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Abstract

A baseZB for a spaceX is said to besharpif, wheneverx € X and (By),cw iS a sequence of
pairwise distinct element df each containing, the collection{ﬂjgn Bj: n € w} is a base at the
point x. We answer questions raised by Alleche et al. and Arhangekskal. by showing that a
pseudocompact Tychonoff space with a sharp base need not be metrizable and that the product of a
space with a sharp base dfid1] need not have a sharp base. We prove various metrization theorems
and provide a characterization along the lines of Ponomarev’s for point countable bases.
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The notion of a uniform base was introduced by Alexandroff who proved that a space
(by which we meari; topological space) is metrizable if and only if it has a uniform
base and is collectionwise normal [1]. This result follows from Bing’s metrization theorem
since a space has a uniform base if and only if it is metacompact and developable. Recently
Alleche et al. [2] introduced the notions of sharp base and weak development. These
fit very naturally into the hierarchy of strong base conditions, which includes weakly
uniform bases, introduced by Heath and Lindgren [10], and point countable bases (see
Fig. 1 below). In this paper we look at the question of when a space, with a sharp base is
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metrizable. In particular, we show that a pseudocompact space with a sharp base need not
be metrizable, but generalize various situations where a space with a sharp base is seen to
be metrizable.

Definition 1. Let B be a base for a space

(1) Bis saidto besharpif, whenever: € X and(B, )< IS a sequence of pairwise distinct
element of3 each containing, the coIIectior{ﬂjgn Bj: n € w} is a base at the point
X.

(2) B is said to beuniformif, wheneverx € X and (B,),c, iS @ sequence of pairwise
distinct elements oF each containing, then(B,),c., iS a base at the point

(3) B is said to beweakly uniformif, whenever3’ is an infinite subset oB, then(\ B’
contains at most one point.

(4) B is said to be aveak developmernt B = | J
wheneven € B, € B, for eachn € w, then{

wew Bny €achB, a cover of X and,
j<n Bji n € w}is abase at the point

Arhangel’'ski et al. prove that a space with a sharp base has a point countable sharp
base [2,4] and is meta-Lindel6f. Moreover a weakly developable space®aslimgonal
and a submetacompact space with a base of countable order is developable [2].

We note in passing that the obvious definition of ‘uniform weak developability’ (having
abasgj = | J{Gn: n € w} such that eacly,, is a cover and whenevere G, € G,, {G}n
is a base at) is simply a restatement of developability. We also note that a space with a
disjoint base need not have a sharp base: Bennett and Lutzer [7] construct a first countable
(and a Lindelof) example of a non-metrizable LOTS witldisjoint bases (and continuous
separating families), which cannot have a sharp base by Theorem 2.

When is a space with a sharp base metrizable? We summarize relevant the results of [2,
4,6] in the following theorem.
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Theorem 2. Let X be a regular space with a sharp base, théims metrizable if any of the
following hold

(1) X is separable

(2) X is locally compactso a manifold with sharp base is metrizahle
(3) X is countably compact

(4) X is pseudocompactand CGCC

(5) X is a GO space.

A space is pseudocompact if every continuous real valued function is bounded. Every
(Tychonoff) pseudocompact space with a uniform base is metrizable (see [18,15] or [17]),
whilst a pseudocompact space with a point-countable base need not be metrizable [16].
Moreover pseudocompact Tychonoff spaces with reglladiagonals are metrizable [13],
whilst Mrowka’s¥ space is an example of a pseudocompact, non-metrizable Moore space.
So it is natural to ask (see [2,4]) whether every pseudocompact space with a sharp base is
metrizable. The space of Example 3 shows that the answer to this question is ‘no’. In
addition, P answers a number of other questions in the negative: Alleche et al. ask whether
the productX x [0, 1] has a sharp base X does; Heath and Lindgren [10] ask whether a
space with a weakly uniform base ha&&-diagonal; andP is another example (see [16,

19]) of a pseudocompact space with a point countable base that is not compact, and is a
non-compact pseudocompact space with a weakly uniform base, answering questions of
Peregudov [14].

Example 3. There exists a Tychonoff, non-metrizable pseudocompact space with a sharp
base but without & §-diagonal whose product with the closed unit interval does not have
a sharp base.

Proof. Our exampleP is a modification of the example of a non-developable space with
a sharp base [2]. We add extra points to a (hon-separable) metric Bpacguch a way
that the resulting space is pseudocompact, has a sharp base but is not compact, hence not
metrizable.
Let B = “c be the Tychonoff product of countably many copies of the discrete space
of size continuum with the usual Baire metric. For each finite partial functien=“c, let
[ /] denote the basic open subsetBf

[f1={ge® f<g}

(so[ f] is the collection of all elements @& which agree withf on domf). Note that, if
domf C domg, then the two basic open sdt§] and[g] have non-empty intersection if
andonlyif f C gifandonlyif[g] C[f]. If [f]1N[g] =@ then the functiong andg are
incompatible (we writef L g) and neitherf € g norg C f.

Let

S={S€”(“¢): S(m) L S(n), for eachm andn},

so that eacl$ in S codes for a sequence of disjoint basic open set8.iEnumerateS
as{Sy: « € ¢} in such a way that eachi in S occursc times. To ensure that our space is
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pseudocompact, we recursively add limit points (to some of) these sequences of open sets.
These limit points,, will have basic open neighbourhoods of the form

N(a.n) = {sa} U | [Tulm)].
m>n
whereT, € “(=?¢) is defined depending afy,.
Suppose that for eaeh< y we have either defined if possible a sequefice “(<“¢)
such that

(Ly) fori # j, To () L T ()),

(2y) for B <y, B #«, Tg defined, rad, NranTg =¥, and

(3y) for B <y, B # «, Tg defined, if T, (i) 2 Tg(j), then T,(i") L Tg(;") for all
(@', " # (. J)

or we have not defined,. We now definer, .

First note that ifS;, (i) extendssS,, (i), then the open SQS)/, (i)]is a subset ofS, (i)], so
any limit of the sequence of open séts; @)]: i € o} will also be a limit of the sequence
{1Sy ()] i € w}.

Since eaclfy () is finite, there is somé < ¢ which is notin| {7, (j): ¢ <y, j € w}.
For eachi € w, let S}’,(i) = S, (i) {8} extendS, (i). Then for alli, j € w anda < y,
S)’,(i) ¢ T,(j) and T, (j) € S'(i) only if T, (j) € S(i). Notice that this implies that
(Ta(N1E [S}’, (i)] and that[S}’, OIS [T (D] onlyif [Sy ()] S [Ta ()]

Casel. Suppose that there exists some: y for which 7,, was defined, such that for
infinitely manyi € w there exists somg e w such thatS}’, (i) 28,() 2 To(j). In this case
we do not defind’, (since infinitely many of the basic open sgI% ()] contain an open
set[S, (i)] and the limit points,, will deal with the sequencs, ).

Case2. Now suppose that case 1 does not hold and that hence

(%) foreacha < y there are at most finitely maryfor which Sg, (i) 2 Ty (j) for some;j.

Suppose further that for eatks k, we have chosen natural numbers @y <r1 < --- <1y
and defined’, (i) to beS}’, (ri).

Since eaclt, (i) is a finite partial function, there are at most finitely many possible
partial functions such that < T, (i) for somei < k. By condition (2/) there are at most
finitely manya < y with such anf in ranT7,. List thesex asa(1), ..., a(m). By (x), for
eacha(m), there is aj,, such that for ali > j, S)’, (i) does not extend ar®, ) (7). Now
let rk+1 = maxj,, andT, (k +1) = SJ/, (res1).

We now claim that conditions €}, (2¢) and (3) hold. Suppose thafg and 7, were
defined for somes < « < ¢. Condition (k) is obvious since eact, is a subsequence
of S, each term of which extends the corresponding tern§,ofand S,, is a sequence
of pairwise incompatible partial functions.cdjzholds since, if8 < «, then the extension
SJ/, (i) was chosen to ensure tH&#(j) 2 S, (i) forany j, soin particulaffs (j) # T, (i) and
ranTg NranT,. To see that (§ holds, note first tha$/, (i) was chosen so thaf, (i) Z T3())
for any j, which implies that?, (i) Z Tg(j) for any (i, j). On the other hand, suppose that
i is least such that for somg Ts(j) € To(i). If k > i, thenT, (k) = S/, (rx) andry was
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chosen precisely so tha} (rx) 2 Tg(/) for any! € w. Moreover, there can be at most one
such thafly (i) D Tg(j), since by (), Tg(j) L Tg(l), j # . This completes the recursion.

Let L = {so: T, has been defingde a set of pairwise distinct points disjoint frabn
and letP = B U L. We topologizeP by letting B be an open subspace with the usual
Baire metric topology and declaring théh basic open set about the paoigtto be the set
N(et,n) = {sa} U Uy, [Ta(m)].

If 74 = {[T,(n)]: n € w}, then condition () ensures that each, is a pairwise disjoint
collection, (2) ensures that each basic open [s€} occurs in at most on&,, and (3)
ensures that itV («, n) meetsN (B8, m), thenN(«, n) N N(B8, m) = [T, (j)] N [T(k)] for
somej > n andk > m.

That P has a sharp base follows exactly as for the example due to Alleche et #gLet
be a sharp base f@ and letB = Bg U{N («, n): so € L andn € w}. Suppose € (., Bk
for some (injective) sequendd; € B: k € w}. SinceBBp is a sharp base and e N € B
if and only if N = («, n) for somen, the only case that is not obvious is wher B and
Bi = N(ay, my) for all but finitely manyk. But in this case condition ¢3implies that, for
n>1, ﬁk@ B = ﬂ,{gn[Tak (jx)]. Moreover (2) implies thatTy, (jx) # Te,, (i), SO that
{Mk<n Bt n € w} contains a strictly decreasing subsequence and is therefore a base at

Since the sefs,,: « € ¢} is infinite, closed discrete? is not compact. On the other hand,
P is pseudocompact (sB is not metrizable). To see this, suppose ihés a continuous
real-valued function orP taking values ifn, oo) for eachn € w. SinceB is dense inP,
for eachn € w, there is some, in B such thatp(x,) > n. By continuity, {x,: n € w}
does not have a limit point iB. Sinceg is continuous and is metrizable, there are
basic open setgf,] for eachn € w such thatx, € [f,]1 € ¢ 1(n, c0) and{[ f,]: n € w}
is a disjoint collection. But in this casg, L f,, whenn # m so that{f,: n € w} = S,
for somea € ¢. In which case, eithet, and T, were defined os, was not defined and,
for somepg < «, Tg(j) € S.(n) = f, forinfinitely manyn. In the second case, each basic
open neighbourhoofy (8, n) of sg contains infinitely many of the sefg,]. In the first
case,T, was chosen so thdi, (i) 2 f;, for eachi € w, so that[T,(i)] C [ f,]. In either
case, each neighbourhoodsf or s, contains points which take arbitrarily large values
underg, contradicting continuity.

Now suppose for a contradiction th&tx [0, 1] has a sharp base. We shall show that
this would imply thatP has ao-point finite base, which is impossible since Uspeniki]
shows that a pseudocompact space wish@oint finite base is metrizable.

To this end, lefV be a sharp base fa? x [0, 1] and letC be a countable sharp base
for [0, 1]. For eachx in L chooseW;" in W, B, in B (the sharp base faP), andC;’ in
C such thatB;, x C;y € W, {W;': n € w} (and hencgB;) x C;: n € w}) is a base at the
point (x, 1/2) andWgy N (L x [0, 1]) € {x} x [0, 1], which is possible sincé is a closed
discrete subset af.

Let Bc ={B € B: for somen € w and somexr € L, B = B andC = C; }. If B¢ is not
point finite then for some in P, y € (), B; for some pairwise distincB; € B¢. By
definition, for eachj there is some; € L andn; € » such thatB; = B,] andC = C;’.
But then

) x C S (Ba] x Ca)) S () Wa)-

Jjew Jjew
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SinceB; # By, either there is an infinite sgtC w such thatx; # xi, for distinctj, k € J,
or there is an infinite sek’ C » such thaty; = x; = x butn; # n; for somex € L and
distinct j, k € K. In the first case{Wfff: j € J} is a pairwise distinct subset of the sharp

baseW and(;, W,f_-/f contains at most one point. In the second case
() (BY x C3F) = (x.1/2).
keK

since{B; x C}: n € w} is a base afx, 1/2). In either case{y} x C contains at most one
point, which is not the case, aifff is point finite.

Since{B; x C;: n € w} is a base atx, 1/2) andC is countable3 = |J-.-Bc is a
o-point finite base for points of.. But P = B U L and B is a metric space, s has a
o-point finite base: a contradiction.

By Theorem 4,P does not have & diagonal, nor indeed is it submetacompact. We
also note thaP is dense-in-itself. O

So when is a pseudocompact space with a sharp base metrizable? As mentioned above,
a pseudocompact, CCC regular space with a sharp base is metrizable [4, Theorem 21].
Pseudocompact, Moore spaces &€C. Moreover, in proving that a psgocompact
Tychonoff space with a regulars-diagonal is metrizable, McArthur [13] proves that a
pseudocompact space witlG§-diagonal is developable. Hence we have

Theorem 4. A pseudocompact regular spa&ewith a sharp base is metrizable if either of
the following hold

(1) X is developable, gr
(2) X has aGj-diagonal.

A pseudocompact space withG@s-diagonal isCech complete [4, Lemma 20], hence
Baire, so the following theorem is a strengthening of Theorem 21 of [4]. A space is
strongly quasi-complete if there is a mgpassigning to each € X andn € w an open
setg(n, x) containingx such that{x,} clusters atx whenever{x, x,} C ﬁign g(, yi).
Weakly developable spaces are clearly strongly quasi-complete.

Theorem 5. A regular, locally CCC, locally Baire space with a sharp base is metrizable.

Proof. Let X be a regular, locally CCC, locally Baire space with a sharp base. Since

has a weak development, it is strongly quasi-complete. Hodel [11] shows that every regular,
quasi-complete CCC Baire space with eith&fadiagonal or a point countable separating
open cover is separable. Singehas a sharp bas&, has a point countable base(g-
diagonal and is quasi-complete. Heras locally separable. But every locally separable
regular space with a point countable base is a disjoint union of clopen subspaces each of
which has a countable base (see Theorem 7.2 of [9]). H¥nisametrizable. O

A space isw1-compact if every subset of cardinaligyy has a limit point. Generalizing
the fact that a countably compact space with a sharp base is metrizable we have:
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Theorem 6. A regular,wi-compact space with a sharp base is metrizable.

Proof. SinceX is wj-compact, every point-countable open coverXohas a countable
subcover [9, Lemma 7.5]. Sincg has a sharp base, it has a point countable base and
therefore is Lindeldf. A metacompact space with a sharp base is developable [2] and so a
Lindel6f space with a sharp base is metrizablel

Not surprisingly a monotonically normal space with a sharp base is metrizable (cf. [6]
where it is shown that a GO-space with a sharp base is metrizable).

Theorem 7. For a monotonically normak space the following are equivalent

(1) X is metrizable

(2) X has a sharp base

(3) X has a weak development

(4) X is strongly quasi-complete

(5) X has a base of countable order andz-diagonal.

Proof. Since (1) — (2) — (3) = (4) — (5) (that (4) implies (5) follows from
Theorems 2.2 and 2.3 of [8]), it remains to show that a monotonically normal space
with a base of countable order andGg-diagonal is metrizable. By the Balogh—Rudin
theorem [5], since a stationary set of a regular cardinal does not h&yedéagonal, a
monotonically normal space with @s-diagonal is paracompact. The result then follows
since a paracompact space with a base of countable order is metrizablel[3].

The proof thatP x [0, 1] does not have a sharp base does not quite extend to a proof
that if the product of a spack with [0, 1] has a sharp base théhhas ac-point finite
base. The converse however is easily seen to be true.

Proposition 8. If a spaceX has aoc-point finite sharp base thek x [0, 1] has a sharp
base.

Proof. Suppose that3 = J B, is ao-point finite sharp base fak andC = | JC, is a
development fof0, 1] such that eachi, 1 is finite and refineg,, (so thatC is also a sharp
base for0, 11). For eachh e w let W, ={B x C: B e B,, C €C,} and letWW =, W,.

Firstly note thatV is a base foX x [0, 1]. If (x,r) is in some open sdf, choosen
and B € B,, such that(x,r) € B x st(r,C,) C U. Now for somek > maxXm, n}, there is
B’ € By, x € B’ C B. But then, sinc&y, refinesC,, if r € C € Cx, B’ x C € W and

(x,r)e B x CC B xst(r,Cy) € B xstr,C,) CU.

Now suppose thatx,r) € B; x C; = W; € W for distinct W;, j € w. EachW), is a
point finite family since boti, andC, are point finite and so bottB;} e, and{C;}cs
are infinite. Since3 andC are sharp bases, this implies tha} ., B; x C;: n e w} is a

jsn
base at the pointr, ) andWV is a sharp base as requireda
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Ponomareyv, see [9], characterized those spaces with a point countable base as precisely
the opens-images of metric spaces (a map issamap if it has separable fibres). There is
a similar characterization for sharp bases.

Theorem 9. A spaceX has a sharp base if and only if there is a metric spa€ewith
a baseB and a continuous open mappinf: M — X such that, whenever € X and
{B, € B: n € w} is a pairwise distinct collection, iff ~1(x) N B, # @ for eachn € w,
then there existsg such that for eacly € X, if f~1(y) N B; # , for eachj < ng, then
fH) N Bo# 0.

Proof. Suppose thaf is a sharp base for the spakelLet

M= {(Gn) €G® x e ﬂ G, for somex eX}

new

be the subspace of the Baire metric spg€ewith metricd ((G,), (H,)) = 1/2X wherek is
least such that,, # H,,. Let f : M — X be defined lettingf ((G,,)) be the unique element
of (N),e, Gn» and letB be the base foM consisting of all ¥2"-balls about points oM.
Then f is easily seen to be a continuous, open mapping &némd the condition o in
the statement of the theorem is merely a translation of the fac@tisaa sharp base. O

Itis clear from the proof that, in the statement of the theorem, we canZd&de the
collection of /2" balls for anyn rather than a base fa¢. Since a space with a sharp base
has a point countable sharp base, we can also assume that the map in the statement of the
theorem is an-map. However, it is not immediately clear that we can prove that a space
with a sharp base has a point countable base directly from the theorem.

We conclude with some open problems. Since every collectionwise normal Moore space
is metrizable, the following is a natural and intriguing question.

Question 1. Is every collectionwise normal space with a sharp base metrizable?

Example 4 of [2] shows that weakly developable, collectionwise normal spaces do not
have to be metrizable and the Heath V-space over a Q-set is an example of a normal space
with a uniform base that is not metrizable. On the other hand, the answer is ‘yes’ if the
space is also submetacompact (since it is then a Moore space) or a strict p-space. We might
also ask whether a perfect, collectionwise normal space with a sharp base is metrizable.
It is interesting to note that it is not known whether a collectionwise normal space with a
point countable base need be paracompact.

Since the Heath V-space overaset is countably paracompact but not normal [12], at
least consistently a countably paracompact, (Moore) space with a sharp base need not be
normal. What about the converse?

Question 2. Is there a Dowker space with a sharp base?
Question 3. Is every perfect, regular space with a sharp base developable? Is every normal

space with a sharp base developable? Is every perfectly regular, pseudocompact space with
a sharp base metrizable?
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Not every Moore space with a weakly uniform base has a uniform base (see [2]) so we
ask:

Question 4. Does every Moore space with a sharp base have a uniform base?

Every pseudocompact space withGg-diagonal isCech complete [4], and every
pseudocompact Moore space with a sharp base is metrizable.

Question 5. Is every(:Zech complete Moore space with a sharp base metrizable? What
about Baire instead dech complete?

Question 6. If X x [0, 1] has a sharp base, doEshave as-point finite sharp base?

As the referee points out, the open, perfect pre-image of a space with a sharp base need
not have a sharp base (the projection map f®m [0, 1] to P is open and perfect), so we
ask:

Question 7. Does the image of a space with a sharp base under a perfect map (closed and
open map, open map with compact, countable or finite fibres) have a sharp base?
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