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Abstract

A baseB for a spaceX is said to besharp if, wheneverx ∈ X and (Bn)n∈ω is a sequence of
pairwise distinct element ofB each containingx, the collection{⋂j�n Bj : n ∈ ω} is a base at the
point x. We answer questions raised by Alleche et al. and Arhangel’skiı̆ et al. by showing that a
pseudocompact Tychonoff space with a sharp base need not be metrizable and that the product of a
space with a sharp base and[0,1] need not have a sharp base. We prove various metrization theorems
and provide a characterization along the lines of Ponomarev’s for point countable bases.
 2002 Elsevier Science B.V. All rights reserved.
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The notion of a uniform base was introduced by Alexandroff who proved that a space
(by which we meanT1 topological space) is metrizable if and only if it has a uniform
base and is collectionwise normal [1]. This result follows from Bing’s metrization theorem
since a space has a uniform base if and only if it is metacompact and developable. Recently
Alleche et al. [2] introduced the notions of sharp base and weak development. These
fit very naturally into the hierarchy of strong base conditions, which includes weakly
uniform bases, introduced by Heath and Lindgren [10], and point countable bases (see
Fig. 1 below). In this paper we look at the question of when a space, with a sharp base is
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Fig. 1.

metrizable. In particular, we show that a pseudocompact space with a sharp base need not
be metrizable, but generalize various situations where a space with a sharp base is seen to
be metrizable.

Definition 1. Let B be a base for a spaceX.

(1) B is said to besharpif, wheneverx ∈ X and(Bn)n∈ω is a sequence of pairwise distinct
element ofB each containingx, the collection{⋂j�n Bj : n ∈ ω} is a base at the point
x.

(2) B is said to beuniform if, wheneverx ∈ X and (Bn)n∈ω is a sequence of pairwise
distinct elements ofB each containingx, then(Bn)n∈ω is a base at the pointx.

(3) B is said to beweakly uniformif, wheneverB′ is an infinite subset ofB, then
⋂

B′
contains at most one point.

(4) B is said to be aweak developmentif B = ⋃
n∈ω Bn, eachBn a cover ofX and,

wheneverx ∈ Bn ∈ Bn for eachn ∈ ω, then{⋂j�n Bj : n ∈ ω} is a base at the pointx.

Arhangel’skĭı et al. prove that a space with a sharp base has a point countable sharp
base [2,4] and is meta-Lindelöf. Moreover a weakly developable space has aGδ-diagonal
and a submetacompact space with a base of countable order is developable [2].

We note in passing that the obvious definition of ‘uniform weak developability’ (having
a baseG = ⋃{Gn: n ∈ ω} such that eachGn is a cover and wheneverx ∈ Gn ∈ Gn, {Gn}n

is a base atx) is simply a restatement of developability. We also note that a space with aσ -
disjoint base need not have a sharp base: Bennett and Lutzer [7] construct a first countable
(and a Lindelöf) example of a non-metrizable LOTS withσ -disjoint bases (and continuous
separating families), which cannot have a sharp base by Theorem 2.

When is a space with a sharp base metrizable? We summarize relevant the results of [2,
4,6] in the following theorem.
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Theorem 2. Let X be a regular space with a sharp base, thenX is metrizable if any of the
following hold:

(1) X is separable;
(2) X is locally compact(so a manifold with sharp base is metrizable);
(3) X is countably compact;
(4) X is pseudocompact and CCC;
(5) X is a GO space.

A space is pseudocompact if every continuous real valued function is bounded. Every
(Tychonoff) pseudocompact space with a uniform base is metrizable (see [18,15] or [17]),
whilst a pseudocompact space with a point-countable base need not be metrizable [16].
Moreover pseudocompact Tychonoff spaces with regularGδ-diagonals are metrizable [13],
whilst Mrowka’sΨ space is an example of a pseudocompact, non-metrizable Moore space.
So it is natural to ask (see [2,4]) whether every pseudocompact space with a sharp base is
metrizable. The spaceP of Example 3 shows that the answer to this question is ‘no’. In
addition,P answers a number of other questions in the negative: Alleche et al. ask whether
the productX × [0,1] has a sharp base ifX does; Heath and Lindgren [10] ask whether a
space with a weakly uniform base has aG∗

δ -diagonal; andP is another example (see [16,
19]) of a pseudocompact space with a point countable base that is not compact, and is a
non-compact pseudocompact space with a weakly uniform base, answering questions of
Peregudov [14].

Example 3. There exists a Tychonoff, non-metrizable pseudocompact space with a sharp
base but without aG∗

δ -diagonal whose product with the closed unit interval does not have
a sharp base.

Proof. Our exampleP is a modification of the example of a non-developable space with
a sharp base [2]. We add extra points to a (non-separable) metric spaceB in such a way
that the resulting space is pseudocompact, has a sharp base but is not compact, hence not
metrizable.

Let B = ωc be the Tychonoff product of countably many copies of the discrete space
of size continuum with the usual Baire metric. For each finite partial functionf ∈ <ωc, let
[f ] denote the basic open subset ofB,

[f ] = {
g ∈ ωc: f ⊆ g

}
(so [f ] is the collection of all elements ofB which agree withf on domf ). Note that, if
domf ⊆ domg, then the two basic open sets[f ] and[g] have non-empty intersection if
and only iff ⊆ g if and only if [g] ⊆ [f ]. If [f ] ∩ [g] = ∅ then the functionsf andg are
incompatible (we writef ⊥ g) and neitherf ⊆ g norg ⊆ f .

Let

S = {
S ∈ω

(
<ωc

)
: S(m) ⊥ S(n), for eachm andn

}
,

so that eachS in S codes for a sequence of disjoint basic open sets inB. EnumerateS
as{Sα : α ∈ c} in such a way that eachS in S occursc times. To ensure that our space is
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pseudocompact, we recursively add limit points (to some of) these sequences of open sets.
These limit pointssα will have basic open neighbourhoods of the form

N(α,n) = {sα} ∪
⋃

m�n

[
Tα(m)

]
,

whereTα ∈ ω(<ωc) is defined depending onSα .
Suppose that for eachα < γ we have either defined if possible a sequenceTα ∈ ω(<ωc)

such that

(1γ ) for i �= j , Tα(i) ⊥ Tα(j),
(2γ ) for β < γ, β �= α, Tβ defined, ranTα ∩ ranTβ = ∅, and
(3γ ) for β < γ , β �= α, Tβ defined, if Tα(i) ⊇ Tβ(j), then Tα(i ′) ⊥ Tβ(j ′) for all

〈i ′, j ′〉 �= 〈i, j 〉

or we have not definedTα . We now defineTγ .
First note that ifS′

γ (i) extendsSγ (i), then the open set[S′
γ (i)] is a subset of[Sγ (i)], so

any limit of the sequence of open sets{[S′
γ (i)]: i ∈ ω} will also be a limit of the sequence

{[Sγ (i)]: i ∈ ω}.
Since eachTα(j) is finite, there is someδ < c which is not in

⋃{Tα(j): α < γ, j ∈ ω}.
For eachi ∈ ω, let S′

γ (i) = Sγ (i)�{δ} extendSγ (i). Then for all i, j ∈ ω and α < γ ,
S′

γ (i) � Tα(j) and Tα(j) ⊆ S′(i) only if Tα(j) ⊆ S(i). Notice that this implies that
[Tα(j)] � [S′

γ (i)] and that[S′
γ (i)] ⊆ [Tα(j)] only if [Sγ (i)] ⊆ [Tα(j)].

Case1. Suppose that there exists someα < γ for which Tα was defined, such that for
infinitely manyi ∈ ω there exists somej ∈ ω such thatS′

γ (i) ⊇ Sγ (i) ⊇ Tα(j). In this case
we do not defineTγ (since infinitely many of the basic open sets[Tα(j)] contain an open
set[Sγ (i)] and the limit pointsα will deal with the sequenceSγ ).

Case2. Now suppose that case 1 does not hold and that hence

(∗) for eachα < γ there are at most finitely manyi for whichS′
γ (i) ⊇ Tα(j) for somej .

Suppose further that for eachi � k, we have chosen natural numbers 0= r0 < r1 < · · · < rk

and definedTγ (i) to beS′
γ (ri ).

Since eachTγ (i) is a finite partial function, there are at most finitely many possible
partial functions such thatf ⊆ Tγ (i) for somei � k. By condition (2γ ) there are at most
finitely manyα < γ with such anf in ranTα . List theseα asα(1), . . . , α(m). By (∗), for
eachα(m), there is ajm such that for alli � j , S′

γ (i) does not extend anyTα(m)(j). Now
let rk+1 = maxjm andTγ (k + 1) = S′

γ (rk+1).
We now claim that conditions (1c), (2c) and (3c) hold. Suppose thatTβ andTα were

defined for someβ < α < c. Condition (1c) is obvious since eachTα is a subsequence
of S′

α each term of which extends the corresponding term ofSα , andSα is a sequence
of pairwise incompatible partial functions. (2c) holds since, ifβ < α, then the extension
S′

γ (i) was chosen to ensure thatTβ(j) � S′
α(i) for anyj , so in particularTβ(j) �= Tα(i) and

ranTβ ∩ranTα . To see that (3c) holds, note first thatS′
α(i) was chosen so thatS′

α(i) � Tβ(j)

for anyj , which implies thatTα(i) � Tβ(j) for any〈i, j 〉. On the other hand, suppose that
i is least such that for somej , Tβ(j) ⊆ Tα(i). If k > i, thenTα(k) = S′

α(rk) andrk was
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chosen precisely so thatS′
α(rk) � Tβ(l) for anyl ∈ ω. Moreover, there can be at most onej

such thatTα(i) ⊇ Tβ(j), since by (1c), Tβ(j) ⊥ Tβ(l), j �= l. This completes the recursion.
Let L = {sα : Tα has been defined} be a set of pairwise distinct points disjoint fromB

and letP = B ∪ L. We topologizeP by letting B be an open subspace with the usual
Baire metric topology and declaring thenth basic open set about the pointsα to be the set
N(α,n) = {sα} ∪ ⋃

m�n[Tα(m)].
If Tα = {[Tα(n)]: n ∈ ω}, then condition (1c) ensures that eachTα is a pairwise disjoint

collection, (2c) ensures that each basic open set[f ] occurs in at most oneTα , and (3c)
ensures that ifN(α,n) meetsN(β,m), thenN(α,n) ∩ N(β,m) = [Tα(j)] ∩ [Tβ(k)] for
somej � n andk � m.

ThatP has a sharp base follows exactly as for the example due to Alleche et al. LetBB

be a sharp base forB and letB = BB ∪{N(α,n): sα ∈ L andn ∈ ω}. Supposex ∈ ⋂
k∈ω Bk

for some (injective) sequence{Bk ∈ B: k ∈ ω}. SinceBB is a sharp base andsα ∈ N ∈ B
if and only if N = (α,n) for somen, the only case that is not obvious is whenx ∈ B and
Bk = N(αk,mk) for all but finitely manyk. But in this case condition (3c) implies that, for
n � 1,

⋂
k�n Bk = ⋂

k�n[Tαk (jk)]. Moreover (2c) implies thatTαk (jk) �= Tαk′ (jk′), so that
{⋂k�n Bk: n ∈ ω} contains a strictly decreasing subsequence and is therefore a base atx.

Since the set{sα : α ∈ c} is infinite, closed discrete,P is not compact. On the other hand,
P is pseudocompact (soP is not metrizable). To see this, suppose thatϕ is a continuous
real-valued function onP taking values in[n,∞) for eachn ∈ ω. SinceB is dense inP ,
for eachn ∈ ω, there is somexn in B such thatϕ(xn) > n. By continuity,{xn: n ∈ ω}
does not have a limit point inB. Sinceϕ is continuous andB is metrizable, there are
basic open sets[fn] for eachn ∈ ω such thatxn ∈ [fn] ⊆ ϕ−1(n,∞) and{[fn]: n ∈ ω}
is a disjoint collection. But in this casefn ⊥ fm whenn �= m so that{fn: n ∈ ω} = Sα

for someα ∈ c. In which case, eithersα andTα were defined orsα was not defined and,
for someβ < α, Tβ(j) ⊆ Sα(n) = fn for infinitely manyn. In the second case, each basic
open neighbourhoodN(β,n) of sβ contains infinitely many of the sets[fn]. In the first
case,Tα was chosen so thatTα(i) ⊇ fri for eachi ∈ ω, so that[Tα(i)] ⊆ [fri ]. In either
case, each neighbourhood ofsβ or sα contains points which take arbitrarily large values
underϕ, contradicting continuity.

Now suppose for a contradiction thatP × [0,1] has a sharp base. We shall show that
this would imply thatP has aσ -point finite base, which is impossible since Uspenskiı̆ [17]
shows that a pseudocompact space with aσ -point finite base is metrizable.

To this end, letW be a sharp base forP × [0,1] and letC be a countable sharp base
for [0,1]. For eachx in L chooseWx

n in W , Bx
n in B (the sharp base forP ), andCx

n in
C such thatBx

n × Cx
n ⊆ Wx

n , {Wx
n : n ∈ ω} (and hence{Bx

n × Cx
n : n ∈ ω}) is a base at the

point (x,1/2) andWx
0 ∩ (L × [0,1]) ⊆ {x} × [0,1], which is possible sinceL is a closed

discrete subset ofP .
LetBC = {B ∈ B: for somen ∈ ω and somex ∈ L, B = Bx

n andC = Cx
n }. If BC is not

point finite then for somey in P , y ∈ ⋂
j∈ω Bj for some pairwise distinctBj ∈ BC . By

definition, for eachj there is somexj ∈ L andnj ∈ ω such thatBj = B
xj
nj

andC = C
xj
nj

.
But then

{y} × C ⊆
⋂
j∈ω

(
B

xj
nj

× C
xj
nj

) ⊆
⋂
j∈ω

W
xj
nj

.
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SinceBj �= Bk , either there is an infinite setJ ⊆ ω such thatxj �= xk, for distinctj, k ∈ J ,
or there is an infinite setK ⊆ ω such thatxj = xk = x but nj �= nk for somex ∈ L and
distinctj, k ∈ K. In the first case,{Wxj

nj
: j ∈ J } is a pairwise distinct subset of the sharp

baseW and
⋂

j∈J W
xj
nj

contains at most one point. In the second case⋂
k∈K

(
Bxk

nk
× Cxk

nk

) = (x,1/2),

since{Bx
n × Cx

n : n ∈ ω} is a base at(x,1/2). In either case,{y} × C contains at most one
point, which is not the case, andBC is point finite.

Since{Bx
n × Cx

n : n ∈ ω} is a base at(x,1/2) andC is countable,B = ⋃
C∈C BC is a

σ -point finite base for points ofL. But P = B ∪ L andB is a metric space, soP has a
σ -point finite base: a contradiction.

By Theorem 4,P does not have aG∗
δ diagonal, nor indeed is it submetacompact. We

also note thatP is dense-in-itself. ✷
So when is a pseudocompact space with a sharp base metrizable? As mentioned above,

a pseudocompact, CCC regular space with a sharp base is metrizable [4, Theorem 21].
Pseudocompact, Moore spaces areCCC. Moreover, in proving that a pseudocompact
Tychonoff space with a regularGδ-diagonal is metrizable, McArthur [13] proves that a
pseudocompact space with aG∗

δ -diagonal is developable. Hence we have

Theorem 4. A pseudocompact regular spaceX with a sharp base is metrizable if either of
the following hold:

(1) X is developable, or;
(2) X has aG∗

δ -diagonal.

A pseudocompact space with aGδ-diagonal isČech complete [4, Lemma 20], hence
Baire, so the following theorem is a strengthening of Theorem 21 of [4]. A space is
strongly quasi-complete if there is a mapg assigning to eachx ∈ X andn ∈ ω an open
set g(n, x) containingx such that{xn} clusters atx whenever{x, xn} ⊆ ⋂

i�n g(i, yi).
Weakly developable spaces are clearly strongly quasi-complete.

Theorem 5. A regular, locally CCC, locally Baire space with a sharp base is metrizable.

Proof. Let X be a regular, locally CCC, locally Baire space with a sharp base. SinceX

has a weak development, it is strongly quasi-complete. Hodel [11] shows that every regular,
quasi-complete CCC Baire space with either aGδ-diagonal or a point countable separating
open cover is separable. SinceX has a sharp base,X has a point countable base, aGδ-
diagonal and is quasi-complete. HenceX is locally separable. But every locally separable
regular space with a point countable base is a disjoint union of clopen subspaces each of
which has a countable base (see Theorem 7.2 of [9]). HenceX is metrizable. ✷

A space isω1-compact if every subset of cardinalityω1 has a limit point. Generalizing
the fact that a countably compact space with a sharp base is metrizable we have:
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Theorem 6. A regular,ω1-compact space with a sharp base is metrizable.

Proof. SinceX is ω1-compact, every point-countable open cover ofX has a countable
subcover [9, Lemma 7.5]. SinceX has a sharp base, it has a point countable base and
therefore is Lindelöf. A metacompact space with a sharp base is developable [2] and so a
Lindelöf space with a sharp base is metrizable.✷

Not surprisingly a monotonically normal space with a sharp base is metrizable (cf. [6]
where it is shown that a GO-space with a sharp base is metrizable).

Theorem 7. For a monotonically normalX space the following are equivalent:

(1) X is metrizable;
(2) X has a sharp base;
(3) X has a weak development;
(4) X is strongly quasi-complete;
(5) X has a base of countable order and aGδ-diagonal.

Proof. Since (1) �⇒ (2) �⇒ (3) �⇒ (4) �⇒ (5) (that (4) implies (5) follows from
Theorems 2.2 and 2.3 of [8]), it remains to show that a monotonically normal space
with a base of countable order and aGδ-diagonal is metrizable. By the Balogh–Rudin
theorem [5], since a stationary set of a regular cardinal does not have aGδ-diagonal, a
monotonically normal space with aGδ-diagonal is paracompact. The result then follows
since a paracompact space with a base of countable order is metrizable [3].✷

The proof thatP × [0,1] does not have a sharp base does not quite extend to a proof
that if the product of a spaceX with [0,1] has a sharp base thenX has aσ -point finite
base. The converse however is easily seen to be true.

Proposition 8. If a spaceX has aσ -point finite sharp base thenX × [0,1] has a sharp
base.

Proof. Suppose thatB = ⋃
Bn is a σ -point finite sharp base forX andC = ⋃

Cn is a
development for[0,1] such that eachCn+1 is finite and refinesCn (so thatC is also a sharp
base for[0,1]). For eachn ∈ ω let Wn = {B × C: B ∈ Bn, C ∈ Cn} and letW = ⋃

n Wn.
Firstly note thatW is a base forX × [0,1]. If (x, r) is in some open setU , choosen

andB ∈ Bm such that(x, r) ∈ B × st(r,Cn) ⊆ U . Now for somek � max{m,n}, there is
B ′ ∈ Bk, x ∈ B ′ ⊆ B. But then, sinceCk refinesCn, if r ∈ C ∈ Ck , B ′ × C ∈Wk and

(x, r) ∈ B ′ × C ⊆ B ′ × st(r,Ck) ⊆ B × st(r,Cn) ⊂ U.

Now suppose that(x, r) ∈ Bj × Cj = Wj ∈ W for distinct Wj , j ∈ ω. EachWn is a
point finite family since bothBn andCn are point finite and so both{Bj }j∈ω and{Cj }j∈ω

are infinite. SinceB andC are sharp bases, this implies that{⋂j�n Bj × Cj : n ∈ ω} is a
base at the point(x, r) andW is a sharp base as required.✷
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Ponomarev, see [9], characterized those spaces with a point countable base as precisely
the opens-images of metric spaces (a map is ans-map if it has separable fibres). There is
a similar characterization for sharp bases.

Theorem 9. A spaceX has a sharp base if and only if there is a metric spaceM with
a baseB and a continuous open mappingf : M → X such that, wheneverx ∈ X and
{Bn ∈ B: n ∈ ω} is a pairwise distinct collection, iff −1(x) ∩ Bn �= ∅ for eachn ∈ ω,
then there existsn0 such that for eachy ∈ X, if f −1(y) ∩ Bj �= ∅, for eachj � n0, then
f −1(y) ∩ B0 �= ∅.

Proof. Suppose thatG is a sharp base for the spaceX. Let

M =
{

(Gn) ∈ Gω: x ∈
⋂
n∈ω

Gn for somex ∈ X

}

be the subspace of the Baire metric spaceGω, with metricd((Gn), (Hn)) = 1/2k wherek is
least such thatGn �= Hn. Let f : M → X be defined lettingf ((Gn)) be the unique element
of

⋂
n∈ω Gn and letB be the base forM consisting of all 1/2n-balls about points ofM.

Thenf is easily seen to be a continuous, open mapping ontoX and the condition onB in
the statement of the theorem is merely a translation of the fact thatG is a sharp base.✷

It is clear from the proof that, in the statement of the theorem, we can takeB to be the
collection of 1/2n balls for anyn rather than a base forM. Since a space with a sharp base
has a point countable sharp base, we can also assume that the map in the statement of the
theorem is ans-map. However, it is not immediately clear that we can prove that a space
with a sharp base has a point countable base directly from the theorem.

We conclude with some open problems. Since every collectionwise normal Moore space
is metrizable, the following is a natural and intriguing question.

Question 1. Is every collectionwise normal space with a sharp base metrizable?

Example 4 of [2] shows that weakly developable, collectionwise normal spaces do not
have to be metrizable and the Heath V-space over a Q-set is an example of a normal space
with a uniform base that is not metrizable. On the other hand, the answer is ‘yes’ if the
space is also submetacompact (since it is then a Moore space) or a strict p-space. We might
also ask whether a perfect, collectionwise normal space with a sharp base is metrizable.
It is interesting to note that it is not known whether a collectionwise normal space with a
point countable base need be paracompact.

Since the Heath V-space over a--set is countably paracompact but not normal [12], at
least consistently a countably paracompact, (Moore) space with a sharp base need not be
normal. What about the converse?

Question 2. Is there a Dowker space with a sharp base?

Question 3. Is every perfect, regular space with a sharp base developable? Is every normal
space with a sharp base developable? Is every perfectly regular, pseudocompact space with
a sharp base metrizable?
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Not every Moore space with a weakly uniform base has a uniform base (see [2]) so we
ask:

Question 4. Does every Moore space with a sharp base have a uniform base?

Every pseudocompact space with aGδ-diagonal isČech complete [4], and every
pseudocompact Moore space with a sharp base is metrizable.

Question 5. Is everyČech complete Moore space with a sharp base metrizable? What
about Baire instead of̌Cech complete?

Question 6. If X × [0,1] has a sharp base, doesX have aσ -point finite sharp base?

As the referee points out, the open, perfect pre-image of a space with a sharp base need
not have a sharp base (the projection map fromP × [0,1] to P is open and perfect), so we
ask:

Question 7. Does the image of a space with a sharp base under a perfect map (closed and
open map, open map with compact, countable or finite fibres) have a sharp base?
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