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Abstract

There exists a freedom in a class of four-dimensional electroweak theories proposed by Arkani-Hamed et al. re
deconstruction and Coleman–Weinberg mechanism. The freedom comes from the winding modes of the link variable
operator) connecting non-nearest neighbours in the discrete fifth dimension. Using this freedom, dynamical breakingSU(2)

gauge symmetry, mass hierarchy patterns of fermions and Cabbibo–Kobayashi–Maskawa matrix may be obtained.
 2004 Elsevier B.V.
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Dimensional deconstruction[1] (see also subsequent works[2–10]) suggests the natural electroweak (E
symmetry breaking in four dimensions without using supersymmetry or strong dynamics at the TeV scale
The interesting feature of such approach is that perturbative corrections in Higgs sector are finite. In these
the extra dimensions are the discrete lattice. The simplest version[2] is given by the sites on a circle. By th
Coleman–Weinberg mechanism[11], the gauge symmetry can be broken spontaneously. The effective poten
the Higgs field becomes finite. In the naive model forSU(2) gauge theory, the Higgs field is, however, triplet, t
is, in the adjoint representation. In the realistic models, of course, the Higgs field should be anSU(2) doublet. In
order to introduce the doublet Higgs field, theN × N torus (moose) of the lattice has been introduced[2] and has
been investigated in[6]. Especially the simplest case ofN = 2 torus case has been constructed in[7] and the mos
economical case that the Higgs field is pseudo-Goldstone boson in anSU(5)/SO(5) has been presented in[8].
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However, it is quite important (which was not properly realized so far) that there may be more freed
EW symmetry breaking patterns from dimensional deconstruction due to its dependence from the non-nea
neighbour couplings in theory space. Eventually, it means that bigger number of phenomenologically accepted EW
symmetry breakings may be realized by the correspondingchoice of boundary condition from latticized dimension
The variety of novel Higgs sectors may emerge. In the context of theU(1)N model, Wilson-line operators wit
arbitrary couplings have been discussed in[9], where such operators are generated with finite coefficient
radiative corrections. The non-nearest neighbour couplings in theory space, however, may appear geometrical
We may assume the sites on the lattice corresponding to the branes embedded in the higher-dimensional spacetime
Then the link variables connecting the different sites may correspond to the open string. Hence if the em
space has non-trivial homotopy (S1 is most simple but non-trivial case), there will appear several coup
corresponding to the winding mode of the open strings (say, an open string can connect two differen
after windingS1 several times). When the embedding manifoldM is compact but the dimensions (codimens
of the brane) is larger than one, the homotopyπ1(M) can be more complicated and the non-nearest neigh
couplings appear in general. Another interpretation for such couplings could be that continuum limit of high
dimensional gauge theory is non-local. Thus, we consider a (non-linear) generalization of the simples
where the sites of the lattice lies on a circle. Then the Higgs fields are in the adjoint representation. There
theory under consideration is a non-linear, toy model for EW symmetry breaking. More realistic models pr
may be constructed by considering the discrete torus as in[3,6,7].

Here we propose a generalization of the model[2], so that it may qualitatively describe the dynamical E
breaking and the mass hierarchy of quarks or leptons between different generations.2 The model[2] includesN -
copies of the gauge fieldAn

µ andN link variablesUn,n+1, following [1]. For the link variables, we impose a period
boundary conditionUn+N,n+N+1 = Un,n+1 and sometimes we restrictn to ben = 0,1,2, . . . ,N − 1. Un,n+1 is
assumed to be unitary and Un+1,n is defined byUn+1,n ≡ U

†
n,n+1 = U−1

n,n+1.
Before writing our new Lagrangian, it is convenient to define a variableUn,l , a link variable connecting “th

non-nearest neighbours”, by

(1)Un,l =



Un,n+1Un+1,n+2 · · ·Ul−2,l−1Ul−1,l , whenl > n,

1, whenl = n,

Un,n−1Un−1,n−2 · · ·Ul+2,l+1Ul+1,l , whenl < n.

The following Lagrangian is the main starting point of our new model:

(2)L= − 1

2g2

N−1∑
n=0

trFn
µνF

nµν + 1

4

∑
n,l

anl tr
[
(DµUn,l)

†DµUn,l

]
.

HereFn
µν is the field strength given byAn

µ andanl ’s are constants specifying the couplings including non-nea
neighbours. This kind of couplings was first discussed for gravity in[13], and is useful to obtain the induce
positive cosmological constant, which may serve as a quite simple model for the dark energy of our accelerat
universe. In the model[2], only nearest neighbour couplings have been introduced. If we assumeUn,l connects the
branes, in the present model, the branes are connected in a rather complicated way. One may suppose
correspond to the site on a circle. ThenUn,l connects the branes like a mesh or a net. Such a case might not
if the codimension of the spacetime is one. We may need toconsider more complicated spacetime or the space
whose codimension is two or more.

If we denote the gauge group asG, the Lagrangian(2) hasGN gauge symmetry. The non-nearest neighb
couplings in(2) give more degrees of freedom to the model, and are useful to trigger the dynamical brea

2 The model with an infinite number of gauge theories which are linked by scalars has been considered in[12] in order to get an infinite
tower of massive gauge fields. The model[12] may be in a same class with that in[2]. We also note that a generalization of the model[2] by
using the graph structure has been done in[10].
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gauge symmetry and the mass hierarchy. As it will be shown later, the induced Coleman–Weinberg potentia
mass matrix of fermions can include an arbitrary function originating from the non-nearest neighbour cou
The proper choice of the functions induces the gauge symmetry breaking and the mass hierarchy.

SinceUn,l �= Un,l+N nor Un,l �= Un+N,l in general, the sums aboutn andl can be from−∞ to ∞. In (2), the
covariant derivativeDµ is defined by

(3)DµUn,l ≡ ∂µUn,l − iAn
µUn,l + iUn,lA

l
µ.

In the Lagrangian(2), the termsLM which do not include derivative can be regarded as mass terms for the
fields andLM is explicitly given by

(4)LM = 1

4

∑
n,l

anl tr
[
An

µAnµ + Al
µAlµ − 2Al

µUl,nA
nµUn,l

]
.

By using the gauge transformation, one may impose the unitary gauge condition whereUn,n+1 does not depend o
n as

(5)Un,n+1 = eiu.

First we consider the electrodynamics case, where the gauge group isU(1). SinceU
†
l,n = Un,l , and Ul,n

commutes withAnµ, one obtains

(6)LM = 1

2

∑
n,l

anl

[
An

µAnµ + Al
µAlµ − 2An

µAlµ
]
.

There does not appearu-dependence.
As a non-trivial toy model, the case that the gauge group isSU(2) is interesting. Then the action(2) hasSU(2)N

gauge symmetry. Writing

(7)An
µ = 1

2
τaAna

µ , u = υ0

2
τ3

with τa ’s (a = 1,2,3) being Pauli matrices, we find

LM = 1

2

∑
n,l

anl

[
Ana

µ Anaµ + Ala
µ Alaµ − 2 cos

(
(l − n)υ0

)(
An1

µ Al1µ + An2
µ Al2µ

)

(8)+ 2 sin
(
(l − n)υ0

)(
Al1

µ An2µ − Al2
µ An1µ

)− 2An3
µ Al3µ

]
.

We may assumeanl only depends on the absolute value of the difference betweenn andl:

(9)anl = a
(|n − l|).

We also Fourier transformAna
µ as

(10)Ana
µ = 1√

N

N−1∑
L=0

ÂLa
µ ei 2πnL

N .

SinceAna
µ is real,ÂLA

µ = (Â
(N−L)A
µ )∗. Then we obtain
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(11)

LM = 2
N−1∑
L=0

∞∑
l=1

a(l)

[(
1− cos(lυ0)cos

(
2πlL

N

))((
ÂL1

µ

)∗
ÂL1µ + (ÂL2

µ

)∗
ÂL2µ

)

+ sin(lυ0)sin

(
2πlL

N

)((
ÂL1

µ

)∗
ÂL2µ − (ÂL2

µ

)∗
ÂL1µ

)
+
(

1− cos

(
2πlL

N

))(
ÂL3

µ

)∗
ÂL3µ

]
.

As a result the mass matrix for the gauge fields is given by

M2
n(υ0) = 32g2




1√
2

i√
2

0

i√
2

1√
2

0

0 0 1






∞∑
l=1

a(l)




2 sin2(l(υ0
2 + πL

N

))
0 0

0 2 sin2
(
l
(

υ0
2 − πL

N

))
0

0 0 2 sin2
(

πlL
N

)





(12)×



1√
2

− i√
2

0

− i√
2

1√
2

0

0 0 1


 .

Whenυ0 = 0, only the mode corresponding toL = 0 is massless. ThenSU(2)N gauge symmetry is broken t
SU(2). Whenυ0 �= 0, the massless gauge field is onlyÂL=0,a=3

µ . Thus, the gauge symmetry is broken do
to U(1).

In order to obtain non-vanishingυ0, one may consider the Coleman–Weinberg mechanism[11], where the
one-loop induced potential forυ0 is given by

(13)V (υ0) = 3Λ2

32π2 tr
(
M2

n(υ0)
)+ 3

64π2 tr

{(
M2

n(υ0)
)2

ln

(
M2

n(υ0)

Λ2

)}
.

HereΛ2 is the UV cut-off parameter. As the kinetic term forυ0 in (2) is given by

(14)LK = 1

4

∞∑
l=1

a(l)l2∂µυ0∂
µυ0,

the canonically normalized fieldφ is

(15)φ = υ0

√∑∞
l=1 a(l)l2

2
.

It is interesting to consider now some examples. Letf (x) be a function which can be expanded by a Tay
series:

(16)f (x) =
∞∑

k=0

αkx
k.

a(l) is chosen as

(17)a(l) =
{

αk, whenl = Nk + 1 (k = 0,1,2, . . .),

0, whenl �= Nk + 1.

Herek can be regarded as the winding number. As a result

(18)2
∞∑

a(l)sin2
(

l

(
υ0

2
± πL

N

))
= f (1) − 1

2

{
ei(υ0± 2πL

N )f
(
eiNυ0

)+ e−i(υ0± 2πL
N )f

(
e−iNυ0

)}
.

l=1
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(19)2
N−1∑
L=0

∞∑
l=1

a(l)sin2
(

l

(
υ0

2
± πL

N

))
= Nf (1).

Then in the potential(13), the term proportional toΛ2 does not depend onυ0. We also have

(20)

N−1∑
L=0

(
2

∞∑
l=1

a(l)sin2
(

l

(
υ0

2
± πL

N

)))2

=
{

N
{
f (1)2 + 1

2f
(
eiNυ0

)
f
(
e−iNυ0

)}
, whenN > 2,

2f (1)2 + 1
2

{
eiυ0f

(
e2iυ0

)+ e−iυ0f
(
e−2iυ0

)}2
, whenN = 2.

WhenN > 2, if f (x) ∝ xI by a non-negative integerI , in the potential(13), the term proportional to lnΛ2 does
not depend onυ0. The model withf (x) ∝ xI does not have any essential difference with that in[2], sincef (x) is
a monomial means not to include different winding modes. On the other hand, in the general case in whichf (x) is
a polynomial including different winding modes, this term depends onυ0. In the model[2], there does not appe
lnΛ2 terms in the field (corresponding toυ0 here) dependent part. In the potential we now have included lΛ2

term in general but in return for it, we have a degrees of freedom of an arbitrary (Taylor expansible) functiof (x).
As Un,l with |n − l| > 1 is included, even for the case ofN = 2, the potential can be rather different from that
[2]. The potential(13) for N = 2 case is explicitly found to be

V (υ0) = 96g4

π2

[{
f (1)2 + 1

4

{
eiυ0f

(
e2iυ0

)+ e−iυ0f
(
e−2iυ0

)}2
}

× ln

{
f (1)2 − 1

4{eiυ0f (e2iυ0) + e−iυ0f (e−2iυ0)}2

Λ4

}

− f (1)
{
eiυ0f

(
e2iυ0

)+ e−iυ0f
(
e−2iυ0

)}
ln

{
f (1) − 1

2{eiυ0f (e2iυ0) + e−iυ0f (e−2iυ0)}
f (1) + 1

2{eiυ0f (e2iυ0) + e−iυ0f (e−2iυ0)}
}]
(21)+ (υ0 independent terms).

If we define

(22)X± ≡ f (1) ± 1

2

{
eiυ0f

(
e2iυ0

)+ e−iυ0f
(
e−2iυ0

)}
,

V (υ0) in (21)can be rewritten as

V (υ0) = 96g4

π2

[
X+2 + X−2

2
ln

(
X+X−

Λ4

)
− X+2 − X−2

2
ln

(
X+

X−

)]
+ (υ0 independent terms)

= 96g4

π2

[
X−2

2
ln
(
X−)2 + (2f (1) − X−)2

2
ln
(
2f (1) − X−)2 − (2f (1) − X−)2 + X−2

2
lnΛ4

]
(23)+ (υ0 independent terms).

We should note thatυ0 = 0 corresponds toX− = 0. Whenυ0 is small, we find

(24)X− ∼
(

1

2
f (1) + 4f ′(1) − 2f ′′(1)

)
υ2

0 .

Whenυ0 (X−) is small, the potentialV (υ0) behaves as

V (υ0) = 96g4

π2

[
(υ0 independent terms) + (−4f (1) ln

(
2f (1)

)− 2+ 2f (1) lnΛ4)X− +O
(
X−2

lnX−)]
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π2

[
(υ0 independent terms)

(25)+ (−4f (1) ln
(
2f (1)

)− 2+ 2f (1) lnΛ4)(1

2
f (1) + 4f ′(1) − 2f ′′(1)

)
υ2

0

]
.

As the term linear inX− appears, the pointX− = 0 (υ0 = 0) is unstable in general. For example, for the cho
f (x) = 1− x

2 , one gets

(26)V (υ0) ∼ 96g4

π2

[
(υ0 independent terms) − 3

2

(−2+ lnΛ4)υ2
0

]
.

If Λ4 > e2, the coefficient ofυ2
0 becomes negative and the point ofυ0 = 0 is unstable and there could be a no

trivial vacuum expectation value. Note that with the choicef (x) = 1− x
2 , X± are given by

(27)X± = ∓2(cosυ0 ± 1)

(
cos2 υ0 ∓ cosυ0 − 1

4

)
.

Since|cosυ0| � 1, X− is bounded as

(28)
1

2

{
−
(

5

3

)3/2

+ 1

}
� X− � 1

2

{(
5

3

)3/2

+ 1

}
.

X− has maximum at cosυ0 = −1
2

√
5
3 and minimum at cosυ0 = 1

2

√
5
3. In the region given by(28), V (υ0) (23) is

finite, thenV (υ0) is bounded and has finite maximum and minimum.Eq. (26)tells that at the minimum,υ0 does
not vanish.

One sees

(29)
1

2

∞∑
l=1

a(l)l2 = 1

2

∞∑
k=0

αk(Nk + 1)2 = 1

2

{
N2(f ′′(1) + f ′(1)

)+ 2Nf ′(1) + f (1)
}

for generalN . Then for the case ofN = 2, the canonically normalized fieldφ in (15) is given by

(30)φ = υ0

√
4f ′′(1) + 8f ′(1) + f (1)

2
.

In the similar way the coupling with the spinor fields which may be identified with quarks or leptons co
introduced. In order to specify the theory, one may restrict the gauge symmetry to beSU(2) and the spinors o
2-dimensional representation ofSU(2) may be considered:

(31)Ψ n =
(

un

dn

)
.

If we regard the spinors as quarks, we may identifyun as up-type quarks anddn as down-types ones. Then a rath
general Lagrangian with generalN has the following form:

(32)Lf = i

N−1∑
n=0

Ψ̄ nDµ

(
An

µ

)
γ µΨ n −

N−1∑
n=0

∞∑
l=−∞

bnlΨ̄
nUn,lΨ

l.

HereΨ n+N = Ψ n. First we assume as inanl of (9) thatbnl depends on the absolute value ofn − l:

(33)bnl = b
(|n − l|).
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ChoosingUn,n+1 as in(5) with (7), one finds

(34)
N−1∑
n=0

∞∑
l=−∞

bnlΨ̄
nUn,lΨ

l =
N−1∑
L=0

( ¯̂uL,
¯̂
dL
)(B(L) 0

0 B(L)

)(
ûL

d̂L

)
.

Here we have writtenΨ n as

(35)Ψ n = 1√
N

N−1∑
L=0

Ψ̂ Lei 2πnL
N = 1√

N

N−1∑
L=0

(
ûL

d̂L

)
ei 2πnL

N ,

andB(L) is defined by

(36)B(L) = b(0) + 2
∞∑
l=1

cos

(
l

(
υ0

2
+ 2πL

N

))
b(l).

Let g(x) is an arbitrary even function which can be expanded as a Fourier series

(37)g(x) =
∞∑

l=−∞
gleilx = g0 + 2

∞∑
l=1

gl cos(lx),

and the identification is done:

(38)b(l) = gl.

Then

(39)B(L) = g

(
υ0

2
+ 2πL

N

)
.

In order to specify the model we considerN = 3 case. Choosingg(x) as an exponential function, for example

(40)g = ζeηx

with ζeηυ0
2 ∼ 10 MeV andη ∼ 2, we findB(0) ∼ 10 MeV, B(1) ∼ 1 GeV, B(2) ∼ 100 GeV. Hence, we ma

identify the quark ofL = 0 as(u, d), L = 1 as(c, s), andL = 2 as(b, t).
Although we may explain the hierarchy between the generation of the quarks by the mass matrix(34), the

mass of the up-type quarks and that of the down-type ones are degenerate in(34) and there does not appe
Cabbibo–Kobayashi–Maskawa matrix. In order to solve the problem, the assumption in(33) may be discarded
Now we introduceN arbitrary real functionsgnn(x) n = 0, . . . ,N − 1 and N(N−1)

2 arbitrary complex functions
gnm(x) (N − 1 � n > m � 0). The functiongnm(x) with (n < m) are defined by a complex conjugate ofgnm(x):
gnm(x) ≡ gmn(x)∗. The natural assumption is that these functions can be expanded as a Fourier series:

(41)gnm(x) =
∞∑

k=−∞
gk

nmeikx.

With identificationbnl by

(42)bnm+Nk = gk
nm

one gets

(43)
N−1∑
n=0

∞∑
l=−∞

bnlΨ̄
nUn,lΨ

l =
N−1∑

n,m=0

Ψ̄ nŨn,mΨ m =
N−1∑

n,m=0

(
ūn, d̄n

)(Gnm(υ0) 0

0 Gnm(−υ0)

)(
un

dm

)
.
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(44)Ũnm ≡
∞∑

k=−∞
bnm+kNUn,m+kN ,

and

(45)Gnm(υ0) ≡ ei
(m−n)υ0

2 gnm

(
Nυ0

2

)
.

We should note that the loop of the fermion gives an additional contribution to the Coleman–Weinberg potent
(13)by

(46)Vf (υ0) = − Λ2

32π2 tr
(
Ũ(υ0)Ũ

†(υ0)
)− 1

64π2 tr

{(
Ũ(υ0)Ũ

†(υ0)
)2 ln

(
Ũ(υ0)Ũ

†(υ0)

Λ2

)}
.

If we regardGnm(υ0) as anN × N matrix, Gnm(υ0) is Hermitian: Gnm(υ0) = Gmn(υ0)
∗. Hence, we can

diagonalizeGnm(υ0) by anN × N unitary matrixVnm(υ0):

(47)
N−1∑

n′,m′=0

Vnn′(υ0)Gn′m′ (υ0)Vm′m(υ0)
† = Gn(υ0)δnm.

Then the mass eigenstates in(43)are given by

(48)ũn =
N−1∑
n′=0

Vnn′ (υ0)u
n′

, d̃n =
N−1∑
n′=0

Vnn′(−υ0)d
n′

.

The mass eigenvalues of up-type quarks are given byGn(υ0). On the other hand, the mass eigenvalues of do
type quarks are given byGn(−υ0). SinceGn(−υ0) �= Gn(υ0) in general, the masses of up-type quarks can
different from those of down-type quarks. The gauge couplings in the Lagrangian(32)are:

(49)ū
(
γ µAµ

)
d =

N−1∑
n,m,n′=0

¯̃un
(
γ µAµ

)
Vnn′(υ0)Vn′m(−υ0)

†d̃m.

Since ũn and d̃m are the eigenstates of the mass, we may identifyMnm ≡ ∑N−1
n′=0 Vnn′(υ0)Vn′m(−υ0)

† as the
Cabbibo–Kobayashi–Maskawa (CKM) matrix.

In this Letter we have given a generalization of the 5-dimensional model studied by Arkani-Hamed
[2] usingN branes andN copies of fields and symmetries[1]. The new point implemented in our Letter is t
introduction of the link variablesUn,l which connect branes (nth andlth) in the non-nearest neighborhood. Sin
the link variables in the 5th dimension give the Higgs fields, our model becomes a new model of the Higgs s
the 5th dimension is consideredas a discrete circle made fromN points, possibly, our link variables have windin
numbers with respect to the discrete circle. Owing to this non-nearest neighbour link variables, we have o
the following interesting results:

1. the dynamical breaking of gauge symmetry occurs, and
2. the quark (or lepton) masses and the CKM mixing matrix are dynamically induced, reproducing the ma

hierarchy.

More explicitly, in a model withSU(2) gauge symmetry, the set of coefficients{αk} in (17)(k: winding number)
of the kinetic terms forUn,n+1+Nk gives a functionf (x) which determines the non-vanishing vacuum expecta
value of the Higgs scalar, following the Coleman–Weinberg mechanism. Accordingly theSU(2) gauge symmetry
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is dynamically broken down toU(1). This phenomenon occurs even forN = 2, but does not occur withou
incorporating the different winding sectors.

Regarding the fermion mass matrix, we have studied theSU(2) model. Here the total numberN of branes
becomes the number of generations of quarks or leptons, and the different waves of fermion fields standin
discreteN points give the different generations. Therefore, the model withN = 3 is a three generation model. Th
SU(2) symmetry used here is notSU(2)L nor SU(2)R, but the diagonal group ofSU(2)V . The coefficientsbk

mn of
Ψ̄ Um,n+NkΨ correspond to the Yukawa couplings. Here the Yukawa couplings also have the winding nuk
with respect to the discrete circle ofN points. Similarly as before, the winding number dependence of the Yu
couplings gives a functiongmn(x) which determines the mass eigenvalues and CKM mixing matrix of the mo

In a simplified case withSU(2) symmetry, the massesm1,m2,m3, . . . , andmN of 1st, 2nd, 3rd, . . . , andN th
generation fermions, respectively, give the hierarchical structure following

(50)m1 : m2 : m3 : · · · : mN = g

(
υ0

2
+ 2π

N

)
: g
(

υ0

2
+ 4π

N

)
: g
(

υ0

2
+ 6π

N

)
: · · · : g

(
υ0

2
+ 2π

)
,

whereυ0 is the vacuum expectation value of the Higgs scalar determined dynamically à la Coleman and We
andN is the number of generations. Since theSU(2) symmetry can be broken dynamically, the mass matri
up-type quarks, and that of down-type quarks can be determined differently, giving different hierarchical st

As was stated above we have used theSU(2)V symmetry, and the left–right asymmetry is not incorporated
that the mixing matrices of L-handed current (CC interaction) and the R-handed current (not yet obser
identical. This result itself is not bad in our study focused on the Higgs sector. We have to eliminate, howe
R-handed current from our model and construct a realisticSU(2)× U(1) model in order to obtain a realistic gau
sector. For this purpose, we have to introduce the chirality of branes on which the fermions with the same
live. Then, the gauge interaction comes from the connection of the branes with the same chiralities and th
interactions connect those with the opposite chiralities (see Ref.[5]).

In summary, we should stress that the toy, non-linear deconstruction model discussed above is not re
the same way as first model[2]. Moreover, some properties of such non-linear theory (like UV completion
continuum interpretation, etc.) are not quite clear and should be further investigated. Nevertheless, in our
the additional freedom which the new deconstruction model may introduce to EM symmetry breaking patte
be useful in the generalization of more realistic versions[6–8].
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