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Abstract

There exists a freedom in a class of four-dimensional electroweak theories proposed by Arkani-Hamed et al. relying on
deconstruction and Coleman—-Weinberg mechanism. The freedom comes from the winding modes of the link variable (Wilson
operator) connecting non-nearest neighbours in the discrete fifth dimension. Using this freedom, dynamical br&kiag of
gauge symmetry, mass hierarchy patterns of fermions and Cabbibo—Kobayashi—Maskawa matrix may be obtained.

0 2004 Elsevier B.V.Open access under CC BY license.
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Dimensional deconstructiofl] (see also subsequent worfx-10]) suggests the natural electroweak (EW)
symmetry breaking in four dimensions without using supersymmetry or strong dynamics at the TeV scale physics.
The interesting feature of such approach is that perturbative corrections in Higgs sector are finite. In these models,
the extra dimensions are the discrete lattice. The simplest vel@jda given by the sites on a circle. By the
Coleman—Weinberg mechanigfi], the gauge symmetry can be broken spontaneously. The effective potential of
the Higgs field becomes finite. In the naive model$a#(2) gauge theory, the Higgs field is, however, triplet, that
is, in the adjoint representation. In the realistic models, of course, the Higgs field shouldSh&2rdoublet. In
order to introduce the doublet Higgs field, tNex N torus (moose) of the tice has been introducgd] and has
been investigated if6]. Especially the simplest case &f= 2 torus case has been constructeffjnand the most
economical case that the Higgs field is pseudo-Goldstone bosorSb@&in/SO5) has been presented[i].
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However, it is quite important (which was not properly realized so far) that there may be more freedom in
EW symmetry breaking patterns from dimensionalatestruction due to its dependence from the non-nearest
neighbour couplings in theory space. Eventually, it nsgt@iat bigger number of phemenologically accepted EW
symmetry breakings may be realized by the corresporatioge of boundary condition fro latticized dimension.

The variety of novel Higgs sectors may emerge. In the context ot/ttle” model, Wilson-line operators with
arbitrary couplings have been discussedd9h where such operators are generated with finite coefficients by
radiative corrections. The non-neat neighbour couplings in theory spacewkuer, may appear geometrically.

We may assume the sites on the lattice corresponding tadémeb embedded in the highdimensional spacetime.

Then the link variables connecting the different sites may correspond to the open string. Hence if the embedding
space has non-trivial homotopy’( is most simple but non-trivial case), there will appear several couplings
corresponding to the winding mode of the open strings (say, an open string can connect two different branes
after windingS! several times). When the embedding maniféddis compact but the dimensions (codimension

of the brane) is larger than one, the homotapyM) can be more complicated and the non-nearest neighbour
couplings appear in general. Another interpretationgduch couplings could be that continuum limit of higher-
dimensional gauge theory is non-local. Thus, we consider a (non-linear) generalization of the simplest model
where the sites of the lattice lies on a circle. Then the Higgs fields are in the adjoint representation. Therefore the
theory under consideration is a non-linear, toy model for EW symmetry breaking. More realistic models probably
may be constructed by considering the discrete torus &s6r7].

Here we propose a generalization of the md@¢| so that it may qualitatively describe the dynamical EW
breaking and the mass hierarchy of quarks or leptons between different genetattemsodel2] includesN-
copies of the gauge field); and link variablesU, 1, following [1]. For the link variables, we impose a periodic
boundary conditiorV,+ v n+N+1 = Un.n+1 and sometimes we restrigtto ben =0,1,2,..., N — 1. Uy p+1 IS
assumed to be unitary and,. {4 , is defined byU, 41, = U,:‘Hl U‘1

Before writing our new Lagrangian, it is convenient to deﬂne a vana,{glg a link variable connecting “the
non-nearest neighbours”, by

Unn1Unsint2---U—21-1U;-1;, whenl > n,
Upi=131 whenl = n, Q)
Upnn-1Up—1n—2-Ury2141U1411, wWhenl <n.

The following Lagrangian is the main starting point of our new model:

N—
1 1
L= 37 Dt ELF 4 3 > an tt[(D, U ) D U, 1] )

n,l

Here F}), is the field strength given byt), anda,,;’s are constants specifying the couplings including non-nearest
neighbours. This kind of couplings was first discussed for gravitfl8], and is useful to obtain the induced
positive cosmological constant, which may serve asitegimple model for the dark energy of our accelerating
universe. In the modé¢2], only nearest neighbour couplings have been introduced. If we agspmennects the
branes, in the present model, the branes are connected in a rather complicated way. One may suppose the brane
correspond to the site on a circle. ThEp; connects the branes like a mesh or a net. Such a case might not occur
if the codimension of the spacetime is one. We may needtsider more complicated spacetime or the spacetime
whose codimension is two or more.

If we denote the gauge group &5 the Lagrangiar2) hasG" gauge symmetry. The non-nearest neighbour
couplings in(2) give more degrees of freedom to the model, and are useful to trigger the dynamical breaking of

2 The model with an infinite number of gauge theories which are linked by scalars has been consiftt2éhinrder to get an infinite
tower of massive gauge fields. The mofi2] may be in a same class with that[R]. We also note that a generalization of the md@¢lby
using the graph structure has been dond®}.
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gauge symmetry and the mass hierarchy. As it will be shown later, the induced Coleman—Weinberg potential and the
mass matrix of fermions can include an arbitrary function originating from the non-nearest neighbour couplings.
The proper choice of the functions induces the gauge symmetry breaking and the mass hierarchy.

SinceUy, | # Uy 1+~ NOr Uy # U,y in general, the sums abowtand! can be from—oo to co. In (2), the
covariant derivativeD,, is defined by

DpUpy = 3,Ung —iALUng +iUn Al 3)

In the Lagrangiarf2), the termsCy which do not include derivative can be regarded as mass terms for the gauge
fields andCy is explicitly given by

1
Lo =7 D am AL A" + AL A = 241, U1n A U], )

n,l
By using the gauge transformation, one may impose the unitary gauge conditiontihgredoes not depend on
n as

Uppir = €". (5)

First we consider the electrodynamics case, where the gauge grdufl)s Since UlTn = U, , and U;,
commutes withA”#, one obtains

1 L4l l
Lw=35 D au[ A}, A" + 4, AT — 245 AT]. (6)

n,l

There does not appeardependence.
As a non-trivial toy model, the case that the gauge gro®ie) is interesting. Then the acti¢@) hasSU(2)
gauge symmetry. Writing

1 vo 3
AZ:EI”AZ“, uz?‘f (7

with t?'s (a =1, 2, 3) being Pauli matrices, we find

Ly = % > au[ At AT 4 Al A — 2 coq(I — nyuo) (AREAIT 4 ARZ A2

n,l
+25in(( — n)vo) (AlLA"2H — ALZAmH) — 243 ATH] (8)
We may assume,,; only depends on the absolute value of the difference betwesl!:
anl =a(|n—l|). 9

We also Fourier transform:‘ﬁ as

1 N-1 2nL
Ant = =N ALed TR (10)
" I~ u
N L=0

SinceA”? is real, ALA = (AN=1%)* Then we obtain
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N-1 oo
2rlL £ A AT ovs A
cMzzLXZ: ; (1)[(1 cos(luo)cos( N ))((A YTALL 4 (AL ARa)
+ sin(ivo) sin(z”%) (AL A2 _ (AL2y 4Ly

+ (1 — cos(zn#)) (Aff)*A“ﬂ] (11)

As a result the mass matrix for the gauge fields is given by

% % 0\ [ . 2sirf(1(42 + Z£))
MZwo)=32¢ | L L 0|y a) 0 2sirf(1(3 — 57)) 0
o o 1/~ 0 0 2sirt(73F)
|5 % o) @
o o0 1

Whenwvg = 0, only the mode corresponding fo= 0 is massless. The8U(2)N gauge symmetry is broken to
SU(2). Whenug # 0, the massless gauge field is om¥€=0'“=3. Thus, the gauge symmetry is broken down
toU(1).

In order to obtain non-vanishingy, one may consider the Coleman—Weinberg mechaiisth where the
one-loop induced potential far is given by

3A2 3 MZ(vo)
V(vg) = tr(MZ(vo)) + —tr} (M2(vp)*In( =22 ) . (13)
6472 A
Here A? is the UV cut-off parameter. As the kinetic term fag in (2) is given by
1 oo
L=1 ga(l)lzauvoaﬂuo, (14)

the canonically normalized fielgl is

o0 2
¢ =g 22O, (15)

It is interesting to consider now some examples. fét) be a function which can be expanded by a Taylor
series:

f(x)= Zakxk. (16)

a(l) is chosen as

_Jox, whenl=Nk+1(k=0,1,2,..),
“(”—{o, wheni Nk + 1. (17)

Herek can be regarded as the winding number. As a result

Zza(l) siﬁ(l(% + %)) =f(1) - {e’(uoi L )f(e‘Nuo) +e i(vot Zk )f( lNUo)} (18)
=1
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Therefore we have
N-1 o

2} Za(z)sinz(z<%i%>) — N (D). (19)

L=0 [=1

Then in the potential13), the term proportional tei? does not depend am. We also have

L w2+ B (€) (e i), whenn > 2,
> ZZa(Z)S|n2<l<7j:—)) - L : , o
o\ = N 2f ()% + 3{vo f(e?W0) + e7iv0 £ (e72¥0) 1% whenN = 2.
(20)
WhenN > 2, if f(x) x x! by a non-negative integdr, in the potentia(13), the term proportional to In? does
not depend omy. The model withf (x) o< x! does not have any essential difference with thg2]nsince f (x) is
a monomial means not to include different winding modes. On the other hand, in the general case ifiwhish
a polynomial including different winding modes, this term dependsgrin the mode([2], there does not appear
In A2 terms in the field (corresponding i@ here) dependent part. In the potential we now have included In
term in general but in return for it, we have a degrees of freedom of an arbitrary (Taylor expansible) fyfiiedion
As U, ; with |n — | > 1 is included, even for the case 8f= 2, the potential can be rather different from that in
[2]. The potentia(13)for N = 2 case is explicitly found to be

4
V(vo) = gj—f[{f(l)z n %{eivof(eb'uo) i eiuof(eziuo)}z}

[ f D2~ €0 f (@) + et f(e o))
xn e

; , . >y (1) — L{e/vo f (Vo) 4 eivo £ (g2iv0))
— £(1)levo £(g2ivo ivg 2ivo) 1| {f > }:|
f( ){ f( ) +e€ f(e )} n f(l) T %{eiUOf(einO) + efiUOf(e72iU0)}

+ (vo independent terms (21)
If we define
Xt=f)+ %{eiUOf(einO) +e v f(g%v0) ) (22)

V (vo) in (21) can be rewritten as

ATXT24x-2 /xtx—\ xt?-x"?% [/x*
B ) (]

2 2 A4 2 X-

+ (vo independent terms
_ 96 X% o ) -XT)? L2 @RFM-Xx)2+x?
_7[T|n(x )+ S In2r ) - x7)’ - 5 InAi|

+ (vo independent terms (23)

We should note thatp = 0 corresponds t& ~ = 0. Whenug is small, we find
1
X~ <§f(1) +4f'(1) - 2f“(1)>vc2). (24)

Whenuvg (X 7) is small, the potentiaV’ (vg) behaves as

4
V(vo) = 9:—‘2' [(vo independent termst (—=4£ (1) IN(2f (1)) —2+2f(1)In AN X~ + (D(X*2 InX")]
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96g* )
~ —‘2g [(uo independent terms
T

1
+(=4fMI2f D) —24+2fD)In A4) <§f(1) +4f(1) — 2f”(1)> Ug]. (25)
As the term linear inX— appears, the poilt — = 0 (vg = 0) is unstable in general. For example, for the choice
f(x)=1- %, onegets
4

V (vg) ~ g |:(vo independent terms- g(—z +1n A%) ug]. (26)
T

If A% > €2, the coefficient ofug becomes negative and the pointwgf= 0 is unstable and there could be a non-
trivial vacuum expectation value. Note that with the chof¢e) =1 — 7, X* are given by

1
X* =F2(cosvg £ 1) (co§ Vo F COSUg — Z)' (27)

Since| cosuvg| < 1, X~ is bounded as

1 5\ 3/2 1(/5\%2
- = 1 <X <=9 = 1;. 28
2{ (3) i } 2{(3> " } @9
X~ has maximum at cos = —%\/g and minimum at cosp = %\/% In the region given by28), V (vo) (23)is

finite, thenV (vp) is bounded and has finite maximum and minimdy. (26)tells that at the minimumyg does
not vanish.

One sees
18 1 1
> > a)i®= > > e (Nk+1)* = E{Nz(f”(l) + /D) +2Nf' (D) + f(D) (29)
=1 k=0

for generalN. Then for the case a¥ = 2, the canonically normalized fielplin (15)is given by

N / 4" (D) +8f' M)+ Q)
¢ =vo 5 .

In the similar way the coupling with the spinor fields which may be identified with quarks or leptons could be
introduced. In order to specify the theory, one may restrict the gauge symmetrySo(Bg and the spinors of
2-dimensional representation 8J(2) may be considered:

o — (Z) . (31)

If we regard the spinors as quarks, we may identifyas up-type quarks antf’ as down-types ones. Then a rather
general Lagrangian with genersl has the following form:

(30)

N-1 N-1 o0
Lp=iY W'D (AL)y" " =>" 3" by U ¥ (32)
n=0 n=0[=—o00

Herew"™N = ¢ First we assume as in, of (9) thatb,; depends on the absolute valuewof I:

by =b(In —11). (33)
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ChoosingU, »+1 as in(5) with (7), one finds

N-1 o0 _ ~L
~ B(L 0 u
S 3 b U = § :( L,dL)( (o) B(L)><§L>' (34)

n=0 I=—00 L=0
Here we have writted” as

1 N-1 2nl 1 N-1 ak 2nnl
=N eV = —— <AL>ei”~”, (35)
YN 5 Nz \d
andB(L) is defined by
oo
vog 2L
B(L)=b(0)+2 — ) )b(D). 36
(L) <)+§cos<(2+N))<) (36)
Let g(x) is an arbitrary even function which can be expanded as a Fourier series
(0.¢] ) o0
g) =Y @€ =go+2) gcodix), (37)
|=—00 =1

and the identification is done:
b)) =g (38)
Then

vo 27TL) (39)

B(L)=g<E+T .

In order to specify the model we considgr= 3 case. Choosing(x) as an exponential function, for example
g=¢er (40)

with ;e% ~ 10 MeV andn ~ 2, we find B(0) ~ 10 MeV, B(1) ~ 1 GeV, B(2) ~ 100 GeV. Hence, we may
identify the quark ofL =0 as(u,d), L =1 as(c, s), andL =2 as(b, t).

Although we may explain the hierarchy between the generation of the quarks by the mass(8#jtrilke
mass of the up-type quarks and that of the down-type ones are degene(afg amd there does not appear
Cabbibo—Kobayashi—Maskawa matrix. In order to solve the problem, the assump(Efﬂ) imay be discarded.
Now we introduceN arbitrary real functiong,,,(x) n=0,...,N — 1 and X&=D arbitrary complex functions
gum(x) (N —1>=n > m > 0). The functiong,,, (x) with (n < m) are defined by a complex conjugategf, (x):
gnm () = gmn (x)*. The natural assumption is that these functions can be expanded as a Fourier series:

gnm(x)z Z gﬁmeikx. (41)

k=—00

With identificationb,; by

Bum+Nk = 8k (42)
one gets

N-1 oo _ / = T = = Gpm (Vo) 0 u'
by " Up @' = Y 00, 0" = 0", d" ' 43
Z Z nl n,l Z 1, Z (M ) ( 0 Gnm(_UO)) (dm) ( )

n=0I=—o00 n,m=0 n,m=0
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Here
00
Unm = Z bum+kNUn,m+kN » (44)
k=—00
and
Gum(vo) = ei%gnm (%) (45)

We should note that the loop of the figion gives an additional contribution to the Coleman—Weinberg potential in
(13)by

2

J 7t
Vi(vo) = i U(UO)UT(UO))—itr{((}(uo)(ﬁ(uo))zln<w)}. (46)

3272 ( 6472 A2
If we regard G, (vo) as anN x N matrix, G, (vo) is Hermitian: G, (vo) = G (vg)*. Hence, we can
diagonalizeG,,;; (vg) by anN x N unitary matrixV,,, (vo):

N-1
> Vaw W0 G (V0) Vi (00) T = G (U0) Sy (47)

n’,m'=0
Then the mass eigenstateg43) are given by
N-1 N-1
i"=Y " Vawwou”,  d"= Vay(—vo)d". (48)
n'=0 n'=0
The mass eigenvalues of up-type quarks are givet pfuo). On the other hand, the mass eigenvalues of down-
type quarks are given b§, (—vo). SinceG, (—vp) # G, (uvo) in general, the masses of up-type quarks can be
different from those of down-type quarks. The gauge couplings in the Lagraf8fipare:

N-1
i(yrA)d ="y 7" (y" Au) Vaw V0) Virm (—v0)'d". (49)

n,m,n’=0

Sincei” andd™ are the eigenstates of the mass, we may ideridfy, = 3"_3 Vi, (u0) Vi (—u0) T as the
Cabbibo—Kobayashi—-Maskawa (CKM) matrix.

In this Letter we have given a generalization of the 5-dimensional model studied by Arkani-Hamed et al.
[2] using N branes andV copies of fields and symmetri¢t]. The new point implemented in our Letter is the
introduction of the link variable#, ; which connect branesth and/th) in the non-nearest neighborhood. Since
the link variables in the 5th dimension give the Higgs fields, our model becomes a new model of the Higgs sector. If
the 5th dimension is considerad a discrete circle made fromw points, possibly, our link variables have winding
numbers with respect to the discrete circle. Owing to this non-nearest neighbour link variables, we have obtained
the following interesting results:

1. the dynamical breaking of gauge symmetry occurs, and
2. the quark (or lepton) masses and the CKM mixingrnraare dynamically induced, reproducing the mass
hierarchy.

More explicitly, in a model witt5U(2) gauge symmetry, the set of coefficiefds} in (17) (k: winding number)
of the kinetic terms folJ,, ,+1+nk gives a functionf (x) which determines the non-vanishing vacuum expectation
value of the Higgs scalar, following the Coleman—Weinberg mechanism. AccordingBUt® gauge symmetry
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is dynamically broken down t@/(1). This phenomenon occurs even fodr= 2, but does not occur without
incorporating the different winding sectors.

Regarding the fermion mass matrix, we have studiedSb€2) model. Here the total numbe¥ of branes
becomes the number of generations of quarks or leptons, and the different waves of fermion fields standing on the
discreteN points give the different generations. Therefore, the model With 3 is a three generation model. The
SU(2) symmetry used here is n8U(2);, nor SU(2) g, but the diagonal group 8U(2)y. The coefficient%»,’;n of
Ll'/Um,HNkLl/ correspond to the Yukawa couplings. Here the Yukawa couplings also have the winding rkumber
with respect to the discrete circle of points. Similarly as before, the winding number dependence of the Yukawa
couplings gives a functiop,,, (x) which determines the mass eigenvalues and CKM mixing matrix of the model.

In a simplified case witlsU(2) symmetry, the masses;, mo, ms, ..., andmy of 1st, 2nd, 3rd, ..., and/th
generation fermions, respectively, give the hierarchical structure following
vg 27 vo 4n vg 6m ()
: : Teee =gl —+—):igl =F+—):igl =+—):- gl =+27),
miimp:ms3 my g(2+N> g<2+N> g<2+N> g(2+n> (50)

whereuy is the vacuum expectation value of the Higgs scalar determined dynamically & la Coleman and Weinberg,
and N is the number of generations. Since BE(2) symmetry can be broken dynamically, the mass matrix of
up-type quarks, and that of down-type quarks can be determined differently, giving different hierarchical structure.

As was stated above we have used®#2),, symmetry, and the left—right asymmetry is not incorporated, so
that the mixing matrices of L-handed current (CC interaction) and the R-handed current (not yet observed) are
identical. This result itself is not bad in our study focused on the Higgs sector. We have to eliminate, however, the
R-handed current from our maldend construct a realisti8U(2) x U (1) model in order to obtain a realistic gauge
sector. For this purpose, we have to introduce the chirality of branes on which the fermions with the same chirality
live. Then, the gauge interaction comes from the connection of the branes with the same chiralities and the Higgs
interactions connect those with the opposite chiralities (see[Ref.

In summary, we should stress that the toy, non-linear deconstruction model discussed above is not realistic in
the same way as first modg]. Moreover, some properties of such non-linear theory (like UV completion, its
continuum interpretation, etc.) are not quite clear and should be further investigated. Nevertheless, in our opinion,
the additional freedom which the new deconstruction model may introduce to EM symmetry breaking patterns may
be useful in the generalization of more realistic versi@s].
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