Topological uniform descent and Weyl type theorem

Xiaohong Cao

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710062, People’s Republic of China

Received 30 September 2005; accepted 3 July 2006
Available online 21 August 2006
Submitted by R.A. Brualdi

Abstract

The generalized Weyl’s theorem holds for a Banach space operator T if and only if T or T^* has the single valued extension property in the complement of the Weyl spectrum (or B-Weyl spectrum) and T has topological uniform descent at all λ which are isolated eigenvalues of T. Also, we show that the generalized Weyl’s theorem holds for analytically paranormal operators.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 47A53; 47A55; 47A15

Keywords: Generalized Weyl’s theorem; Generalized a-Weyl’s theorem; Topological uniform descent

1. Introduction

Let $B(X)$ denote the algebra of bounded linear operators on a Banach space X. An operator $T \in B(X)$ is said to be Fredholm if $R(T)$ is closed and both the deficiency induces $n(T) = \dim N(T)$ and $d(T) = \dim X/R(T)$ are finite, and then the index of T, $\text{ind}(T)$, is defined to be $\text{ind}(T) = n(T) - d(T)$. The ascent of T, $\text{asc}(T)$, is the least non-negative integer n such that $N(T^n) = N(T^{n+1})$ and the descent, $\text{des}(T)$, is the least non-negative integer n such that $R(T^n) = R(T^{n+1})$. The operator T is Weyl if it is Fredholm of index zero, and T is said to be Browder if it is Fredholm “of finite ascent and descent”. The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined by

E-mail address: xiaohongcao@snnu.edu.cn

0024-3795/S - see front matter © 2006 Elsevier Inc. All rights reserved.
\[\sigma_c(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \}, \]
\[\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \}, \]
\[\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder} \}. \]

Let \(\rho(T) \) denote the resolvent set of the operator \(T \) and \(\sigma(T) = \mathbb{C} \setminus \rho(T) \) denote the usual spectrum of \(T \). We use \(\pi_{00}(T) \) denote the set of isolated eigenvalues \(\lambda \) of \(T \) for which \(\dim N(T - \lambda I) < \infty \). Also let \(\pi^a_{00}(T) \) be the set of \(\lambda \in \mathbb{C} \) such that \(\lambda \) is an isolated point of \(\sigma_a(T) \) and \(0 < \dim N(T - \lambda I) < \infty \), where \(\sigma_a(T) \) denotes the approximate point set of the operator \(T \in B(X) \). We say that the Browder’s theorem holds for \(T \) if
\[\sigma_w(T) = \sigma_b(T), \]
the Weyl’s theorem holds for \(T \) if
\[\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T), \]
and the a-Weyl’s theorem holds for \(T \) if
\[\sigma_a(T) \setminus \sigma_{ea}(T) = \pi^a_{00}(T), \]
where \(\sigma_{ea}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \text{SF}_+^\circ(X) \} \) and \(\text{SF}_+^\circ(X) = \{ T \in B(X), T \text{ is upper semi-Fredholm of } \text{ind}(T) \leq 0 \} \). The concept of a-Weyl’s theorem was introduced by Rakočević: a-Weyl’s theorem for \(T \iff \text{Weyl’s theorem for } T \), but the converse is generally false [13].

For a bounded linear operator \(T \) and a nonnegative integer \(n \) define \(T_{[n]} \) to be the restriction of \(T \) to \(R(T^n) \) viewed as a map from \(R(T^n) \) into \(R(T^n) \) (in particular \(T_{[0]} = T \)). If for some integer \(n \) the range space \(R(T^n) \) is closed and \(T_{[n]} \) is an upper (resp. a lower) semi-Fredholm operator, then \(T \) is called an upper (resp. a lower) semi-B-Fredholm operator. We call \(T \) B-Weyl if for some integer \(n \) the range space \(R(T^n) \) is closed and \(T_{[n]} \) is Weyl. Let \(\sigma_{BW}(T) \) be the B-Weyl spectrum. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator.

Let \(T \in B(X) \) and let (see [10])
\[\Lambda(T) = \{ n \in \mathbb{N} : \forall m \in \mathbb{N}, m \geq n \Rightarrow [R(T^n) \cap N(T)] \subseteq [R(T^m) \cap N(T)] \}. \]
Then the degree of stable iteration \(\text{dis}(T) \) of \(T \) is defined as \(\text{dis}(T) = \inf \Lambda(T) \).

Let \(T \) be a semi-B-Fredholm operator and let \(d \) be the degree of the stable iteration of \(T \). It follows from Proposition 2.1 in [2] that if \(T_{[d]} \) is a semi-Fredholm operator, and \(\text{ind}(T_{[m]}) = \text{ind}(T_{[d]}) \) for each \(m \geq d \). This enables us to define the index of a semi-B-Fredholm operator \(T \) as the index of the semi-Fredholm operator \(T_{[d]} \).

In the case of a normal operator \(T \) acting on a Hilbert space, Berkani [3, Theorem 4.5] showed that
\[\sigma_{BW}(T) = \sigma(T) \setminus E(T), \]
\(E(T) \) is the set of all eigenvalues of \(T \) which are isolated in the spectrum of \(T \). This result gives a generalization of the classical Weyl’s theorem. We say \(T \) obeys generalized Weyl’s theorem if
\[\sigma_{BW}(T) = \sigma(T) \setminus E(T) \] [4, Definition 2.13].

Similarly, let \(\text{SBF}_+^\circ(X) \) be the class of all upper semi-B-Fredholm operators, and \(\text{SBF}_+^\circ(X) \) the class of all \(T \in \text{SBF}_+^\circ(X) \) such that \(\text{ind}(T) \leq 0 \). Also let
\[\sigma_{\text{SBF}_+^\circ}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not in } \text{SBF}_+^\circ(X) \}. \]
We call T obeys generalized a-Weyl’s theorem if
$$\sigma_{SBF+}(T) = \sigma_a(T) \setminus E^a(T),$$
where $E^a(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_a(T)$ [4, Definition 2.13]. From Theorem 3.11 in [4], we say that T satisfying generalized a-Weyl’s theorem satisfies a-Weyl’s theorem, but the converse is not true (see Example 3.12 in [4]).

Sufficient conditions for an operator $T \in B(X)$ to satisfy Weyl’s theorem have been considered by a number of authors in the recent past ([1,9], etc.). The plan of this paper is as follows. In Section 2, we prove our main result and give the necessary and sufficiently conditions for T which the generalized Weyl’s theorem holds. In Section 3, we show the generalized Weyl’s theorem for analytically paranormal operators.

2. Generalized Weyl type theorem for operator T

If $T \in B(X)$, for each nonnegative integer n, T induces a linear transformation from the vector space $R(T^n)/R(T^{n+1})$ to the space $R(T^{n+1})/R(T^{n+2})$. We will let $k_n(T)$ be the dimension of the null space of the induced map and let $k(T) = \sum_{n=0}^{\infty} k_n(T)$. The following definition describes the classes of operators we will study. These definitions were introduced by Grabiner in [8].

Definition 2.1. If there is a nonnegative integer d for which $k_n(T) = 0$ for $n \geq d$ (i.e., if the induced maps are isomorphisms for $n \geq d$), we say that T has uniform descent for $n \geq d$.

Definition 2.2. Suppose there is a nonnegative integer d for which T has uniform descent for $n \geq d$. If $R(T^n)$ is closed in the operator range topology of $R(T^d)$ for $n \geq d$, then we say that T has topological uniform descent.

It can be shown that if T is upper semi-B-Fredholm, T has topological uniform descent. For an operator T which has the topological uniform descent, there is the property [8, Corollary 4.9].

Lemma 2.1. Suppose that $T \in B(X)$ and λ belongs to the boundary of the spectrum of T. If $T - \lambda I$ has topological uniform descent, then λ is a pole of T.

An operator $T \in B(X)$ has the single valued extension property at $\lambda_0 \in \mathbb{C}$, SVEP at $\lambda_0 \in \mathbb{C}$ for short, if for every open disc D_{λ_0} centered at λ_0 the only analytic function $f: D_{\lambda_0} \to X$, which satisfies the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$. Trivially, every operator T has SVEP at every point of the resolvent $\mathbb{C} \setminus \sigma(T)$; also T has the SVEP at $\lambda \in \text{iso } \sigma(T)$. We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. Let $\Pi(T)$ be the set of pole points in spectrum set, clearly, $\Pi(T) \subseteq E(T)$.

Proposition 2.1. If $T \in B(X)$, then $T - \lambda I$ has topological uniform descent for all $\lambda \in E(T)$ if and only if $E(T) = \Pi(T)$.

Proof. Suppose $E(T) = \Pi(T)$. Then for each $\lambda \in E(T)$ there corresponds an integer $p \geq 1$ such that $X = N[(T - \lambda I)^p] \oplus R[(T - \lambda I)^p]$. Thus for each $n \geq p$, $R[(T - \lambda I)^n]$ is closed. Since $N(T - \lambda I) \cap R[(T - \lambda I)^n] = \{0\}$ for every $n \geq p$, it follows that $k_n(T - \lambda I) = 0$ for $n \geq p$. Then $T - \lambda I$ has uniform descent for $n \geq p$. Therefore from Definition 2.2, we know that $T - \lambda I$ has topological uniform descent.
Conversely, from Lemma 2.1, we can see the result is true. □

If T has SVEP, then T satisfies Browder’s theorem, thus we can prove that $\sigma (T) \setminus \sigma_{BW}(T) \subseteq E(T)$. In fact, let $\lambda_0 \in \sigma (T) \setminus \sigma_{BW}(T)$, from the Remark in [5] and the proof in Lemma 4.2 in [8], there exists $\epsilon > 0$ such that $T - \lambda I$ is Weyl and $N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$ if $0 < |\lambda - \lambda_0| < \epsilon$. Since Browder’s theorem holds for T, it follows that $T - \lambda I$ is Browder. Then $N(T - \lambda I) = N(T - \lambda I) \cap \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n] = \{0\}$ [14, Lemma 3.4]. This implies $\lambda_0 \in \text{iso} \sigma (T)$. We claim that $N(T - \lambda_0 I) \neq \{0\}$. If not, $T - \lambda_0 I$ must be bounded from below, and therefore $T - \lambda_0 I$ has topological uniform descent. From Lemma 2.1, $T - \lambda_0 I$ Browder, therefore $T - \lambda_0 I$ is invertible because $N(T - \lambda_0 I) = \{0\}$. It is a contradiction. In additional, if T has topological uniform descent for $\lambda \in E(T)$, then T satisfies generalized Weyl’s theorem. The following theorem shows that the SVEP hypothesis on T can be weakened to SVEP at all points in the complement of $\sigma_w(T)$.

Theorem 2.1. $T \in B(X)$ satisfies generalized Weyl’s theorem if and only if

(a) T or T^* has SVEP at all $\lambda \in \sigma (T) \setminus \sigma_w(T)$;
(b) T has topological uniform descent at all $\lambda \in E(T)$.

Proof. Suppose T satisfies generalized Weyl’s theorem. Since generalized Weyl’s theorem implies Weyl’s theorem, it follows that $\sigma (T) \setminus \sigma_w(T) = \pi_0(T)$. Then for every $\lambda \in \sigma (T) \setminus \sigma_w(T)$, we have that $\lambda \in \text{iso} \sigma (T)$. Therefore both T and T^* has SVEP at all $\lambda \in \sigma (T) \setminus \sigma_w(T)$. The fact that the Weyl’s theorem holds for T implies $E(T) = \Pi(T)$. Then from Proposition 2.1, T has topological uniform descent at all $\lambda \in E(T)$.

For the converse, let $\lambda \in E(T)$. By hypothesis (b), $\lambda \in \Pi(T)$. Thus $T - \lambda I$ is B-Weyl, which means that $\lambda \in \sigma (T) \setminus \sigma_{BW}(T)$. For the reverse inclusion, let $\lambda \in \sigma (T) \setminus \sigma_{BW}(T)$. Then there exists $\epsilon > 0$ such that $T - \mu I$ is Weyl and $N(T - \mu I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \mu I)^n]$ if $0 < |\mu - \lambda| < \epsilon$. If T or T^* has SVEP at μ, then $T - \mu I$ has finite ascent and finite descent [1, Corollary 2.10]. Then $N(T - \mu I) = N(T - \mu I) \cap \bigcap_{n=1}^{\infty} R[(T - \mu I)^n] = \{0\}$ [14, Lemma 3.4]. Thus $\lambda \in \text{iso} \sigma (T)$. From Proposition 2.1, $\lambda \in \Pi(T)$. Then $\lambda \in E(T)$. From the preceding proof, we know that the generalized Weyl’s theorem holds for T.

Remark 2.1. An operator T is said to be semi-regular if $R(T)$ is closed and $N(T) \subseteq \bigcap_{n=1}^{\infty} R(T^n)$. The Kato spectrum $\sigma_k(T)$ of T is defined by $\sigma_k(T) = \{ \lambda \in C \mid T - \lambda I \text{ is not semi-regular} \}$. Condition (a) in Theorem 2.1 can be instead by $(a')\sigma(T) = \sigma_w(T) \cup \sigma_k(T)$ or $\sigma(T^*) = \sigma_w(T^*) \cup \sigma_k(T^*)$. In the following, we will prove that condition (a) is equivalent to condition (a'). Suppose T or T^* has SVEP at $\lambda \in \sigma (T) \setminus \sigma_w(T)$, let $\lambda_0 \notin [\sigma_w(T) \cup \sigma_k(T)]$. Then $T - \lambda_0 I$ is Weyl and $N(T - \lambda_0 I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda_0 I)^n]$. Since T or T^* has SVEP, then $T - \lambda_0 I$ has finite ascent. Then $N(T - \lambda_0 I) = N(T - \lambda_0 I) \cap \bigcap_{n=1}^{\infty} R[(T - \lambda_0 I)^n] = \{0\}$ [14, Lemma 3.4], which means that $T - \lambda_0 I$ is invertible. Then $\sigma (T) = \sigma_w(T) \cup \sigma_k(T)$. Conversely, suppose $\sigma (T) = \sigma_w(T) \cup \sigma_k(T)$. Let $\lambda_0 \in \sigma (T) \setminus \sigma_w(T)$, then there exists $\epsilon > 0$ such that $\lambda \notin [\sigma_w(T) \cup \sigma_k(T)]$ if $0 < |\lambda - \lambda_0| < \epsilon$. Then $\lambda_0 \in \text{iso} \sigma (T)$, which means that T or T^* has SVEP at λ_0. Also, Condition (a) in Theorem 2.1 can be instead by (a''): $T - \lambda I$ or $T^* - \lambda I$ has finite ascent for $\lambda \in \sigma (T) \setminus \sigma_w(T)$.

Suppose T has topological uniform descent at all $\lambda \in \text{iso} \sigma (T)$, then $\text{iso} \sigma (T) = E(T) = \Pi(T)$ (Lemma 2.1 and Proposition 2.1). Since $\text{iso} \sigma (T) = \text{iso} \sigma (T^*)$ and $\Pi(T) = \Pi(T^*)$, we have that $\text{iso} \sigma (T^*) = \Pi(T^*)$. But since $\Pi(T^*) \subseteq E(T^*) \subseteq \text{iso} \sigma (T^*)$, it follows that $\text{iso} \sigma (T^*) = \text{iso} \sigma (T^*) = \Pi(T^*)$. Therefore, T satisfies generalized Weyl’s theorem.
\(E(T^*) = \Pi(T^*) \). Using Proposition 2.1 we know \(T^* \) has topological uniform descent at all \(\sigma(T) \). Then we have the generalized Weyl’s theorem for \(T^* \) as follows.

Corollary 2.1. If \(T \) or \(T^* \) has SVEP at all \(\lambda \in \sigma(T) \setminus \sigma_w(T) \) and \(T \) has topological uniform descent at all \(\sigma(T) \), then the generalized Weyl’s theorem holds for \(T^* \).

Proof. Using Theorem 2.1 and the statements before Corollary 2.1, we only need to prove that \(T \) or \(T^* \) has SVEP at all \(\lambda \in \sigma(T) \setminus \sigma_w(T) \). Since \(\sigma(T) = \sigma(T^*) \) and \(\sigma_w(T) = \sigma_w(T^*) \), it follows that \(T^* \) or \(T \) has SVEP at all \(\lambda \in \sigma(T^*) \setminus \sigma_w(T^*) \). Then Theorem 2.1 tells us that the generalized Weyl’s theorem holds for \(T^* \). \(\square \)

For the generalized a-Weyl’s theorem, we have:

Theorem 2.2

(1) Suppose \(T \) has topological uniform descent at each \(\lambda \in E(T) \). If \(T^* \) has SVEP, then the generalized a-Weyl’s theorem holds for \(T \).

(2) Suppose \(T \) has topological uniform descent at each \(\lambda \in \sigma(T) \). If \(T \) has SVEP, then the generalized a-Weyl’s theorem holds for \(T^* \).

Proof

(1) The hypothesis \(T^* \) has SVEP implies \(\sigma(T) = \sigma_a(T) [11, p. 35] \), and hence \(E(T) = E^a(T) \). We claim that \(\sigma_{SBF^+}(T) = \sigma_{BW}(T) \). In fact, the inclusion \(\sigma_{SBF^+}(T) \subseteq \sigma_{BW}(T) \) is clear. For the inverse inclusion, let \(T - \lambda_0 I \) be upper semi-B-Fredholm of \(\text{ind}(T - \lambda_0 I) \leq 0 \), then there exists \(\epsilon > 0 \) such that \(T - \lambda I \) is upper semi-Fredholm of \(\text{ind}(T - \lambda I) = \text{ind}(T - \lambda_0 I) \leq 0 \) if \(0 < |\lambda - \lambda_0| < \epsilon \) [2, Corollary 3.2]. Therefore \(T^* - \lambda I \) is lower semi-Fredholm of \(\text{ind}(T^* - \lambda I) \geq 0 \). Since \(T^* \) has SVEP, it induces that \(\text{ind}(T^* - \lambda I) \leq 0 \). Then \(T^* - \lambda I \) is Weyl and hence \(T - \lambda I \) is Weyl if \(0 < |\lambda - \lambda_0| < \epsilon \). This proves that \(\text{ind}(T - \lambda_0 I) = \text{ind}(T - \lambda I) = 0 \), which means that \(\lambda_0 \notin \sigma_{BW}(T) \). Since the generalized Weyl’s theorem holds for \(T \), it follows that the generalized a-Weyl’s theorem holds for \(T \).

(2) If \(T \) has SVEP, then \(\sigma(T^*) = \sigma_a(T^*) \) and \(E^a(T^*) = E(T^*) \). Similar to the preceding proof, we know \(\sigma_{SBF^+}(T^*) = \sigma_{BW}(T^*) \). From Corollary 2.1, the generalized Weyl’s theorem holds for \(T^* \), then the generalized a-Weyl’s theorem holds for \(T^* \). \(\square \)

In the following, let \(H(T) \) be the class of all complex-valued functions which are analytic on \(\sigma(T) \) and are not constant on any component of \(\sigma(T) \).

Theorem 2.3. Suppose \(T \) has topological uniform descent at each \(\lambda \in \sigma(T) \).

(1) If \(T \) or \(T^* \) has SVEP, then the generalized Weyl’s theorem holds for \(f(T) \) for each \(f \in H(T) \).

(2) If \(T^* \) has SVEP, then the generalized a-Weyl’s theorem holds for \(f(T) \) for each \(f \in H(T) \).

(3) If \(T \) has SVEP, then the generalized a-Weyl’s theorem holds for \(f(T^*) \) for each \(f \in H(T) \).

Proof

(1) Let \(\mu_0 \in [\sigma(f(T)) \setminus \sigma_{BW}(f(T))] \), then there exists \(\epsilon > 0 \) such that \(f(T) - \mu I \) is Weyl and \(N[f(T) - \mu I] \subseteq \bigcap_{n=1}^{\infty} R[(f(T) - \mu I)^{n}] \) if \(0 < |\mu - \mu_0| < \epsilon \). For each such \(\mu \), suppose
f(T) − μI = (T − λ₁I)n₁(T − λ₂I)n₂ · · · (T − λₖI)nₖ g(T), where λᵢ ≠ λⱼ and g(T) is invertible. Then T − λᵢI is Fredholm and ∑ₖₙ₌₁ ind([(T − λᵢI)nᵢ]) = 0. Since T or T* has SVEP, it follows that ind(T − λᵢI) ≤ 0 for all λᵢ or ind(T − λᵢI) ≥ 0 for all λᵢ. Then ind(T − λᵢI) = 0, which means that T − λᵢI is Weyl. From Theorem 2.1, we know that the generalized Weyl’s theorem holds for T, then T − λᵢI is Browder and hence f(T) − μI is Browder. Thus N[f(T) − μI] = N[f(T) − μI] ∩ ∩ₙ₌₁ R[(f(T) − μI)n] = {0}. It induces f(T) − μI is invertible and hence μ₀ ∈ σ(f(T)). Lemma 2.1 tells us that μ₀ is a pole of f(T), then μ₀ ∈ E(f(T)). For the converse, let μ₀ ∈ E(f(T)) and let f(T) − μ₀I = (T − λ₁I)n₁(T − λ₂I)n₂ · · · (T − λₖI)nₖ g(T), where λᵢ ≠ λⱼ and g(T) is invertible. Without loss of generality, we suppose λᵢ ∈ σ(T). Then λ ∈ iso σ(T). Since T has topological uniform descent at each λᵢ, using Lemma 2.1, we know λᵢ is pole of T. Then T − λᵢI is B-Weyl and then f(T) − μ₀I is B-Weyl [5, Corollary 3.3]. Now we get that σ(f(T)) \ σ_BW(f(T)) = E(f(T)), which means that the generalized Weyl’s theorem holds for f(T).

(2) If T* has SVEP, and let f ∈ H(T), then f(T*) = f(T)* has SVEP [11, Theorem 3.3.9], which implies that σ(f(T)) = σₑ(f(T)). Arguing as in the proof of Theorem 2.2 it is seen that σₑ(f(T)) = σₑ_SBW(f(T)). Since the generalized Weyl’s theorem holds for f(T), it follows that f(T) satisfies generalized a-Weyl’s theorem.

(3) Suppose T has SVEP. Let μ₀ ∈ σₑ(f(T*))) \ σₑ_SBW(f(T*)), then there exists δ > 0 such that f(T*) − μI ∈ SF⁺∞(X) and N[f(T*) − μI] ⊆ ∩ₙ₌₁ R[(f(T*) − μI)n] if 0 < |μ − μ₀| < δ. For each such μ, suppose f(T*) − μI = (T* − λ₁I)n₁(T* − λ₂I)n₂ · · · (T* − λₖI)nₖ g(T*), where λᵢ ≠ λⱼ and g(T*) is invertible. Then T* − λᵢI is upper semi-Fredholm and ∑ₙ₌₁ ind([(T* − λᵢI)nᵢ]) ≤ 0. Since T has SVEP, it follows that ind(T − λᵢI) ≤ 0 for all λᵢ. Then ind(T* − λᵢI) = 0, which means that T* − λᵢI is Weyl. From Corollary 2.1, we know that the generalized Weyl’s theorem holds for T*, then T* − λᵢI is Browder and hence f(T*) − μI is Browder. Thus N[f(T*) − μI] = N[f(T*) − μI] ∩ ∩ₙ₌₁ R[(f(T*) − μI)n] = {0}. It induces f(T*) − μI is invertible and hence μ₀ ∈ iso σ(f(T*)). Lemma 2.1 tells us that μ₀ is a pole of f(T*), then μ₀ ∈ E⁺∞(f(T*)). For the converse, let μ₀ ∈ E⁺∞(f(T*)) and let f(T*) − μ₀I = (T* − λ₁I)n₁(T* − λ₂I)n₂ · · · (T* − λₖI)nₖ g(T*), where λᵢ ≠ λⱼ and g(T*) is invertible. Without loss of generality, we suppose λᵢ ∈ σ(T*). Since T has SVEP, it induces σₑ(T*) = σ(T*). Then λ ∈ iso σ(T). Since T has topological uniform descent at each λᵢ, using Lemma 2.1, we know λᵢ is pole of T. Thus λᵢ is pole of T*. Then T* − λᵢI is B-Weyl and then f(T*) − μ₀I is B-Weyl [5, Corollary 3.3], which means that μ₀ ∈ σₑ(f(T*)) \ σₑ_SBW(f(T*)). This proves that the generalized a-Weyl’s theorem holds for f(T*) for every f ∈ H(T).

Corollary 2.2. Suppose T has topological uniform descent at each λ ∈ iso σ(T), then the generalized Weyl’s theorem holds for f(T) for each f ∈ H(T) if and only if

(1) T or T* has SVEP at λ ∈ σ(T) \ σₑ(T);
(2) f(σₑ(T)) = σₑ(f(T)) for each f ∈ H(T).

Proof. We only prove that if the generalized Weyl’s theorem holds for f(T), then f(σₑ(T)) = σₑ(f(T)) for each f ∈ H(T). σₑ(f(T)) ⊆ f(σₑ(T)) is clear. For the converse, let μ₀ ∉ σₑ(f(T)) and suppose f(T) − μ₀I = (T − λ₁I)n₁(T − λ₂I)n₂ · · · (T − λₖI)nₖ g(T), where λᵢ ≠ λⱼ and g(T) is invertible. Then T − λᵢI is Fredholm. Since the generalized Weyl’s theorem holds for f(T), it follows that f(T) − μ₀I is Browder. It is well known that σₑ(f(T)) = f(σₑ(T))
for each \(f \in H(T) \). Then \(T - \lambda_i I \) is Browder, which means that \(\lambda_i \notin \sigma_w(T) \). This implies that \(\mu_0 \notin f(\sigma_w(T)) \). Then \(f(\sigma_w(T)) = \sigma_w(f(T)) \) for each \(f \in H(T) \). \(\Box \)

Remark 2.2. In Corollary 2.2, condition (2) can be instead by the condition “\(\text{ind}(T - \lambda)\text{ind}(T - \mu I) \geq 0 \) for each pair \(\lambda, \mu \in \mathbb{C}\setminus\sigma_c(T) \)” [9, Theorem 5].

3. Generalized Weyl type theorem for analytically paranormal operator

Recall that \(T \in B(X) \) is said to be paranormal if

\[
\|Tx\|^2 \leq \|T^2x\| \|x\| \quad \text{for all } x \in X.
\]

An operator \(T \in B(X) \) is algebraically paranormal if there exists \(f \in H(T) \) such that \(f(T) \) is paranormal. Analytically paranormality is preserved under restriction to invariant subspaces.

We say that \(T \) is algebraically paranormal if there exists a nonconstant complex polynomial \(p \) such that \(p(T) \) is paranormal. For algebraically paranormal operator \(T \), it is shown in [7] that Weyl’s theorem holds for \(f(T) \) for any \(f \in H(T) \). In this section, we will show that for analytically paranormal operator \(T \), the generalized Weyl’s theorem holds for \(f(T) \) for any \(f \in H(T) \).

Let us give a preliminary Lemma [7, Lemma 2.1].

Lemma 3.1. Let \(T \) be a paranormal operator, and assume that \(\sigma(T) = \{\lambda\} \). Then \(T = \lambda I \).

The main result in this section is:

Theorem 3.1. Let \(T \in B(X) \) be an analytically paranormal operator, then

(a) the generalized Weyl’s theorem holds for \(f(T) \) for every \(f \in H(T) \);
(b) the generalized a-Weyl’s theorem holds for \(f(T^*) \) for every \(f \in H(T) \).

Proof. (a) Using Corollary 2.2, we need to prove (1) \(T \) has topological uniform descent at \(\lambda \in \text{iso} \sigma(T) \); and (2) \(T \) or \(T^* \) has SVEP.

(1) Let \(\lambda_0 \in \text{iso} \sigma(T) \). Using the spectral projection, we can represent \(T \) as the direct sum

\[
T = T_1 + T_2, \quad \text{where } \sigma(T_1) = \{\lambda_0\} \text{ and } \sigma(T_2) = \sigma(T) \setminus \{\lambda_0\}.
\]

Let \(f(T) \) be paranormal for some \(f \in H(T) \), then \(f(T_1) \) is paranormal. Since \(\sigma(f(T_1)) = f(\sigma(T_1)) = f(\lambda_0) \), from Lemma 3.1, we know that \(f(T_1) - f(\lambda_0)I = 0 \). Let \(f(T_1) - f(\lambda_0)I = (T_1 - \lambda_0 I)^{n_0}(T_1 - \lambda_1 I)^{n_1} \cdots (T_1 - \lambda_k I)^{n_k}g(T_1) \), where \(\lambda_i \neq \lambda_j \) and \(g(T_1) \) is invertible. Then \((T_1 - \lambda_0 I)^{n_0}(T_1 - \lambda_1 I)^{n_1} \cdots (T_1 - \lambda_k I)^{n_k}g(T_1) = 0 \). The fact that \(T_1 - \lambda_i I \) is invertible for every \(\lambda_1, \lambda_2, \ldots, \lambda_k \) tells us that \((T_1 - \lambda_0 I)^{n_0} = 0 \), which means that \(T_1 - \lambda_0 I \) is nilpotent. Then \(T_1 - \lambda_0 I \) has finite ascent and descent. Since \(T_2 - \lambda_0 I \) is invertible, it follows that \(T - \lambda_0 I \) has finite ascent and descent. This fact means that \(\lambda_0 \) is a pole of \(T \). Let \(\text{asc}(T - \lambda_0 I) = \text{des}(T - \lambda_0 I) = p \), then \(X = N[(T - \lambda_0 I)^p] \oplus R[(T - \lambda_0 I)^p] \). Using the definition of topological uniform descent, we know that \(T \) has topological uniform descent at \(\lambda_0 \).

(2) We claim that \(T \) has SVEP. Since \(f(T) \) is paranormal for some \(f \in H(T) \), it follows that \(f(T) \) has SVEP [6, Corollary 2.10]. Hence by Theorem 3.3.9 in [12], \(T \) has SVEP.

(b) Using Theorem 2.3, we know that the generalized a-Weyl’s theorem holds for \(f(T) \) for any \(f \in H(T) \). \(\Box \)
From Corollary 2.2 and Theorem 3.1, we obtain the following useful consequence.

Corollary 3.1. Let \(T \) be an analytically paranormal operator. Then
\[
\sigma_w(f(T)) = f(\sigma_w(T)) \quad \text{for every } f \in H(T).
\]

If \(T^* \) is an analytically paranormal operator, we claim that \(T \) has topological uniform descent at \(\lambda \in \text{iso } \sigma(T) \). In fact, let \(\lambda \in \text{iso } \sigma(T) \), then \(\lambda \in \text{iso } \sigma(T^*) \). From the proof of Theorem 3.1, we can see that \(\lambda \) is a pole of \(T^* \). Thus \(\lambda \) is a pole of \(T \), which means that \(T \) has topological uniform descent at \(\lambda \). Using Theorem 2.3, we can induce the following result.

Theorem 3.2. Suppose that \(T^* \in B(X) \) be an analytically paranormal operator, then the generalized a-Weyl’s theorem holds for \(f(T) \) for every \(f \in H(T) \).

Acknowledgments

We are grateful to the referees for helpful comments concerning this paper.

References