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SUMMARY

Tumor cell metastasis is facilitated by ‘‘premetastatic niches’’ formed in destination organs by invading bone
marrow-derived cells (BMDCs). Lysyl oxidase (LOX) is critical for premetastatic niche formation. LOX
secreted by hypoxic breast tumor cells accumulates at premetastatic sites, crosslinks collagen IV in the
basement membrane, and is essential for CD11b+ myeloid cell recruitment. CD11b+ cells adhere to cross-
linked collagen IV and produce matrix metalloproteinase-2, which cleaves collagen, enhancing the invasion
and recruitment of BMDCs and metastasizing tumor cells. LOX inhibition prevents CD11b+ cell recruitment
and metastatic growth. CD11b+ cells and LOX also colocalize in biopsies of human metastases. Our findings
demonstrate a critical role for LOX in premetastatic niche formation and support targeting LOX for the treat-
ment and prevention of metastatic disease.
INTRODUCTION

During tumor progression, cells can acquire the capability for

invasion and metastasis to escape the primary tumor mass

and colonize nutrient-rich new organs (Gupta and Massague,

2006; Hanahan and Weinberg, 2000). There are few effective

treatment options for patients with metastatic disease (Steeg,

2006), and over 90% of cancer-related deaths can be attributed

to tumor metastases (Gupta and Massague, 2006). Increased

metastases, enhanced tumor progression, and decreased

patient survival have been associated with primary tumors that

contain large numbers of poorly oxygenated (hypoxic) tumor

cells (Cairns et al., 2003; Hockel and Vaupel, 2001; Pouyssegur

et al., 2006). Improved understanding of the role of tumor hyp-

oxia in the metastatic process is clearly needed so that more ef-

fective therapeutic strategies can be devised to treat metastatic

cancer.
Tumor cell metastasis is facilitated by formation of ‘‘premeta-

static niches’’ in destination organs (Kaplan et al., 2005) that con-

sist of clusters of bone marrow-derived cells (BMDCs). These

BMDCs are thought to create an environment that is permissive

for the subsequent invasion and growth of tumor cells (Condeelis

and Pollard, 2006; Coussens and Werb, 2002). The main BMDCs

identified at premetastatic sites are hematopoietic progenitor

cells that express vascular endothelial growth factor receptor-1

(VEGFR-1), along with BMDCs expressing CD133, CD34, and

c-Kit (Kaplan et al., 2005). CD11b+ (Mac-1+) cells have also

been identified in metastatic target organs (Hiratsuka et al.,

2006), and primary tumors are known to recruit CD11b+Gr-1+

myeloid cells (Yang et al., 2008) and CD45+ monocytic lineage

cells (including VEGFR-1+ and CD11b+ cells; Du et al., 2008).

CD11b+ cells have a variety of functions that may enhance

metastatic tumor growth. CD11b+Gr-1+ cells are known to be

myeloid-derived suppressor cells that are capable of inhibiting
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T cell- and NK cell-mediated immune responses (Liu et al., 2007;

Serafini et al., 2006). CD11b+Gr-1+ cells also incorporate into tu-

mor endothelium and enhance angiogenesis (Yang et al., 2004),

while CD11b+ myeloid cells enhance tumor growth through vas-

culogenesis (Ahn and Brown, 2008). The presence of CD11b+

cells at premetastatic sites may have important implications for

using anti-VEGF therapy to disrupt the premetastatic niche

(Kaplan et al., 2005), since tumors containing CD11b+Gr-1+

cells show decreased response to anti-VEGF therapy (Shojaei

and Ferrara, 2008). Thus, myeloid lineage cells may be important

components of the premetastatic niche.

The mechanism by which BMDCs are recruited to premeta-

static sites is poorly understood. Unidentified tumor-secreted

factors are thought to induce elevated fibronectin expression

at premetastatic sites and increase the recruitment of VEGFR-1+

cells (Kaplan et al., 2005). The recruitment of CD11b+ myeloid

cells to premetastatic sites may be influenced by VEGF-A and

by the TGF-b and/or TNF-a pathways (Hiratsuka et al., 2006).

However, tumor-secreted proteins that are essential for forma-

tion of the premetastatic niche and that could potentially be tar-

geted therapeutically are still largely unknown.

Lysyl oxidase (LOX) is an amine oxidase that crosslinks colla-

gens and elastins in the extracellular matrix (Kagan and Li, 2003).

LOX expression is increased in tumor cells exposed to physio-

logically relevant levels of hypoxia (Denko et al., 2003), and

LOX is associated with metastasis and poor survival in patients

with breast cancer or head and neck cancer (Erler et al., 2006).

LOX has been shown to enhance tumor cell invasion in vitro (Erler

et al., 2006; Kirschmann et al., 2002), and inhibition of the

expression or the enzymatic activity of secreted LOX eliminates

metastases in an orthotopic model of breast cancer (Erler et al.,

2006). Based on the marked decreases in metastatic growth that

we observed previously with therapeutic LOX inhibition and the

ability of LOX to remodel the extracellular matrix, we hypothe-

sized that LOX may influence multiple steps in the metastatic

process. We therefore studied the role of LOX in the recruitment

and invasion of BMDCs to premetastatic sites and in formation of

the premetastatic niche.

RESULTS AND DISCUSSION

LOX Is Required for BMDC Recruitment
to Premetastatic Sites
To investigate the role of LOX in formation of the premetastatic

niche, we orthotopically implanted mice with either wild-type

(WT) MDA-MB-231 human breast tumor cells or MDA-MB-231

cells expressing a LOX-targeting shRNA with significantly

reduced LOX protein expression and secretion (see Figure S1A

available online). Analysis of lungs harvested 6 weeks after tumor

implantation indicated that mice bearing LOX shRNA tumors had

significantly reduced numbers of pulmonary metastatic lesions

compared to WT tumor-bearing mice (Figure 1A, hematoxylin

and eosin [H&E] panels; Figure S1B). These data are in agree-

ment with our previous results indicating that inhibition of LOX

decreases tumor cell invasion and metastasis (Erler et al.,

2006). Interestingly, when lungs from these mice were analyzed

for the presence of BMDCs by flow cytometry (Figure S1C), we

found that the lungs of WT tumor-bearing mice had significantly

more CD11b+ myeloid cells and c-Kit+ (CD117+) myeloid pro-
36 Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc.
genitor cells than mice with LOX shRNA tumors (Figure 1B).

We did not observe a significant increase in the numbers of

F4/80+ mature macrophages, and 95% of the CD11b+ cells

found in the lungs of WT tumor-bearing mice were negative for

F4/80. Since monocytes have the potential to mature into mac-

rophages once in tissues, the increased number of CD11b+F4/

80� cells indicates that CD11b+ BMDCs recruited to metastatic

sites are largely immature progenitor cells from the myeloid line-

age. These data are in agreement with the increased number of

immature myeloid cells relative to mature myeloid cells observed

during tumor progression in mouse tumor models and in cancer

patients (Kusmartsev et al., 2008). We also found that CD11b+

cells colocalized with tumor cells in pulmonary foci of WT

tumor-bearing mice (Figure 1A, immunofluorescence panels),

while clusters of CD11b+ cells and tumor cells were not ob-

served in lungs of mice with LOX shRNA tumors. The bone mar-

row-derived origin of cells in pulmonary premetastatic sites was

confirmed by transplanting male bone marrow cells into lethally

irradiated female mice prior to tumor implant and staining the ex-

cised lungs with a Y chromosome-specific fluorescent DNA

probe (Figure S1D). Taken together, these data demonstrate

a role for LOX in the development of pulmonary foci in tumor-

bearing mice that contain tumor cells and CD11b+ myeloid cells.

We then determined how LOX integrates into the kinetics of

pulmonary foci formation by excising lungs from mice bearing or-

thotopic WT MDA-MB-231 tumors at various times after tumor

implant. Consistent with previous reports (Kaplan et al., 2005),

we found focal areas of fibronectin (FN) staining 3 days after

tumor implantation surrounding terminal bronchioles and distal

alveoli in the lungs (Figure S1E), which are common areas of

pulmonary metastasis. We used a human-specific FN antibody,

indicating that at least some of the pulmonary FN was secreted

from the primary tumor. Interestingly, LOX colocalized exclu-

sively with FN at these sites within 7 days of tumor implantation,

and both FN and LOX staining intensified over the next week. We

found recruitment of CD11b+ cells to areas of LOX staining by

14 days after tumor implantation and observed increased num-

bers of CD11b+ cells over the next few weeks. Tumor cells

were observed in regions of CD11b+ cell accumulation by

3–5 weeks after tumor implant. Importantly, we did not observe

pulmonary LOX staining, CD11b+ cell clusters, or tumor cells in

mice bearing LOX shRNA-expressing tumors. These data indi-

cate that LOX secreted by the primary tumor binds to regions

of FN accumulation in the lungs of WT tumor-bearing mice be-

fore the recruitment of CD11b+ cells or tumor cells.

We then wanted to validate the role of LOX in BMDC recruit-

ment in a model system without tumor cells present. LOX is

known to be secreted by hypoxic tumor cells (Erler et al.,

2006), and we therefore used WT or LOX shRNA-expressing

MDA-MB-231 cells exposed to hypoxia in vitro (2% O2 for

24 hr) to produce conditioned media (CM) with or without LOX.

A fluorescence-based enzymatic activity assay (Palamakum-

bura and Trackman, 2002) was used to verify the presence of

enzymatically active LOX in CM from WT cells (Figure S2A).

We injected LOX-containing CM into tumor-free mice daily for

3 weeks, which is consistent with the time frame of BMDC re-

cruitment to premetastatic sites (Kaplan et al., 2005). Interest-

ingly, tumor-free mice injected with CM from hypoxic WT cells

(high LOX activity) had increased pulmonary accumulation of
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Figure 1. LOX Secreted from Hypoxic Tu-

mor Cells Colocalizes with CD11b+ Cells

in the Lungs and Increases CD11b+ Cell

Recruitment and Invasion

(A) Nude mice were orthotopically implanted with

107 wild-type (WT) or LOX shRNA-expressing

MDA-MB-231 human breast tumor cells. Lungs

were excised 6 weeks later, and frozen serial sec-

tions were stained either with hematoxylin and eo-

sin (H&E) or with pan-cytokeratin (green) to identify

tumor cells and CD11b (red) to identify myeloid

cells. Arrows indicate pulmonary cell clusters

(foci). Scale bar = 75 mm.

(B) Lungs from mice bearing WT or LOX shRNA-

expressing tumors were homogenized and ana-

lyzed by flow cytometry for numbers of CD11b+

myeloid cells, c-Kit+ (CD117) myeloid progenitor

cells, and F4/80+ mature macrophages. Data are

mean ± SEM. *p < 0.05.

(C) Tumor-free mice were injected with the indi-

cated conditioned media (CM) daily for 3 weeks.

Homogenized lungs were analyzed for CD11b+,

c-Kit+, and F4/80+ cells by flow cytometry. LOX

Ab, LOX-specific antibody; BAPN, small-molecule

inhibitor of LOX. Data are mean ± SEM. *p < 0.05

relative to control; **p < 0.05 relative to mice

injected with WT CM.

(D) Merged immunofluorescence staining of LOX

(green) and CD11b+ cells (red) in representative

lung sections from tumor-free mice injected daily

for 3 weeks with the indicated CM. Colocalization

is indicated by yellow. Low/high LOX, relative con-

centration of purified LOX; MMP-I, matrix metallo-

proteinase inhibitor. Scale bar = 150 mm.

(E) Image analysis of lung sections from mice in

(D). Data indicate the relative area of LOX (green

in [D]) or CD11b (red in [D]) staining relative to con-

trol mice. Data are mean ± SEM. *p < 0.05 relative

to control; **p < 0.05 relative to mice injected with

WT CM.
CD11b+ myeloid cells and c-Kit+ myeloid progenitor cells

(Figure 1C). These data are in agreement with previous reports

suggesting involvement of progenitor cells and myeloid lineage

cells in the premetastatic niche (Hiratsuka et al., 2006; Kaplan

et al., 2005). Importantly, the numbers of pulmonary BMDCs

were not increased by injection of CM derived from hypoxic cells

expressing LOX shRNA, or when LOX-containing CM was com-

bined with either an antibody that binds to the active site of LOX

and blocks enzymatic function (Erler et al., 2006) or a small-mol-

ecule inhibitor of LOX (b-aminopropionitrile; BAPN). These data

indicate that LOX secreted by hypoxic tumor cells significantly

increases the number of myeloid lineage cells in the lungs with-

out requiring the presence of metastatic tumor cells.

We also analyzed sections of lung tissue excised after 3 weeks

of LOX-containing CM or purified LOX protein injections. Tumor-

free mice injected with LOX-containing CM had intense LOX

staining around terminal bronchioles and distal alveoli in the

lungs. Interestingly, CD11b+ cells were found colocalized with

LOX at these sites and were also observed in lung tissue directly

adjacent to areas of LOX staining (Figure 1D). This pattern of
CD11b staining suggests CD11b+ cell invasion into lung tissue

surrounding areas of LOX staining, which is consistent with re-

ports describing a role for LOX in enhancing monocyte migration

(Denholm et al., 1989; Lazarus et al., 1995). Total LOX or CD11b

staining relative to naive mouse lungs is quantified in Figure 1E;

the proportion of CD11b+ cells that invaded into lung tissue sur-

rounding areas of LOX staining is quantified in Figure S2B. Invad-

ing BMDCs were observed as quantifiable clusters of densely

stained cells surrounding bronchioles in H&E-stained lung tissue

(Figures S2C and S2D). In agreement with the flow cytometry

data in Figure 1C, CD11b+ cell accumulation was dramatically

reduced in the lungs of mice injected with CM from LOX

shRNA-expressing cells or when a LOX-inhibitory antibody

was administered with the WT CM (Figures 1D and 1E). Taken

together, these data indicate that LOX secreted by hypoxic

tumor cells accumulates in the lungs and is essential for the re-

cruitment of CD11b+ cells.

We also purified LOX from the CM of hypoxic WT cells for sub-

sequent administration to tumor-free mice. The LOX purity was

verified and LOX functional activity was validated by inducing
Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc. 37
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migration of LOX shRNA-expressing cells in vitro (Figure S2E).

We used two concentrations of LOX protein, with the higher

LOX concentration having about half the enzymatic activity of

LOX typically found in hypoxic WT CM (Figure S2A). Importantly,

the recruitment of CD11b+ cells induced by injection of LOX-

containing CM could be replicated in tumor-free mice injected

only with purified LOX (Figure 1D), but the overall levels of LOX

and CD11b+ cell staining in the lungs were less than in mice in-

jected with hypoxic WT CM (Figure 1E). Interestingly, addition of

CM from hypoxic LOX shRNA-expressing cells to injections of

purified LOX significantly increased the levels of pulmonary

LOX and CD11b+ cell accumulation (Figures 1D and 1E) and

also stimulated CD11b+ cell invasion into the surrounding lung

tissue to levels similar to those observed with hypoxic WT CM

(Figure 1D; Figure S2B). These data indicate that while accumu-

lation of LOX secreted by hypoxic tumor cells is essential for pul-

monary recruitment of CD11b+ cells, one or more other factors

present in CM from hypoxic WT or shRNA-expressing tumor

cells are capable of enhancing the effects of LOX. It is worth not-

ing that fibronectin is a hypoxia-induced secreted protein (Can-

iggia et al., 2000) that is known to be elevated at premetastatic

sites (Kaplan et al., 2005) and has been reported to increase

LOX enzymatic activity (Fogelgren et al., 2005). Indeed, we

have found that LOX colocalizes with fibronectin at premeta-

static sites (Figure S1E) prior to recruitment of CD11b+ cells.

The precise role of fibronectin in LOX-mediated formation of

the premetastatic niche is currently under investigation.

Since invasion of BMDCs is increased by activation of matrix

metalloproteinases (Coussens and Werb, 2002), we added

a chemical matrix metalloproteinase (MMP) inhibitor (Koivunen

et al., 1999) to LOX-containing WT CM prior to injection. The

MMP inhibitor (MMP-I) induced modest decreases in relative

LOX and CD11b+ cell staining in the lungs (Figure 1E) but dra-

matically changed the pattern of CD11b+ cell accumulation.

CD11b+ cells were recruited to areas of LOX staining but did

not invade into the surrounding lung tissue to form cell clusters

as had occurred with injection of hypoxic WT CM alone

(Figure 1D; Figures S2B and S2D). These data indicate that the

ability of CD11b+ cells to invade into lung tissue adjacent to re-

gions of LOX accumulation is dependent on MMP activity.

LOX Promotes BMDC Adhesion and Invasion by
Crosslinking Collagen IV in Basement Membrane
To establish a mechanistic role for LOX in the recruitment and

MMP-dependent invasion of BMDCs, we first pretreated growth

factor-reduced Matrigel (reconstituted basement membrane)

with LOX prior to contact with CD11b+ cells isolated from whole

bone marrow by magnetic bead-assisted cell sorting (Liu et al.,

2007). We found increased adhesion of CD11b+ cells to Matrigel

preincubated with LOX that could be inhibited with BAPN during

the preincubation step (Figure 2A). LOX is known to crosslink

collagens and elastins in the extracellular matrix (Kagan and Li,

2003), thereby increasing the tensile strength of basement mem-

branes (Maki et al., 2002). Chemically crosslinking Matrigel by

preincubation with a high concentration of glucose (Kent et al.,

1985) recapitulated the increased CD11b+ cell adhesion ob-

served on Matrigel preincubated with LOX. We also found in-

creased adhesion of CD11b+ cells (Figure 2B) and c-Kit+ cells

(Figure S3A) to naive mouse lung tissue preincubated with LOX
38 Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc.
ex vivo. CD11b+ cells adhered to the ex vivo lung tissue in areas

that stained positively for LOX (Figure 2C). These data indicate

that CD11b+ cells and c-Kit+ cells readily adhere to basement

membrane and lung tissue that has been crosslinked by LOX.

To determine how the increased adhesion of BMDCs to matri-

ces crosslinked by LOX would affect the MMP-dependent inva-

sion of BMDCs observed in Figures 1D and 1E, we assayed the

MMP activity of BMDCs and monocytes after contact with matri-

ces preincubated with LOX. Since collagen IV is a major constit-

uent of Matrigel and LOX is known to crosslink collagen IV, we

incorporated collagen IV matrices into our studies. We chose

to focus on MMP-2 and MMP-9 because these MMPs are selec-

tively inhibited by the MMP-I used in Figures 1D and 1E (Koivu-

nen et al., 1999). Interestingly, monocytes in contact with Matri-

gel (or collagen IV) preincubated with LOX-containing WT CM

(but not CM from LOX shRNA-expressing cells) had elevated

MMP-2 activity (Figure 2D). Monocyte MMP-2 activity was also

increased by contact with chemically crosslinked Matrigel. In-

creases in MMP-9 activity were observed in monocytes in con-

tact with Matrigel or collagen IV preincubated with hypoxic CM

from either WT or shRNA-expressing tumor cells (Figure S3B), in-

dicating that the increase in MMP-9 activity was LOX indepen-

dent. Consistently, MMP-9 activity was also not increased in

monocytes in contact with chemically crosslinked Matrigel. We

found that MMP-2 activity was increased in freshly isolated

BMDCs in contact with collagen IV matrices preincubated with

LOX-containing WT CM, purified LOX, or with matrix that was

chemically crosslinked (Figure 2E). BMDC MMP-2 activity was

reduced by the presence of LOX antibody or BAPN during matrix

preincubation, or by MMP inhibition. Thus, preincubation of

Matrigel or collagen IV with enzymatically active LOX increases

the MMP-2 activity of BMDCs and monocytes that are subse-

quently in contact with the modified matrices.

BMDC Invasion through Basement Membrane
Crosslinked by LOX Requires MMP Activity
To further define the role of LOX and MMPs in BMDC invasion,

we performed in vitro transwell invasion assays using freshly har-

vested murine bone marrow, the established RAW monocyte cell

line, and freshly isolated CD11b+ cells or c-Kit+ cells. We placed

CM from hypoxic WT or LOX shRNA-expressing tumor cells into

transwell chambers containing filters coated with Matrigel. The

CM was removed after 24 hr and replaced with freshly harvested

murine BMDCs, and the numbers of BMDCs that invaded

through the ‘‘modified’’ Matrigel were quantified 24 hr later

(Figure 2F). Preincubation of Matrigel with LOX-containing WT

CM dramatically increased the subsequent invasion of BMDCs

compared to preincubation with LOX shRNA CM or WT CM con-

taining the LOX-targeting antibody. We also stained the bone

marrow cells that invaded through the modified Matrigel and

found that 94% ± 1% were CD11b+ and 47% ± 7% were

c-Kit+. Increased BMDC invasion was also observed when the

Matrigel was preincubated with purified LOX protein alone or in

combination with hypoxic shRNA CM. The MMP dependence

of BMDC invasion was confirmed by addition of the MMP inhib-

itor to the cells during invasion (Figure 2F). These data are con-

sistent with the decreased CD11b+ cell invasion observed in

the lungs of mice injected with LOX-containing CM and the

MMP-I (Figure 1D; Figure S2B). Chemical crosslinking of
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Figure 2. LOX Secreted from Hypoxic Tu-

mor Cells Promotes BMDC Invasion by

Crosslinking Collagen IV, Increasing

BMDC Adhesion, and Enhancing MMP-2

Activity of the Invading BMDCs

(A) Matrigel-coated wells were incubated with the

indicated additives for 24 hr; Matrigel crosslinked

with glucose was included for comparison. Solu-

tions were removed, and CD11b+ cells isolated

from murine whole bone marrow were added.

Numbers of CD11b+ cells remaining in solution

were quantified after 2.5 hr. Data are mean ±

SEM. *p < 0.05 relative to control; **p < 0.05 rela-

tive to matrix preincubated with LOX.

(B) Naive mouse lung tissue was excised, and

a 2 cm3 piece was incubated in serum-free media

containing either LOX or glucose for 6 hr. Media

were changed, CD11b+ cells were added, and

the numbers of cells remaining in solution after

12 hr were quantified. Data are mean ± SEM.

(C) Lung tissue from (B) was frozen, sectioned, and

stained for LOX (green) and CD11b+ cells (red).

Scale bar = 300 mm.

(D) Gelatin zymography showing MMP-2 activity

of monocytes in contact with Matrigel or collagen

IV preincubated with the indicated CM.

(E) Gelatin zymography showing MMP-2 activity of

freshly harvested bone marrow-derived cells

(BMDCs) in contact with collagen IV preincubated

with the indicated CM.

(F) Matrigel filters were incubated with the indi-

cated CM or purified protein for 24 hr. The CM

was then removed, and freshly harvested whole

murine bone marrow cells were allowed to invade

through the ‘‘modified’’ Matrigel. BMDCs that

invaded through the modified Matrigel were also

stained for CD11b and c-Kit. Data are mean ±

SEM. *p < 0.05 relative to control; **p < 0.05 rela-

tive to matrices preincubated with WT CM.

(G) Matrigel filters were preincubated as in (F), and

invasion of isolated CD11b+ cells or c-Kit+ cells

through the modified matrix was quantified. Data

are mean ± SEM. *p < 0.05 relative to control; **p <

0.05 relative to matrices preincubated with LOX.

(H) Mice with WT bone marrow or MMP-2 knock-

out (KO) bone marrow were injected daily with the

indicated CM for 3 weeks prior to flow cytometric analysis of lungs for CD11b+, c-Kit+, or F4/80+ cells. Data are mean ± SEM. *p < 0.05 relative to ‘‘no CM’’ mice;

**p < 0.05 relative to mice with WT bone marrow injected with WT CM.

(I) Immunofluorescence staining for LOX, CD11b+ cells, and MMP-2 in representative frozen serial sections of lungs from mice with WT or MMP-2 KO bone

marrow injected with WT CM. Scale bar = 75 mm.
Matrigel with glucose also increased the subsequent invasion of

BMDCs. Similar increases in the invasion of freshly harvested

BMDCs were observed through collagen IV matrices preincu-

bated withLOX-containing CM (Figure S3C),but not withmatrices

composed of laminin (the other main component of Matrigel). We

obtained similar results using isolated CD11b+ cells, c-Kit+ cells

(Figure 2G), or an established monocyte cell line (Figure S3D).

Taken together, these data indicate that enzymatically active

LOX modifies the collagen IV component of basement membrane

(Matrigel) in a manner that is functionally similar to chemical cross-

linking. CD11b+ cells adhere more readily to matrices crosslinked

by LOX (Figures 2A–2C) and respond with increased MMP-2

expression (Figures 2D and 2E). The actions of LOX and MMP-2

remodel the matrix such that it is more permissive for subsequent

invasion of CD11b+ cells and c-Kit+ cells (Figures 2F and 2G).
To further validate the role of BMDC MMP-2 activity in LOX-

mediated recruitment and invasion of CD11b+ cells in vivo, we

injected LOX-containing CM into female mice transplanted

with bone marrow from either male WT mice or MMP-2 knockout

(KO) mice. As expected, LOX-containing CM induced pulmonary

recruitment of CD11b+ and c-Kit+ cells in mice with WT bone

marrow. However, mice with MMP-2 KO bone marrow injected

with WT CM had significantly decreased numbers of CD11b+

cells and c-Kit+ cells in the lungs relative to mice with WT

bone marrow injected with WT CM (Figure 2H). We also found

that CD11b+ cells in areas of pulmonary LOX staining expressed

MMP-2 (Figure 2I), consistent with the increased MMP-2 activity

observed in BMDCs in contact with LOX-modified matrices

in vitro. Fewer CD11b+ cells were observed in lungs of MMP-2

KO mice injected with WT CM, and the CD11b+ cells colocalized
Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc. 39
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Figure 3. LOX and BMDC MMP-2 Activity

Remodel Collagen IV and Promote Pulmo-

nary Metastatic Growth

(A) ELISA to detect collagen IV remodeling via

peptide formation. Collagen IV peptides exoge-

nously added to media (white bars) are provided

for comparison. Matrigel preincubated for 24 hr

with the indicated additives (gray bars) was subse-

quently contacted with CD11b+ cells for 24 hr.

Peptides released into the surrounding media

were quantified by ELISA. Plasma samples from

the indicated tumor-bearing mice (black bars)

were also analyzed. Data are mean ± SEM. *p <

0.05 relative to control; **p < 0.05 relative to matri-

ces preincubated with LOX (gray) or relative to WT

tumor-bearing mice (black).

(B) Sections of lungs from WT or LOX shRNA

tumor-bearing mice illustrating loss of collagen

IV antibody epitope in some areas through LOX-

mediated collagen IV remodeling. Collagen I stain-

ing was not affected. Scale bar = 150 mm.

(C) Numbers of isolated CD11b+ cells or c-Kit+

cells invading through naive Matrigel toward colla-

gen IV peptides in the bottom of the transwell.

Data are mean ± SEM. *p < 0.05 relative to control

(no peptides).

(D) Flow cytometric quantification of CD11b+ cells

and tumor cells (human pan-cytokeratin positive)

in lungs of mice bearing LOX shRNA-expressing

tumors. Mice were ‘‘preconditioned’’ by injection

of WT CM or purified LOX protein for 2 weeks after

tumor implant. Lungs were harvested 6 weeks af-

ter tumor implant. Data are mean ± SEM. *p < 0.05

relative to control mice; **p < 0.05 relative to mice

preconditioned with LOX protein.

(E) Flow cytometric quantification of CD11b+ cells

and tumor cells in lungs of mice with LOX shRNA-

expressing tumors treated with the indicated solu-

tions. Clod, clodronate. Data are mean ± SEM. *p

< 0.05 relative to control shRNA tumor-bearing

mice; **p < 0.05 relative to shRNA tumor-bearing

mice injected with LOX protein.

(F) Same experiment as in (E), using 4T1 murine

mammary tumor cells in BALB/c mice. Pulmonary

cell foci (clusters) were quantified from H&E-

stained lung tissue. Data are mean ± SEM. *p <

0.05 relative to control 4T1 shRNA tumor-bearing mice; **p < 0.05 relative to 4T1 shRNA tumor-bearing mice injected with LOX protein.

(G) Flow cytometric analysis for CD11b+ cells in lungs of tumor-free BALB/c mice or BALB/c mice bearing Lox shRNA-expressing 4T1 tumors injected with

the indicated CM daily for 3 weeks. Pulmonary cell foci were quantified from H&E-stained lung tissue. Data are mean ± SEM. *p < 0.05 relative to control

mice; **p < 0.05 relative to mice injected with WT CM.

(H) Lungs of BALB/c mice implanted with Lox shRNA-expressing 4T1 tumors and injected with the indicated CM daily for 3 weeks. Arrows indicate macroscopic

lung metastases.
only partially with LOX staining. Taken together, these data indi-

cate that MMP-2 activity in BMDCs is required for the invasion

and maximal LOX-mediated recruitment of CD11b+ cells to

areas of pulmonary LOX accumulation for formation of the pre-

metastatic niche. These results are consistent with recent iden-

tification of MMP-2 as a tumor progression gene associated with

breast cancer metastasis to the lung (Gupta and Massague,

2006), with our previous findings that LOX is strongly associated

with MMP-2 expression in breast cancer patients (Erler et al.,

2006), and with the MMP-I data in Figures 1D and 1E. We hy-

pothesized that while LOX-mediated crosslinking of the base-

ment membrane is required for adhesion of CD11b+ cells and

initiation of the premetastatic niche, an additional MMP-depen-
40 Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc.
dent mechanism may increase CD11b+ cell recruitment to

premetastatic sites.

LOX and BMDC MMP-2 Activity Remodel Collagen IV
in Basement Membrane and Promote Pulmonary
Metastatic Growth
MMP-2 is known to cleave collagen IV into peptides (Egeblad

and Werb, 2002), and some collagen IV peptides have chemoat-

tractant properties (Cameron et al., 1991; Shahan et al., 2000).

Using a collagen IV ELISA, we observed the release of collagen

IV peptides during invasion of CD11b+ cells through Matrigel

preincubated with purified LOX (Figure 3A). Peptide release

was decreased when LOX enzymatic activity was inhibited
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with BAPN during the preincubation step or when MMP-2 activ-

ity from the CD11b+ cells was inhibited. We obtained similar

findings using collagen IV matrices (data not shown) but did

not detect the release of laminin peptides from laminin matrices

preincubated with LOX-containing CM and contacted with

BMDCs (Figure S3E). Taken together, these data indicate that

collagen IV peptides are released by the MMP-2 activity of

CD11b+ cells in contact with Matrigel crosslinked by LOX.

We also observed increased collagen IV peptides in the

plasma of mice bearing WT tumors (Figure 3A) and a decrease

in collagen IV staining in some lung regions from WT tumor-bear-

ing mice relative to LOX shRNA tumor-bearing mice (Figure 3B).

These data are indicative of collagen remodeling and a break-

down of antibody-recognizable triple-helical collagen IV in the

basement membrane (Harrison et al., 2006; Jemal et al., 2008;

Liu et al., 2007) in lungs of mice bearing tumors that express

LOX. Pulmonary collagen I staining was similar in both WT and

LOX shRNA tumor-bearing mice.

To determine the ability of collagen IV peptides to attract

BMDCs, we quantified the numbers of isolated CD11b+ cells

and c-Kit+ cells that invaded through naive Matrigel toward

exogenously added collagen IV peptides (Figure 3C). We found

that collagen IV peptides enhanced the invasion of myeloid line-

age cells. Thus, the generation of chemoattractive collagen IV

peptides in lung regions that have CD11b+ cells in contact

with LOX-crosslinked basement membrane will induce further

recruitment and invasion of BMDCs to these sites.

Increased MMP-2 activity in BMDCs also increases the inva-

sion of tumor cells (Hagemann et al., 2004), and collagen cross-

linking leads to increased stiffness of the extracellular matrix,

which enhances growth of tumor foci (Paszek et al., 2005). Taken

together with our data, these observations suggest that LOX-

mediated increases in BMDC MMP-2 activity may increase the

subsequent invasion of metastatic tumor cells to the premeta-

static niche and enhance metastatic growth. Indeed, we have

previously observed a role for LOX in enhancing the metastatic

growth of breast tumors (Erler et al., 2006), but we wanted to

distinguish between the role of LOX in the dissemination of met-

astatic tumor cells and the role of LOX in formation of the preme-

tastatic niche. We therefore ‘‘preconditioned’’ lungs with LOX for

a fixed period of time before the arrival of metastatic tumor cells.

It is worth noting that preconditioning lungs with LOX in vivo is

analogous to preincubating Matrigel (or collagen IV) matrices

with LOX in vitro (Figure 2). MDA-MB-231 tumor cell metastases

are detectable in lungs from 3–4 weeks after primary tumor im-

plantation (Erler et al., 2006), and BMDCs are recruited to preme-

tastatic sites within 2 weeks of primary tumor implantation

(Figure S1E). We therefore preconditioned the lungs of mice

bearing orthotopic LOX shRNA-expressing tumors by injecting

LOX-containing CM or purified LOX for only the first 2 weeks

after tumor implantation. Lungs were analyzed for CD11b+ cells

and tumor cells 4 weeks later. We observed increased CD11b+

cell recruitment in the lungs of shRNA tumor-bearing mice pre-

conditioned with LOX or with LOX-containing CM (Figure 3D),

despite the fact that LOX shRNA-expressing tumors are largely

nonmetastatic (Figure S1B). Importantly, CD11b+ cell recruit-

ment was diminished by inhibition of LOX with BAPN or a LOX-

targeting antibody. The presence of densely stained pulmonary

cell clusters was verified and quantified in H&E-stained lung sec-
tions (Figure S4A). These data indicate that the action of enzy-

matically active LOX secreted by hypoxic tumor cells is a critical

prerequisite to pulmonary CD11b+ cell recruitment, premeta-

static niche formation, and the enhanced development of lung

metastases.

Myeloid Cell Depletion Decreases Metastatic Growth
We then wanted to determine whether LOX was sufficient to in-

crease metastases of breast tumors to the lungs in the absence

of myeloid cells. We therefore used clodronate to deplete mye-

loid cells, monocytes, and macrophages (Van Rooijen and

Sanders, 1994; Zeisberger et al., 2006) from mice bearing shRNA

tumors and supplemented with LOX injections. We found that

clodronate significantly decreased the numbers of CD11b+ cells

and the numbers of metastatic tumor cells in the lungs of MDA-

MB-231 tumor-bearing mice (Figure 3E).

We also investigated CD11b+ cell recruitment in mice bearing

highly aggressive 4T1 murine mammary tumors. 4T1 cells ex-

pressing Lox shRNA secreted minimal detectable enzymatically

active LOX compared to WT 4T1 cells (Figure S4B). Clodronate

decreased CD11b+ cell recruitment and metastatic tumor cell

foci formation in the lungs of 4T1 tumor-bearing mice (Figure 3F).

These data indicate that depletion of BMDCs decreases the

metastatic growth of breast tumor cells in the lung. However,

clodronate is not specific for CD11b+ cells, and pleiotropic

effects associated with BMDC depletion may preclude thera-

peutic CD11b+ cell depletion to target the premetastatic niche.

These data highlight the utility of inhibiting a tumor-secreted

protein such as LOX to target the premetastatic niche and met-

astatic growth.

LOX Increases CD11b+ Cell Recruitment and Metastatic
Growth of 4T1 Murine Mammary Tumors
We also investigated the influence of LOX-mediated CD11b+ cell

recruitment and premetastatic niche formation in the growth of

pulmonary metastatic foci from 4T1 tumors. CD11b+ cell recruit-

ment was observed in the lungs of tumor-free BALB/c mice in-

jected with hypoxic WT 4T1 CM, but not with CM from hypoxic

Lox shRNA-expressing 4T1 cells (Figure 3G). BALB/c mice

were also orthotopically implanted with WT or shRNA-express-

ing 4T1 tumor cells and given daily injections of CM from hypoxic

WT or shRNA-expressing 4T1 cells for 3 weeks. Increased

CD11b+ cells and tumor cell foci were observed in the lungs of

mice bearing WT 4T1 tumors regardless of the daily injections

of LOX-containing CM (Figures S4C and S4D). Mice with Lox

shRNA-expressing 4T1 tumors exhibited increased pulmonary

CD11b+ cells when LOX-containing WT CM was provided

(Figure 3G). Similar to our observations in mice with MDA-MB-

231 tumors expressing LOX shRNA, 4T1 tumors that expressed

Lox shRNA were virtually nonmetastatic unless LOX-containing

CM was provided, which increased the numbers of microscopic

metastatic foci (Figure 3G; Figure S4E) and macroscopic meta-

static tumors (Figure 3H). These data demonstrate a role for

LOX secreted by hypoxic tumor cells in pulmonary CD11b+

cell recruitment and metastatic growth of 4T1 tumors in an im-

munocompetent mouse strain.

We also studied the role of LOX in CD11b+ cell recruitment to

tissues other than lung. We found LOX colocalized with fibronec-

tin and BMDCs in the livers of WT tumor-bearing mice
Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc. 41
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(Figure 4A), consistent with our lung data. We observed modest

increases in CD11b+ cell recruitment to the livers and brains of

WT MDA-MB-231 tumor-bearing mice relative to mice with

LOX shRNA tumors (Figure 4B) and found large LOX-dependent

increases in CD11b+ cell recruitment to the livers and brains of

4T1 tumor-bearing BALB/c mice. Importantly, 4T1 tumors

readily metastasize to the liver and brain, and we have observed

metastatic MDA-MB-231 tumor cells in the liver 10 weeks after

tumor implant. These data indicate that LOX also affects the

recruitment of CD11b+ cells to the livers and brains of tumor-

bearing mice.

LOX and BMDCs in Human Metastatic Tumor Samples
In order to assess the relevance of LOX and CD11b+ cell recruit-

ment to human metastases, we stained tissue microarrays

(TMAs) containing samples of clinical metastatic nodules from

a variety of different sites for CD11b+ cells, c-Kit+ cells, or

LOX (Figure 4C; Figure S4F). Interestingly, we found that 51

out of 95 human metastatic lesions contained CD11b+ cells, in-

Figure 4. CD11b+ Cells and LOX Are Asso-

ciated with Liver and Brain Metastases in

Patients

(A) Serial sections from liver tissue of WT tumor-

bearing mouse stained for fibronectin (FN), LOX,

and BMDCs. Arrows indicate FN, LOX, and

BMDC staining, respectively. Scale bar = 50 mm.

(B) Flow cytometric analysis for CD11b+ cells in

livers and brains of nude mice bearing MDA-MB-

231 human breast tumors or BALB/c mice with

4T1 murine mammary tumors. Data are mean ±

SEM. **p < 0.05 relative to WT tumor-bearing

mice.

(C) Tissue microarrays (TMAs) of clinical metasta-

ses stained for CD11b+ cells, LOX, or c-Kit+ cells.

Samples from normal cerebral cortex and liver are

provided as negative controls. Metastatic and nor-

mal TMAs were stained simultaneously and were

photographed with identical microscope and

camera settings. Arrows indicate regions of

CD11b+ cells or c-Kit+ cells. Scale bars = 150 mm.

(D) Model for the role of LOX in premetastatic niche

formation. (1) Hypoxic primary tumor cells secrete

LOX into the bloodstream. (2) LOX accumulates in

the lungs of tumor-bearing mice and crosslinks

collagen IV. (3) Adhesion of CD11b+ cells to cross-

linked matrix increases BMDC MMP-2 activity.

Collagen IV remodeling by LOX and MMP-2 leads

to peptide formation, invasion of CD11b+ cells,

and increased recruitment of BMDCs. (4) LOX-

dependent formation of the premetastatic niche

enhances metastatic growth.

cluding metastases sampled from the

brain, liver, neck, ovary, greater omen-

tum, and lymph nodes. The primary

tumors that gave rise to metastases on

the TMA varied, with carcinomas of the

breast, colon, stomach, thyroid, esopha-

gus, or nasopharynx producing metasta-

ses that were associated with CD11b+

cells. Importantly, CD11b+ cells were

not found in significant numbers in most normal tissues apart

from the spleen, indicating that the presence of large clusters

of CD11b+ cells in metastatic target organs such as the liver or

brain is stimulated by tumor-derived factors (Figure 4C). We

also found that CD11b+ cells in human metastases were typi-

cally found in areas that stained positively for LOX. These data

establish that myeloid lineage cells are associated with tumor

metastases in a wide variety of cancer patients and also suggest

that targeting LOX-mediated recruitment of CD11b+ cells to

metastatic sites represents a viable therapeutic strategy for the

clinic.

Implications for the Role of LOX in Metastasis
Elucidating the microenvironmental influences on metastatic

growth is paramount to understanding how to inhibit this lethal

multistep process in cancer patients (Steeg, 2006). Formation

of the premetastatic niche has been shown to enhance the es-

tablishment and growth of metastatic foci (Kaplan et al., 2005),

and we have identified LOX as a tumor-secreted protein that is

42 Cancer Cell 15, 35–44, January 6, 2009 ª2009 Elsevier Inc.



Cancer Cell

LOX and Premetastatic Niche Formation
critically involved in premetastatic niche formation (Figure 4D).

Our data show that LOX secreted by hypoxic primary tumor cells

accumulates with fibronectin at sites of future metastasis, cross-

links collagen IV in the basement membrane, and increases

adhesion of CD11b+ cells. Adherent CD11b+ cells produce

MMP-2, which degrades collagen IV, increasing CD11b+ cell

invasion into the lung tissue and releasing chemoattractive

collagen IV peptides. The collagen IV peptides enhance further

recruitment of CD11b+ cells, generating a positive feed-forward

loop for increased accumulation of BMDCs, increased extracel-

lular matrix remodeling, and creation of the premetastatic

niche. Importantly, formation of the premetastatic niche is

critically dependent on the accumulation of enzymatically active

LOX. Taken together, our data demonstrate a crucial role for

LOX secreted by hypoxic tumor cells in formation of the preme-

tastatic niche and in the enhancement of metastatic tumor

growth. These data support targeting hypoxia-induced secreted

LOX for the treatment and prevention of metastatic cancer.

EXPERIMENTAL PROCEDURES

Cell Lines and Tumor Implants

MDA-MB-231 WT and LOX shRNA-expressing cells have been described

previously (Erler et al., 2006). 107 tumor cells were implanted orthotopically

in the mammary fat pad for in vivo experiments. 4T1 murine mammary cells

(American Type Culture Collection) were infected with retrovirus to stably

express murine Lox shRNA (50-TCTCTCCTCCTCCTTCTAC-30). All animal

studies were approved by and conformed to the regulatory standards of the

Stanford University Administrative Panel on Laboratory Animal Care in accor-

dance with US federal law.

Immunological Studies

For immunofluorescence studies and selected H&E-stained sections, lungs

were perfused with a 1:1 mixture of PBS/OCT postexcision before embedding

in OCT (Tissue-Tek). For paraffin-embedded samples, lungs were perfused

with formalin prior to formalin fixation. Western blots were performed as

described previously (Erler et al., 2006). Collagen IV ELISAs were performed

with the DELPHIA assay (PerkinElmer) according to the manufacturer’s

instructions.

Antibodies used included CD11b (eBioscience), F4/80 (Abcam), c-Kit/

CD117 (ACK2; eBioscience), collagen IV (Millipore), laminin (Chemicon),

pan-cytokeratin (ICN), and a LOX antibody that recognizes a peptide

sequence from the active site of both human and murine LOX (Erler et al.,

2006). Alexa 488 and 594 fluorescent secondary antibodies were used to

visualize immunofluorescence staining. Images were photographed using

a Nikon 360 microscope camera and analyzed using QCapture software.

Flow cytometry analysis for BMDCs was performed as described previously

(Kaplan et al., 2005).

Conditioned Media Assays

Conditioned media (CM) consisted of serum-free, phenol red-free modified

Eagle’s medium cultured on WT or LOX shRNA-expressing MDA-MB-231 cells

incubated in hypoxia (2% O2) for 24 hr. CM was passed through a 0.2 mm filter,

and 300 ml was intraperitoneally injected daily into mice (Kaplan et al., 2005).

For LOX inhibition, b-aminopropionitrile (BAPN; 100 mg/kg) was added daily

to CM, and the LOX-targeting antibody (purified; 1 mg/kg) was added twice

weekly (Erler et al., 2006). CTT gelatinase inhibitor of MMP-2 and MMP-9

activity (BIOMOL International) was added to CM twice weekly and dosed at

50 mg/mouse (Koivunen et al., 1999). Purified LOX protein was obtained by

nickel agarose extraction from WT hypoxic CM and injected twice weekly at

either 2 mg/mouse (low dose) or 5 mg/mouse (high dose). A fluorescence-based

assay was used to assess LOX enzymatic activity as described previously

(Palamakumbura and Trackman, 2002).
Adhesion Assay, Invasion Assays, and MMP Gelatin Zymography

CD11b+ cells and c-Kit+ cells were isolated from whole bone marrow using

magnetic bead-assisted cell sorting according to the manufacturer’s

instructions (Miltenyi Biotec). Matrices were incubated with CM or LOX for

24 hr prior to removal of the CM and addition of BMDCs for adhesion or inva-

sion assays. BAPN was used at 200 mM, and 200 mg/ml glucose for 24 hr was

used to chemically crosslink matrices (Kent et al., 1985). In vitro invasion of

whole bone marrow cells, RAW monocytes, CD11b+ cells, and c-Kit+ cells

was measured in a transwell assay (BD Biosciences) as described previously

(Erler et al., 2006). Cell migration (‘‘scratch’’) assays were performed as

described previously (Erler et al., 2006). Gelatin zymography was performed

to assess MMP activity as described previously (Hagemann et al., 2004).

Ex Vivo Assays and Clodronate Encapsulation

A 2 cm3 piece of lung tissue was maintained in 0.5 ml serum-free medium

(Hiratsuka et al., 2006) and crosslinked by incubating with LOX or glucose

(Kent et al., 1985) for 6 hr. Isolated CD11b+ cells or c-Kit+ cells were added,

and the number of cells remaining in the medium was counted.

Clodronate was encapsulated in liposomes of cholesterol and phosphatidyl-

choline (Sigma) prepared under nitrogen (Van Rooijen and Sanders, 1994; van

Rooijen and van Kesteren-Hendrikx, 2003).

Human Samples

Tissue microarrays (TMAs) were purchased from Pantomics, Inc. or from

Tissue Array Networks. The TMAs contained human tissues obtained with in-

formed consent according to US federal law and are exempt from consider-

ation by the Stanford Administrative Panel on Human Subjects in Medical Re-

search. TMAs were stained with rabbit monoclonal anti-human CD11b

(AbCam) or anti-LOX (Erler et al., 2006) antibody. Metastatic and normal

TMAs were stained simultaneously, and images were captured with identical

settings using a Nikon 360 microscope camera.

Statistical Analyses

Data were analyzed by Student’s t test; p < 0.05 was considered significant.

Error bars represent standard error of the mean (SEM).

SUPPLEMENTAL DATA

The Supplemental Data include four figures and can be found with this article

online at http://www.cancercell.org/supplemental/S1535-6108(08)00378-4.
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