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EDITORIAL COMMENT
Revascularization of
Hibernating Myocardium
Uneven Reflorescence After the Drought*
Fabio A. Recchia, MD, PHD
SEE PAGE 684
I n a review paper published 3 decades ago, Dr.
Rahimtoola first defined hibernating myocar-
dium as the “.prolonged subacute or chronic

stage of myocardial ischemia that is frequently not
accompanied by pain and in which myocardial
contractility and metabolism and ventricular function
are reduced to match the reduced blood supply” (1).
Severe coronary artery stenosis is the primary cause
of hibernation, which can be partially or completely
reversed by interventions of revascularization (2).
An approximate PubMed search on the topic “hiber-
nating myocardium” yields about 500 research pa-
pers published since 1985, not including many prior
and subsequent clinical and experimental studies
that defined and explored the peculiar changes
occurring in chronically-hypoperfused myocardium.
Despite the conspicuous published studies, our grasp
of the pathophysiological and molecular processes
leading to myocardial hibernation is still limited.

One of the phenomena that remain poorly under-
stood is the variability of functional recovery
observed in patients, even months after revasculari-
zation of chronically hibernating ventricular seg-
ments (3–4). This problem has important prognostic
implications (5). Because prolonged hypoperfusion
can cause partial necrosis/fibrosis, a proposed expla-
nation is that the degree of post-revascularization
improvement is highly dependent on the residual
mass of viable myocardium; clinical and experimental
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studies have shown a linear, inverse correlation be-
tween the extent of transmural necrosis/fibrosis and
contractile function of ischemic and post-ischemic
ventricular walls (4,6,7). But, the interpretative par-
adigms in biology and medicine are very often not
intuitive and obvious. Despite the absence of fibrosis,
more than 20% of patients were reported to experi-
ence persistent contractile dysfunction in success-
fully revascularized ventricular segments (4). This
phenomenon hints at possible alterations to viable
cardiomyocytes that negatively affect their function.
The study by Page et al. (8) in this issue of the
Journal tested the hypothesis that persistent myocyte
loss and/or altered protein expression influence the
functional recovery of revascularized hibernating
myocardium in the absence of infarction. The authors
used an elegant and technically-challenging swine
model of severe left anterior descending coronary ar-
tery stenosis to induce and maintain myocardial hi-
bernation over a period of 3 months, followed by
complete recanalization with an intravascular stent,
and then 1 month of follow-up. This model was
conveniently devoid of necrosis/fibrosis; yet, at 1
month after revascularization, ventricular wall sys-
tolic thickening was only partially restored. The role of
transmural necrosis was ruled out. So, did revascular-
ization largely fail to overturn cellular alterations?

The surprising finding was that, although vessel
reopening did lead to numerous reverse changes,
these were very heterogeneous. A thorough proteo-
mic analysis revealed normalization of previously up-
regulated stress and cytoskeletal proteins, persistent
down-regulation of some contractile proteins, and
nonuniform changes in regulation of metabolic en-
zymes. Among the latter, the expression of pyruvate
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FIGURE 1 Functional Recovery After Revascularization
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dehydrogenase, which is the entry point for the final
mitochondrial oxidation of carbohydrates, was
normalized. Conversely, long chain acyl-CoA dehy-
drogenase, a key enzyme in the beta-oxidation of
long-chain fatty acids, which is the main energy
source for healthy myocardium, displayed a para-
doxical, further down-regulation. In contrast, the
expression of electron transport chain and adenosine
triphosphate synthesis enzymes returned to quasi-
normal levels. The limited published data, which
has been obtained from direct measurements of
energy substrate metabolism, indicate enhanced
glucose utilization and reduced fatty acid oxidation
in hibernating myocardium (9). The study by Page
et al. (8) suggests that abnormally high carbohydrate
utilization may continue long after the therapeutic
intervention, consistent with outcomes observed by
others in treated patients (10).

As noted by the authors, an unexpected finding of
their study was the stimulation of myocyte regener-
ation by revascularization. It was already known that
hibernation causes apoptotic cell loss and compen-
satory hypertrophy of the surviving cardiomyocytes
(2). Page et al. (8) reported a boost in cardiomyocyte
number and in molecular markers of cell prolifera-
tion, whereas cell size decreased; therefore, the
end-diastolic ventricular wall thickness remained
unaltered. These findings remind us that perhaps the
most powerful stimulus and the necessary condition
for ischemic tissue regeneration by endogenous (or
exogenous) stem cells is the re-establishment of
adequate blood perfusion. Although the authors
could not provide direct evidence for this, they
speculated that the delayed maturation of newly-
formed cardiomyocytes might influence the time
course of functional recovery.

The study by Page et al. (8) prompts several con-
siderations. First, it again confirms the high value of
the pig model of myocardial hibernation, which
proved particularly useful for the characterization of
the pathophysiological, histological, and molecular
changes occurring after revascularization. The au-
thors acknowledged their study’s limitations; for
instance, the relatively short duration of the post-
stent follow-up leaves open questions about longer-
term reverse remodeling. Nonetheless, to date, no
other model allows such a wealth of in vivo and
ex vivo measurements of variables ranging from
regional coronary flow, ventricular function, and
metabolism to cellular and molecular adaptive
modifications. The highlight of this study is the co-
existence of reverse and persistent molecular
changes after revascularization. Further complexity
is added by the variable maturation rate of putative
newly-formed cardiomyocytes, a previously unsus-
pected player. These findings suggest that the pre-
diction of functional recovery after revascularization
is, perhaps, much more complex than previously
thought. It may depend not only on viable myocar-
dial mass, but also on the net effect of all of these
alterations, both negative and positive, at the
cellular level (Figure 1).

Ideally, new noninvasive cellular, molecular, and
metabolic diagnostic imaging (11), combined with
classical diagnostics, will, in the future, generate data
that might be entered in computational models (12) to
predict the functional outcome, with little room left
for empiricism. This integrated approach might also
provide important information regarding the hierar-
chy of the biological factors that should be potenti-
ated by targeted therapies to accelerate the functional
recovery: administration of pharmacological and/or
hormonal metabolic modulators if metabolism is the
key player; administration of growth hormones if the
primary goal is to promote cardiomyocyte matura-
tion; and so forth. Integrative pathophysiology will
still be an invaluable compass for steering the
advancement of cardiovascular medicine.
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