elongated spindle-like or triangular shape,
whereas they settled but remained rounded on uncoated dishes
(Fig. 2). On dishes coated with fibronectin that had been previously
treated with either HRgpA or RgpB at an enzyme to substrate ratio of
1:10, cells attached but at least half of them still stayed round even
after 4 h (significant difference to untreated fibronectin control;
pb0.01). When the concentration of these two enzymes was lowered,
cells spread on the treated fibronectin (data not shown), presumably
because high molecular weight fragments (>180 kDa) were still pres-
ent in the mixture (see Fig. 1). In contrast to what was found for
HRgpA and RgpB, cells on fibronectin digested with Kgp at a 1:10 en-
zyme to substrate ratio spread almost as well as on dishes coated with
untreated fibronectin (Fig. 2), although it was clearly fragmented.
These results confirm previous findings with other proteases (e.g. chy-
motrypsin) that proteolytic fragmentation per se does not destroy the
cell-spreading activity of fibronectin. The reason is that limited proteol-
ysis can generate fibronectin fragments in which the cell-binding do-
main is still intact [24]. However, whereas Kgp digests of fibronectin
apparently still retain active fragments even at the highest enzyme to
substrate ratio, HRgpA and RgpB seem to effectively destroy the
cell-binding domain of fibronectin under the same conditions.
3.2. Cleavage and inactivation of the cell-binding region of fibronectin by
gingipains

For effective binding to fibronectin, the specific cellular receptor
α5β1 integrin requires an RGD peptide motif in the tenth and a
180
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Fig. 1. Fragmentation of fibronectin by gingipains. Purified human serum fibronectin (FN; fi
spectively, at enzyme to substrate ratios indicated on top of each lane (e.g. 10−2=1:100). A
buffer and boiling. Samples were run on a 7.5% polyacrylamide gel containing SDS, which w
synergy site in the ninth fibronectin type III (FNIII) domain; a recom-
binant fragment comprising FNIII domains 7 to 11 (FNIII7-11) was
reported to retain the cell-binding activity of intact fibronectin [26].
Using a recombinant protein consisting of glutathione-S-transferase
(GST; 25 kDa) fused to FNIII7–11 (60 kDa) (Fig. 3A), we therefore
asked whether gingipains were able to cleave fibronectin within its
cell-binding region, and how this affected activity. Purified recombi-
nant fusion protein (85 kDa) was incubated with any of the three
gingipains at enzyme to substrate ratios of 1:100 and 1:10 for 1 h at
37 °C; trypsin was used for control. The digests were either analyzed
directly by immunoblotting (Fig. 3B), or they were used for coating of
plastic dishes and plating of fibroblasts as described above (Fig. 3C).
For all enzymes, small stable fragments (ca. 35–40 kDa) reacting
with anti-fibronectin antibody were visible after digestion with the
higher enzyme to substrate ratio, indicating that some cleavage
must have occurred within the 60 kDa tandem array of FNIII domains
7–11. At the lower enzyme concentrations, HRgpA, RgpB and trypsin
generated a major intermediary fragment of 50 kDa, which was very
faint in the Kgp digest compared to other bands (Fig. 3B). Thus, as
with intact fibronectin, Kgp appeared to generate a fragmentation
pattern distinct from that of the other proteases. We continued by ex-
ploring cell adhesion activity of the various digests. When coated
onto plastic, intact FNIII7–11 fusion protein mediated spreading of fi-
broblasts within 4 h similarly to full-length fibronectin (Fig. 3C); in-
tact GST alone has no cell adhesion activity [26]. Digestion with
HRgpA and RgpB at a 1:10 enzyme to substrate ratio substantially re-
duced the biological activity of FNIII7–11 (Fig. 3C), since most of the
cells remained rounded on these substrates (significant difference
to undigested FNIII7–11 control; pb0.01). In obvious contrast, howev-
er, FNIII7–11 treated with Kgp was similarly active as intact fusion pro-
tein in mediating spreading of fibroblasts (Fig. 3C). In conclusion, it
was interesting to observe that although all three gingipains cleaved
full-length fibronectin as well as its cell-binding region encoded in
FNIII7-11, HRgpA and RgpB treatment strongly affected the biological
activity of both proteins, whereas Kgp digestion did not.
3.3. Digestion of large and small tenascin-C isoforms by gingipains

Tenascin-C is an ECM component that negatively regulates
fibronectin-mediated cell adhesion [37]; the “anti-spreading” activity
has been localized to the C-terminal domain of its subunits (Fig. 4A)
[38,41]. We therefore asked whether tenascin-C is also attacked by
gingipains, and how this would affect its anti-adhesive activity. Sever-
al splice variants of tenascin-C exist (Fig. 4A), of which the smallest
(190 kDa subunits) is found in tendons and ligaments, whereas the
largest (250 kDa) is associated with developmental and pathological
processes. Purified recombinant large and small tenascin-C isoforms
were incubated with gingipains at different enzyme to substrate ra-
tios for 1 h at 37 °C as described above, or with trypsin for control
10-2

Kgp : FN

0-1 10-4 10-3 10-2 10-1 10-5 10-4 10-3

Trypsin : FN

rst lane; 3.6 μg per sample) was incubated with HRgpA, RgpB, Kgp, or with trypsin, re-
fter 1 h at 37 °C, the reaction was stopped by adding reducing electrophoresis sample
as blotted to nitrocellulose and probed with polyclonal anti-fibronectin antibody.
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Fig. 2. Inhibition of cell-spreading activity of fibronectin by cleavage with HRgpA and
RgpB but not Kgp. Purified human fibronectin was incubated with HRgpA (FN:
HRgpA), RgpB (FN: RgpB), or Kgp (FN: Kgp) at an enzyme to substrate ratio of 1:10,
or with trypsin (FN: trypsin) at 1:100 for 1 h at 37 °C. The digestion was stopped
(see Materials and methods), and the fibronectin fragments were coated on plastic
dishes. For positive and negative controls, dishes were either coated with intact fibro-
nectin (FN) or left dry (uncoated). (A) Fibronectin-deficient fibroblasts were plated on
the dishes in serum-free medium, allowed to attach for 4 h at 37 °C in a CO2-incubator,
and photographed with phase contrast optics. (B) The proportion of spread cells (with
visible processes) versus round cells (exhibiting strong phase contrast) was quantified
from digital images. *Significant difference to FN (pb0.01) and to FN: Kgp (pb0.01).
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(Fig. 4B). The digests were run on SDS-PAGE, blotted to nitrocellulose,
and probed with domain-specific anti-tenascin-C antibodies. Mono-
clonal antibody (mAb) B28 is directed against the constant
C-terminal domain, mAb C18 against the alternatively spliced domain
only present in the large isoform, and anti-His against the C-terminal
poly-histidine tag of recombinant tenascin-C (Fig. 4A). As can be seen
on Fig. 4B (top left), cleavage of large tenascin-C variant with all
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proteases produced a ladder of fragments that reacted with mAb B28
against the C-terminal domain. Typical for gingipain digests were rel-
atively stable fragments of 50–60 kDa; trypsin digestion in addition
yielded a prominent 35 kDa fragment. This smallest fragment
reacting with mAb B28 was also detected at the higher concentration
of RgpB and very faintly with HRgpA (Fig. 4B, top left). Due to their
antibody reactivity, all mAb B28-positive fragments must contain
FNIII repeats 6–8 plus part or the entire C-terminal fibrinogen-like
domain of tenascin-C (see Fig. 4A). When the same digests were
probed with mAb C18 against the alternatively spliced domain, only
intact tenascin-C and very large fragments (>190 kDa, with the
exception of a weak 80 kDa band in the trypsinized sample) were
recognized (Fig. 4B, bottom left). This indicated that many of the
gingipain (and trypsin) cleavage sites in the large tenascin-C isoform
must be located within its alternatively spliced domain. This region of
the molecule appeared to be degraded completely by higher concen-
trations of HRgpA and RgpB, since in this case only bands reacting
with mAb B28 but none recognized by mAb C18 were detectable
(Fig. 4B, left panels). An additional site highly susceptible to proteolysis
by gingipains (and trypsin) must lie close to the C-terminus within the
fibrinogen-like domain, since anti-His only recognizes full-length
tenascin-C but none of the smaller fragments (Fig. 4B, bottom right).
The major gingipain cleavage sites in large tenascin-C are indicated in
the scheme of the molecule in Fig. 4A.

In contrast and very interestingly, the small tenascin-C variant
appeared to be almost completely resistant to digestion by gingipains
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even at the highest enzyme to substrate ratio (Fig. 4B, top right). This
finding strongly supports the evidence described above that
gingipains primarily cleave within the extra FNIII domains of large
tenascin-C splice variant. Trypsin, on the other hand, produced
some fragments (ca. 190, 70 and 50 kDa) from the small variant
that were recognized by mAb B28. This points to the presence of tryp-
tic cleavage sites in constant FNIII domains 1–5 and at the N-terminus
of tenascin-C that are not attacked by gingipains (c.f. Fig. 4A).

3.4. Effect of fragmentation by gingipains on the anti-spreading activity
of large tenascin-C variant

When a mixture of fibronectin and tenascin-C is used to coat plastic
dishes, the spreading of seeded fibroblasts is considerably suppressed
compared to plain fibronectin substrate ([37]; Fig. 5A). In the present
experiments, over 40% of the cells remained rounded after 1 h on a sub-
strate of fibronectin mixed with large tenascin-C variant (1:1 molar
ratio), compared to only 10% on fibronectin alone (Fig. 5B). To test for
the effect of gingipain digestion on anti-adhesive activity, fragmented
large tenascin-C was mixed with intact fibronectin and coated onto
dishes (see Materials and Methods). Surprisingly, fragmentation of
large tenascin-C with either of the three gingipains lead to a significant
increase in its anti-spreading activity in this assay (pb0.05), since
70-80% of the fibroblasts retained a round cell shape 1 h after plating
them on the mixtures of fibronectin with digested large tenascin-C
(Fig. 5B). For control, the cell-spreading assay was repeated by coating
dishes with mixtures of just the cell-binding fibronectin domain
(FNIII7-11) with intact or gingipain-digested large tenascin-C. Because
tenascin-C requires an adjacent but separate heparin-binding region
to bind to fibronectin [42], the cell-spreading activity of FNIII7-11 was
neither inhibited by intact nor by fragmented tenascin-C, as was
expected (data not shown). In addition, this control experiment dem-
onstrated that inhibitor-treated gingipains do not interfere with the
activity of fibronectin's cell-binding domain, and hence that anti-
spreading activity in the experiment with full-length fibronectin
(Fig. 5) must originate from tenascin-C and its fragments. We conclude
that digestion of large tenascin-C by gingipains generates fragments
that retain potent anti-spreading activity against full-length fibronectin.

3.5. Fibronectin and tenascin-C fragments in gingival crevicular fluid of
periodontitis patients

To test whether fibronectin and tenascin-C fragments are associat-
ed with periodontal disease, GCF of periodontally healthy subjects
and periodontitis patients was analyzed by immunoblotting for the
two proteins. In exudates from healthy people (n=5), a polyclonal
antibody recognizing all fibronectin domains barely detected traces
of full-sized or fragmented protein (Fig. 6A). In contrast, fibronectin
fragments were clearly visible in eight out of ten patient samples,
and very prominent in three of them. The pattern of fragments re-
sembled those of fibronectin digested with purified gingipains, with
major bands at ca. 180, 120, and 50–70 kDa (Fig. 6A). When an iden-
tical blot was probed with mAb B28 against the C-terminal domain of
human tenascin-C, no signal was detected in GCF samples of all
healthy subjects (Fig. 6B). In contrast, strong bands of 50–70 kDa
were detected in two out of the ten patient samples; these two pa-
tients belonged to the group that also showed the highest signal for
fibronectin fragments (Fig. 6A, B). Thus, whereas fibronectin and
tenascin-C are not released into the gingival sulcus of healthy individ-
uals, these two ECM proteins are highly enriched in fragmented forms
in GCF fluid of a subset of periodontitis patients.

The mean Arg-gingipain activity in GCF samples from the peri-
odontitis group was roughly 15 times higher than in the control
group (pb0.01). However, there were large variations between pa-
tients, and values did not correlate directly with the amount of ECM
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fragments detected in the same sample (Supplementary Table S1; see
Discussion).

4. Discussion

The important role of gingipains in tissue destruction during peri-
odontitis has long been recognized, and several lines of evidence
indicate that these bacterial proteases specifically attack the interaction
of gingival and periodontal cells with their extracellular matrix
[7,14,15,43–45]. The gingipain concentration in periodontal pockets of
patients has been measured to be in the order of 1 μM [5], which is
10–100 times higher than what was used in the present or previous
studies to digest relevant ECM substrates in vitro. Much research has fo-
cused onfibronectin, amajor pericellular adhesion protein offibroblasts
[11]. Its most relevant cellular receptors are integrin α5β1, which rec-
ognizes an arg–gly–asp (RGD) peptide motif in the 10th fibronectin
type III (FNIII) domain, and the cell surface proteoglycan syndecan-4,
which engages with a heparin-binding site in the 13th FNIII domain of
the fibronectin subunit [11]. Gingipains with a hemagglutinin domain
were found to bindmore effectively to fibronectin on the surface of gin-
gival and periodontalfibroblasts than RgpB, apparently because this do-
main targets the protease to fibronectin fibrils, as was confirmed by
colocalization experiments [14]. The catalytic domains then not only
cleave fibronectin, but also its receptorα5β1 integrin,which colocalizes
with fibronectin in fibrillar adhesions on the cell surface [46]. Interest-
ingly, although Kgp does cleave fibronectin (c.f. Fig. 1), experiments
with P. gingivalis mutants (ΔrgpA, ΔrgpB, Δkgp) and specific inhibitors
indicated that the arginine-specific gingipains but not Kgpwere primar-
ily responsible for detaching fibroblasts from their ECM substrate [15].
Our present results might provide a rationale for this finding. First, we
observed that although all three gingipains generated distinct fragment
patterns from purified human fibronectin, only HRgpA and RgpB
destroyedmost of its cell-spreading activity in our in vitro assay, where-
as a mixture of similarly sized fibronectin fragments (40–70 kDa) pro-
duced by Kgp cleavage and coated onto plastic dishes still promoted
spreading of fibroblasts. Moreover, we were able to confirm these re-
sults with a recombinant fibronectin fragment (FNIII7-11 [26]) that in-
cluded the 10th fibronectin type III repeat with the RGD cell-binding
site recognized by integrins. Again, all three gingipains cleaved this
part of the fibronectin molecule, and the smallest stable fragments
were of similar size (ca. 35 kDa). Nevertheless, FNIII7-11 digested with
HRgpA and RgpB, but not with Kgp, completely lost its cell-spreading
activity. Thus, whether complex pericellular matrix [14,15], purified fi-
bronectin, or its isolated cell-binding region is treated with gingipains,
the arginine-specific proteases are much more effective in compromis-
ing cell adhesion function than the lysine-specific. It is of course tempt-
ing to speculate that HRgpA and RgpB might cleave the cell-binding
region of fibronectin directly at the RGDmotif, especially since this pep-
tide sequence is known to be contained in an exposed loop at the sur-
face of the 10th FNIII domain [47]. Thus, HRgpA and RgpB might very
specifically target the binding of fibronectin to integrin α5β1, and
thereby one of the most important interactions of fibroblasts with
their ECM. For P. gingivalis this would be a very effective way to disturb
homeostasis of the host tissue [7]; however, this interesting possibility
needs to be explored further.

The extracellular matrix not only contains components that medi-
ate firm attachment of embedded cells, such as fibronectin, laminins
and many of the collagens, but also molecules that modulate and
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tune interactions of cells with their ECM, and that can be “adhesive”
or “anti-adhesive” depending on the context [48]. This is important
for tissue homeostasis since certain conditions require cells to loosen
their grip on the ECM, e.g. before mitosis, during migration, or under
physical strain. We hypothesized that cleavage of such adhesion
modulating proteins might be yet another mechanism by which
gingipains disturb cell–ECM interactions in periodontal tissues.
Among these “matricellular” ECM components [49] are the tenascins,
which on the one hand can promote adhesion of certain cell types via
specific integrins, and on the other hand are well known for interfering
with fibronectin-dependent spreading of fibroblasts [19]. Mechanis-
tically, the C-terminal region of tenascin-C recognizes the heparin-
binding site in the 13th FNIII domain of fibronectin, thereby blocking
the interaction of fibronectin with the cell surface proteoglycan
syndecan-4 [42]. Integrin α5β1 and syndecan-4 need to signal syn-
ergistically to activate the small GTPase RhoA, which in turn controls
actin dynamics required for cell spreading [50]. This is the reason
why isolated fibroblasts in fact attach to a mixture of fibronectin
and tenascin-C, but remain rounded on such a substrate and are
not able to extend processes [37,42]. We used this assay to test the
effect of gingipain digestion on the anti-adhesive function of
tenascin-C variants. First, we found that only “large” tenascin-C, which
is the form induced in many inflammatory processes [18], is susceptible
to cleavage by all three gingipains, whereas the “small” variant expressed
in healthy ligaments and tendons [20] resists attack by these proteases. It
can be concluded that gingipain cleavage sites are located mainly or ex-
clusively in the alternatively spliced FNIII domains of tenascin-C. Surpris-
ingly, digestion by any of the gingipains actually increased rather than
decreased the anti-spreading function of “large” tenascin-C; i.e. frag-
ments presumably from the C-terminal region [38,41] appeared to be
more active in this assay than the intact protein. Although this seems pa-
radoxical, there are many reports indicating that proteolytic cleavage of
certain ECM proteins generates fragments (“matrikines”) with activities
that are cryptic in the intact molecules [51]; probably the best known is
endostatin, a fragment of collagen XVIII with supposed anti-angiogenic
activity [52]. Concerning fibronectin, fragments from the N-terminal
half were reported to inhibit matrix assembly [53,54] and to increase cy-
tokine secretion by macrophages [17], whereas different fragments even
appear to exhibitmetalloproteinase-like activity (reviewed in [55]). Frag-
ments of tenascin-C containing N-terminal EGF-like repeats have been
reported to bind to the EGF receptorwithmoderate affinity and to trigger
cell proliferation [56], whereas a fragment consisting of FNIII repeats 1–8
inhibits fibronectin assembly [57]. Thus, one might speculate that the
anti-adhesive activity in the C-terminal domain [38,41] is partially
self-inhibited in the large tenascin-C variant by the alternatively spliced
region, and that proteolytic cleavage by gingipains generates fragments
with higher activity than the intact large subunit. It should be noted
that not all proteases act on tenascin-C in this manner. We have shown
earlier that in contrast to gingipains, which cleave in the extra repeats,
the metalloproteinase meprin-β destroys the anti-adhesive activity of
tenascin-C by cutting at a distinct site, namely within the constant
C-terminal domain [58].

Similar to fibronectin fragments, we detected tenascin-C cleavage
products in gingival crevicular fluid obtained fromperiodontitis patients.
They were of similar size as those generated by gingipains in vitro, and
likewise reacted with an antibody to the constant C-terminal domain
of tenascin-C,which has been reported to harbor the anti-adhesive activ-
ity [38,41]. Earlier, we reported similar cleavage products in sulcus fluid
of peri-implantitis patients [59]. However, tenascin-C fragments were
detected only in a small subset of periodontitis cases, and so far we
have not been able to correlate their appearancewith clinical parameters
such as the severity of the disease or the presence or absence of certain
bacterial species. The individuals with high amounts of tenascin-C frag-
ments in their GCFwere positive for P. gingivalis aswell as for T. forsythia,
another highly proteolytic periodontopathogen [60], but so were all
other periodontitis patients in our sample (with one exception for
P. gingivalis). When comparing groups, the mean proteolytic activity
was found to be several fold increased in patient GCF compared to con-
trols, whereas values for individual patients did not correlate directly
with the level of ECM fragments in the same sample (Supplementary
Table S1). However, the amount of proteolytic products also depends
on the available substrate. In the periodontal pockets of most patients,
the gingipain concentration is in excess of what is required to cleave
ECM substrates in vitro [5]. Assuming that the fragments found in patient
samples have been generated by gingipain cleavage, theymust originate
from “large” tenascin-C variant, i.e. from the form that is known to be in-
duced during inflammatory processes [18]. Thus, the appearance of frag-
ments in a specific patient sample is likely to reflect an increase in
tenascin-C expression during the course of the disease, and must not
necessarily correspond to a higher concentration of bacterial proteases
in periodontal tissue. Such high tenascin-C expression might be due to
a different inflammatory response in these specific patients [18,21], but
a prospective study will be required to elucidate the exact mechanism
behind this observation.

5. Conclusion

Our present results provide strong evidence that P. gingivalis can
use gingipains to specifically interfere with cell adhesion in their
host tissue in a dual way: first, by cleaving fibronectin in its major
cell-binding domain, and second, by increasing the anti-adhesive ac-
tivity of tenascin-C, a major modulator of contacts between fibro-
blasts and their ECM. Further studies are required to address the
clinical relevance of these findings.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbadis.2013.01.003.
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