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LABORATORY INVESTIGATION

Effects of dietary protein restriction and oil type on the early
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Effects of dietary protein restriction and oil type on the early progres-
sion of murine polycystic kidney disease. A paucity of research data
exists on the potential for early dietary modification to directly retard
cystic growth and proliferation in polycystic kidney disease (PKD). We
have therefore examined the relative effects of dietary protein levels
and oil type on the progression of disease in a murine model of PKD. In
the first study, weanling DBAI2FG-pcy (pcy) mice were fed either a
normal (NP), 25%, or low (LP), 6%, casein diet with 10% of either
sunflower seed oil (SO) (containing n-6 fatty acids), or fish oil (FO)
(containing n-3 fatty acids), in a 2 x 2 design. At the end of the dietary
treatment, kidney weight relative to body weight was higher in mice on
the NP diets. In addition, kidney phospholipid to kidney weight
(prnol/g) was lower in pcy mice on NP diets, indicating that the
increased kidney size was largely due to increased cyst development.
Replacement of dietary SO with FO resulted in alterations in renal
phospholipid fatty acid compositions: 18:2 n-6, 20:4 n-6, and 22:5 n-6
were lower, and 20:5 n-3, 22:5 n-3, and 22:6 n-3 were higher in FO-fed
animals. No effect of dietary lipid type on disease progression was
noted, however. In a second study, morphometric analysis revealed an
11% lower percentage cyst area and a 46% lower total cyst area (mm2)
in kidney sections derived from mice on LP diets compared to NP diets.
These results indicate that early dietary protein restriction in PKD prior
to clinical manifestation of symptoms of the disease may have a
significant impact on the pathogenesis of PKD.

There is a growing body of evidence which suggests that
dietary protein restriction may have a protective effect in
established, late renal disease [reviewed in 1—4]. Several large
prospective trials testing this hypothesis in patients with estab-
lished chronic renal failure are presently in progress. With
respect to the efficacy of low protein (LP) diets in polycystic
kidney disease (PKD) specifically, Oldrizzi et a! [5] studied
patients with advanced PKD on LP diets for an average of three
and one-half years. They calculated that compared to controls
with PKD, the slope of reciprocal serum creatinine over time
for the patients on LP diets was significantly lower than for
those on control diets. Gretz, Korb and Strauch [6] studied a
small number of PKD patients and found a markedly slower
increase in serum creatinine in patients on LP diets supple-
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mented with keto acids compared to controls. Recently, Loca-
telli et al [7] studied renal patients on LP diets for up to two
years and found no evidence for a protective effect of protein
restriction on late chronic renal insufficiency, including patients
with PKD. In PKD, cyst enlargement is considered to cause
destruction of surrounding nephrons [8, 9], resulting in hyper-
filtration in the remaining nephrons. Dietary protein may accel-
erate disease progression by increasing the hyperfiltration of
remaining healthy nephrons, as occurs in renal ablation models
of disease [10, 11, 12].

Diets enriched in fish oil (FO) containing n-3 fatty acids in
human and animal forms of renal disease have also been shown
to be beneficial in some, but not all, renal disorders [reviewed in
13—15]. Recently, cytokines and eicosanoids [derived from
tissue arachidonic acid (20:4 n-6)] have been implicated in
cystic kidney disease [16]. The formations and actions of these
have been found in other studies to be affected by dietary FO
containing n-3 fatty acids [13, 15, 17, 18].

No research data exist on the potential for early manipulation
of dietary protein level to modify cyst growth and proliferation
in PKD, particularly before the presentation of clinical symp-
toms or abnormal measures of renal functioning. In the present
study, we have used a murine model of autosomal dominant
PKD [19, 20] to study the effects of dietary manipulation
[protein level and oil type (n-6 vs. n-3 fatty acids)] on the early
progression of PKD. We have measured kidney weight to body
weight ratios; this has been used to indicate cyst development
in PKD [20—23] since kidney enlargement reflects early changes
in PKD progression in humans [24, 25] and in this mouse model
[23] of the disease. For example, despite considerable renal
enlargement inpcy mice at 18 weeks of age, blood urea nitrogen
is not elevated in these mice. Progressive renal insufficiency,
however, develops in pcy mice after 18 weeks of age [23]. In
addition, we have measured renal phospholipid composition
(level and fatty acid profiles), as well as phospholipid to kidney
ratios (mol/g), which appear to be inversely related to the
progression of PKD. To further study the effects of protein
restriction on cyst growth, morphometric analysis of kidneys
derived from mice on NP and LP diets were also performed.
The results presented herein provide supportive evidence for a
significant beneficial effect of dietary protein restriction on the
early progression of PKD, regardless of oil type.
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Table 1. Composition of experimental diets

Diet ingredient

% Of diet by weight
NP-SO NP-FO LP-SO LP-FO

Casein, vitamin-free
Cornstarch
Sucrose
Sunflower seed oil
MaxEPA oil
Mineral mix
Choline choride
Inositol
DL-methionine
Vitamins
Solka-floc(flber)

25
25
30
10
—
5.5
0.2
0.1
0.3
0.03
3.87

25 6
25 44
30 30

1 10
9 —
5.5 5.5
0.2 0.2
0.1 0.1
0.3 0.09
0.03 0.03
3.87 4.08

6
44
30

1

9
5.5
0.2
0.1
0.09
0.03
4.08

Methods

Animals and diets
The experimental animal used was the DBA/2FG-pcy (pcy)

mouse, a model of autosomal dominant PKD [19, 20). Twenty-
eight male pcy mice were weaned at 30 days of age and
randomly divided into four groups; one mouse died of unknown
causes during the course of the experiment. Mice were housed
individually in a temperature (23°C), humidity (60 to 65% R.H.),
and light (12 hours light: 12 hours dark) controlled environment.
Water and diet were provided ad libitum.

Study 1. Mice were fed semi-purified diets containing either a
normal (NP, 25% casein) or low (LP, 6% casein) level of
protein, and either sunflower seed oil (SO) rich in the n-6 fatty
acid, linoleic acid (18:2 n-6), or a FO concentrate (MaxEPA,
R.P. Scherer, Canada) rich in n-3 fatty acids (eicosapentaenoic
acid, 20:5 n-3, plus docosahexaenoic acid, 22:6 n-3), in a 2 x 2
design. The FO enriched diet contained 1% SO to supply
adequate amounts of the essential fatty, 18:2 n-6. Ethoxyquin
was added as an anti-oxidant at a level of 0.05% [26]. The
composition of these diets is given in Table 1. All mice were
weighed at the beginning and end of the study, and feed
consumption was monitored for a seven day span during the
study. Blood samples taken from the orbital sinus plexus after
eight weeks on study were pooled for serum albumin analysis.
When the mice were 120 days of age, they were sacrificed after
CO2 anesthesia.

Study 2. For morphometric studies, weanling mice (3 per
group) were fed LP and NP diets exactly as above except that
corn oil (rich in 18:2 n-6) was used as the lipid source for both
groups such that these diets differed only in protein level. Mice
were weighed at the beginning and end of the study, and
sacrificed at 120 days of age.

Biochemical analysis
In study I, the kidneys and livers were immediately removed

at sacrifice, frozen in liquid nitrogen, and stored at —80°C until
further analysis. Kidney lipids were extracted [27] and total
phospholipid fractions were purified by thin-layer chromatog-
raphy using heptane/isopropyl ether/acetic acid (60/40/3, by
volume) as the mobile phase [28]. Fatty acid methyl ester
derivatives were formed from the isolated phospholipid frac-
tions and analyzed by gas-liquid chromatography to determine
their fatty acid content as previously described [29].

Morphometric analysis
Kidneys from mice in study 2 were fixed in 10% formalin.

Prior to embedding in paraffin, the kidneys were bisected in the

coronal plane through the hilum of the kidney. Five micron
sections were stained with hematoxylin and eosin using stan-
dard techniques. Morphometric analysis was performed on a
Nikon Labplot microscope equipped with a Cohu high resolu-
tion black and white video camera with a computer interface via
a Visionplus board. Image analysis was performed using the
densitometry and fluorometry module (1M4 100) of the Image-
measure program (Phoenix Biotechnology Inc., Federal Way,
Washington, USA). At a object to screen magnification of
142 x, tubular luminal area was measured fluorometrically over
the entire kidney excluding the papilla. The screen was divided
into a grid of 12 sections and fluorometric measurements taken
of each section. Measurements were repeated in non overlap-
ping sections of the kidney until the entire organ had been
covered. Measurements were performed in duplicate from two
alternate five micron sections taken from near the centre of the
kidney. A minimum of 400 measurements were taken from each
kidney.

Statistics

All data are expressed as the mean standard error. The
data from the study 1 were analyzed by analysis of variance
followed by the protected least significant differences test when
interactions were present. The model included effects for pro-
tein level, oil type, and litter. Student's t-test was used for the
study 2, using individual measurements as the base unit of
study. Differences were considered significant at P � 0.05,
interactions at P 0.10 [30].

Results

Study I

The average initial body weight for mice in all groups was
16.5 0.3 g (mean SE, N = 27), with no significant differences
between the four groups. At the end of the study, the overall
body weights of mice on the NP diets were higher than for those
on the LP diets (Table 2). FO-feeding also resulted in higher
body weights compared to SO-feeding. The mice on the LP
diets consumed 3.3 0.2 g of diet per day, as compared to 2.2

0.1 g/day for the mice on the NP diets (P < 0.001). There was
no difference in food consumption between mice fed SO versus
FO (2.7 0.2 vs. 2.8 0.2 g/day). The lower final body weight
and increased feed consumption by the mice on the LP diets
indicated that these mice may have been marginally protein
deficient. Serum albumin levels, however, were in the normal
range for mice on all diets (2.9 0.0 and 2.8 0.1 g/dl, for mice
on NP and LP diets, respectively).

When kidney and liver weights were expressed in absolute
values or as a proportion of body weight, both were elevated in
mice on the NP diets, but oil type had no effect on these
parameters (Table 2). Kidneys were enlarged to a much greater
extent than livers in the mice on the NP diets as evidenced by
their significantly higher kidney weight to liver weight ratios.

Total renal phospholipid and cholesterol were both elevated
in mice on the NP diets; renal phospholipid was also higher in
the FO-fed mice (Table 3). When renal phospholipid and
cholesterol were expressed per gram of kidney, however, only
dietary protein level had an effect on these two parameters. The
total phospholipid to kidney weight ratio (mol/g) was 48%
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Table 2. Effect of dietary protein level and oil type on body and organ weights and ratios of pcy mice

NP-SO NP-FO LP-SO LP-FO Effectsa

Body wt. g 24.8 0.8 28.2 0.7 22.4 0.8 22.6 0.8 a,c

Kidney wt. g (total) 1.69 0.17 2.32 0.28 0.83 0.04 0.84 0.08 a

Kidney wt./body wt. g/100 g 6.83 0.79 8.17 0.85 3.74 0.25 3.68 0.27 a

Liverwt. g 1.29 0.06 1.42 0.05 1.01 0.7 0.87 0.6 a

Liver wt./body wt. g/100 g 5.17 0.12 5.05 0.18 4.47 0.19 3.86 0.22 a

Kidney wt./liver wt. g/g 1.34 0.19 1.63 0.19 0.86 0.10 0.99 0.12 b

Each value represents mean SE for 6 to 7 animals per group.
a p < b P < 0.01, main effects of protein level

P < 0.05, main effects of oil type

Table 3. Effect of dietary protein level and oil type on phospholipid and cholesterol in pcy mouse kidneys (both) on different diets

NP-SO NP-FO LP-SO LP-FO Effectsa

Phospholipid pinol 12.08 1.12 15.02 1.02 8.30 0.66 8.98 0.52 a,b

Cholesterol mol 2.64 0.12 2.90 0.20 1.67 0.10 1.66 0.10 a

Phospholipid/kidney wt. pinollg 7.34 0.71 6.91 0.76 10.14 0.96 11.00 0.70 a

Cholesterol/kidney wt. pinol/g 1.61 0.09 1.31 0.10 2.04 0.12 2.02 0.08 a

Cholesterol/phospholipid molar ratio 0.22 0.03 0.20 0.03 0.21 0.02 0.19 0.01 NS

a p < 0.001, main effects of protein level; b p < 0.05, main effects of oil type; NS, not significant.

Table 4. Effect of dietary protein level and oil type on renal phospholipid fatty acid composition in pcy mouse kidneys

Fatty
acid NP-SO NP-FO LP-SO LP-FO Effectsa

16:0 21.0 0.4 23.2 0.3 20.5 0.2 23.0 0.4 d

16:1 0.2 0.0 1.0 0.1 0.3 0.1 1.7 0.2 c.d

18:0 17.9 0.3 17.8 0.2 19.1 0.4 19.2 0.3 a

18:1 7.3 0,1 7.6 0.4 7.3 0.2 7.3 0.3 NS
18:2(n-6) 10.8 0.1 4.6 0.2 12.0 0.3 4.9 0.2 b,d

20:3(n-6) 0.6 0.1 0.5 0.0 0.6 0.0 0.5 0.0
20:4(n-6) 21.2 0.6 9.3 0.2 21.5 0.6 9.6 0.2
20:5(n-3) tr 7.2 0.3 tr 8.6 021g
22:0 1.4 0.0 1.2 0.1 1.5 0.0 1.3 0.1

a
d

mt
d

22:4(n-6) 1.6 0.0 0.1 0.0 1.5 0.0 0.1 0.0
22:5(n-6) 9.0 0.8 0.1 o.o 6.3 08g 0.2 0.0
22:5(n-3) 0.2 0.0 1.6 0.0 0.2 0.0 1.7 0.0
22:6(n-3) 3.5 0.2 19.3 I.1 4.2 0.3 15.3 O.8'

cd

mt
d

mt
24:0 1.8 0.0 2.2 0.11 1.9 0.0 2.2 O.l mt
24:1 0.8 0.0 0.7 0.0 0.7 0.1 0.6 0.0 °

Values represent mol percent of total fatty acids; tr, trace. Other minor fatty acids have been omitted from the table. Abbreviations are: NS,
not significant; int, interaction between protein level and oil type.

a P < 0.001, b p < 0.01, C P < 0.05, main effects of protein level; dP < 0.001, P < 0.05, main effects of oil type
Oil effect within that level of protein, P < 0.05 (NP-FO vs. NP-SO, or LP-FO vs. LP-SO)

g Protein effect within that oil type, P < 0.05 (NP-FO vs. LP-FO, or NP-SO vs. LP-SO)

higher (overall) on the LP versus NP diets. The renal choles-
terol to phospholipid ratio was not altered by the dietary
treatments.

In general agreement with previous studies of this model [31],
replacement of dietary SO with FO resulted in marked changes
in renal phospholipid fatty acid composition (Table 4). FO-
feeding resulted in significantly lower levels of n-6 fatty acids
(including 18:2 n-6, 20:4 n-6, and docosapentaenoic acid, 22:5
n-6) and higher amounts of n-3 fatty acids (including 20:5 n-3
and 22:6 n-3) in renal phospholipid.

Study 2
In agreement with study 1, kidneys from mice on the LP diets

were markedly less enlarged than kidneys from mice on NP

diets. Kidney weights were 0.85 0.03 g versus 1.82 0.08 g
(mean SE, P < 0.001), and kidney weights as a percentage of
body weight were 3.74 0.24 versus 7.41 0.57 (P < 0.005),
for mice on LP and NP diets, respectively. Morphometric
analysis of sections obtained from these kidneys (Figs. 1 and 2)
revealed that the percent cyst area was lower in kidneys
obtained from mice on LP versus NP diets (47.1 0.1 % vs.
53.2 0.2 %, respectively, P < 0.001). The total cyst area per
section was 46% lower in mice on LP diets compared to mice on
NP diets (27.2 1.2 mm2 vs. 50.5 2.9 mm2, P <0.005).

Discussion

In previous studies (unpublished observations), we compared
normal control DBA/2J mice with diseased pcy mice on chow
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Fig. 1. Light micrograph of kidney section obtained from pcy mouse on NP diet (magn(fication, X45).

diets containing 17% protein. Normal and diseased mice of 120
days of age had kidney weight to body weight ratios of 1.9 0.1
and 5.3 0.4, respectively, while kidney weight to liver weight
ratios were 0.4 0.0 and 1.3 0.1, respectively. Another
parameter which appears to reflect (inversely) the extent of cyst
growth and cyst fluid accumulation is the kidney phospholipid
to kidney weight (prnol/g) ratio. In normal versus diseased
chow-fed mice of 120 days of age, kidney phospholipid to
kidney weight ratios were 43.6 3.3 versus 10.6 1.7 mol/g,
respectively. This ratio varies inversely with cystic disease
progression; as cysts enlarge, a greater proportion of the kidney
is taken up by cyst fluid, thus decreasing the phospholipid
(cellular membrane component) to kidney weight ratio. In the
present study, we used these parameters to evaluate the pro-
gression of cyst growth in pcy mice, since clinical measures of
renal function (serum blood urea nitrogen and creatinine) do not
reveal any abnormalities at this early stage of the disease, both
in this model [23] and in humans [24, 25]. Data from the
morphometric analysis (showing an 11% lower percent cyst
area and 46% lower total cyst area in kidney sections from mice
on LP diets compared to NP diets) confirms the validity of these
parameters in pcy mice.

Total kidney weights and kidney weights as a percentage of
body weight were lower in the pcy mice on the LP diets. The
level of dietary protein, however, also had a similar, but lesser
effect on liver weights and liver weights expressed as a percent-

age of body weight, despite the absence of cysts in the livers.
This higher liver weight (and presumably part of the increased
kidney weight) on the NP diets is probably due to the fact that
dietary protein has a hypertrophic effect on liver and kidney
apart from disease [32]. To account for this effect, in study 1 we
measured kidney weight in relation to liver weight, thus using
liver weight as an internal standard. The higher kidney weight
to liver weight ratios on the NP diets confirms that, in addition
to increasing normal tissue growth, NP diets (compared to LP
diets) also accelerate cystic growth and disease progression.
Kidneys from the mice on LP diets also had significantly higher
phospholipid to kidney weight ratios, confirming that these
kidneys contained a smaller proportion of cysts and cyst fluid
relative to normal tissue (associated with membrane phospho-
lipid). Consistent with cholesterol being a cellular membrane
component, a higher kidney cholesterol to kidney weight ratio
was also found in pcy mice on the LP diets.

Compared to LP diets, NP diets may adversely affect PKD by
increasing renal hyperfiltration and perfusion. Since the number
of functioning nephrons in PKD may already be reduced by cyst
encroachment on surrounding renal tissue [8, 9], the increased
workload induced by NP diets may shorten the functional
lifespan of the remaining healthy nephrons [10, 11]. The reduc-
tion of functioning nephrons in PKD is analogous to the renal
ablation experimental animal model, in which it has been shown
that although diets with higher levels of protein result in renal
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Fig. 2. Light micrograph of kidney section obtained from pcy mouse on LP diet (magnification, x45).

hypertrophy, the increased workload is associated with struc-
tural lesions, suggesting that this may be a maladaptive re-
sponse in the long term. NP diets may also exert their delete-
rious effects on PKD by increasing renin production, since
abnormalities in the renin-angiotensin-aldosterone system have
been documented in PKD [33—35]. High protein diets have been
reported to increase plasma renin activity in studies of normal
experimental rats and in studies of patients with renal diseases
[36—38]. Another abnormality which may be exacerbated by NP
diets in PKD is the increased activity and/or reversed polarity
of NaK-ATPase [39, 40], since high protein diets have been
shown to increase NaK-ATPase activity in normal rats [41,
42].

We found no protective effect of dietary FO on the early
progression of PKD in study 1. An earlier study with pcymice
in which dietary treatment was initiated a month later and for a
shorter time period indicated that P0 diets may have some
moderate beneficial effects [31]. Replacing dietary SO with FO
from weaning to death, however, did not improve survival in
pcy mice [43]. These studies suggest that if there is any
beneficial effect of dietary FO in pcy mice, it may be limited to
a small time period in the course of the disease. With respect to
the fatty acid alterations in renal phospholipid, of note was the
dramatic replacement of the 22-carbon n-6 fatty acids, adrenic
acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), and the
reduction by more than 50% of 18:2 n-6 and 20:4 n-6, by the n-3
fatty acids, 20:5 n-3, docosapentaenoic acid (22:5 n-3), and 22:6
n-3, with dietary P0 relative to SO. The role of eicosanoids in
the development of PKD in pcy mice appears not to be

important since protein restriction altered disease progression,
but did not affect the level of available eicosanoid precursor as
20:4 n-6, while oil type did affect 20:4 n-6 levels, but not the
early progression of PKD. Increased levels of PGE2 have been
reported in renal cyst fluid derived from patients with PKD [16],
but the relative formation of eicosanoids (thromboxanes, pros-
taglandins, leukotrienes) remains to be studied in this disease.

In conclusion, early dietary protein restriction appears to
retard cyst development and disease progression in this murine
model of PKD. It is possible to markedly alter renal phospho-
lipid fatty acid compositions by replacing dietary SO with FO,
but these alterations did not affect the early progression of
cystic disease in pcy mice. These results indicate that very early
dietary protein restriction in PKD prior to clinical manifestation
of the disease may have a significant impact on the pathogenesis
of PKD.
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