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1. Introduction and main result

1.1. Introduction

The aim of this paper is to study a general class of scalar and vectorial Schrödinger equations in presence of local and
nonlocal potentials, modelling an electric and magnetic field and a Newtonian type interaction, respectively. This class of
problems includes various physically meaningful particular cases, that will be individually described in details later in this
section. In fact, we would also like to discuss the latest developments available in literature for this kind of issue, particularly
when approached via the technique initiated by the 2000 work of R. Jerrard and J. Bronski [4]. More precisely, let m � 1,
N � 1, 0 < p < 2/N , ε > 0 and let

V : R
N → R, A : R

N → R
N , Φ : R

N → R, (1.1)

be C3(RN ) functions satisfying suitable assumptions that will be stated in the following. Then, if i denotes the complex
imaginary unit, consider the Schrödinger equation⎧⎪⎪⎨

⎪⎪⎩
−iε∂tζ

j
ε + L Aζ

j
ε + V (x)ζ j

ε = |ζε|2p
j ζ

j
ε + 1

εN
Φ ∗ |ζε|2j ζ j

ε in R
N × (0,∞),

ζ
j
ε (x,0) = ζ

j
0 (x) in R

N ,

j = 1, . . . ,m,

(S)

where ζε = (ζ 1
ε , . . . , ζm

ε ) : R
N × R

+ → C
m is the unknown, the magnetic operator L A is defined as

L Aζ := −ε2

2
�ζ − ε

i
A(x) · ∇ζ + 1

2

∣∣A(x)
∣∣2

ζ − ε

2i
divx A(x)ζ,
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the convolution is denoted by (Φ ∗ v)(x) := ∫
Φ(x − y)v(y)dy, and

|ζ |2p
j := α j

∣∣ζ j
∣∣2p +

m∑
i �= j

γi j
∣∣ζ i

∣∣p+1∣∣ζ j
∣∣p−1

, |ζ |2j := β j
∣∣ζ j

∣∣2 +
m∑

i �= j

ωi j
∣∣ζ i

∣∣2
,

for some nonnegative constants αi , βi , γi j , ωi j such that γi j = γ ji and ωi j = ω ji , for all i, j = 1, . . . ,m. By rescaling prob-
lem (S) with φε(x, t) = ζε(εx, εt), we reach the following system, where ε appears now only in the arguments of the
potentials V , A and Φ⎧⎪⎨

⎪⎩
−i∂tφ

j
ε + L Aφ

j
ε + V (εx)φ j

ε = |φε|2p
j φ

j
ε + Φ(εx) ∗ |φε|2j φ j

ε in R
N × (0,∞),

φ
j
ε(x,0) = φ

j
0(x) in R

N ,

j = 1, . . . ,m,

(P )

with φε = (φ1
ε , . . . , φm

ε ) : R
N × R

+ → C
m and

L Aφ := −1

2
�φ − 1

i
A(εx) · ∇φ + 1

2

∣∣A(εx)
∣∣2

φ − 1

2i
divx A(εx)φ. (1.2)

As we have already recalled, here V : R
N → R and A : R

N → R
N are an electric and magnetic potentials, respectively. The

magnetic field B is B = ∇ × A in R
3 and can be thought (and identified) in general dimension as a 2-form H

B of coefficients
(∂i A j − ∂ j Ai). We will keep using the notation B = ∇ × A in any dimension N .

We point out that the general Schrödinger problem (S) we aim to investigate contains, as particular cases, the following
physically meaningful situations.

Class I. If m = 1, A = 0, β j = ωi j = γi j = 0 and α j = 1, one finds:⎧⎨
⎩ iε∂tζε + ε2

2
�ζε − V (x)ζε + |ζε|2pζε = 0 in R

N × (0,∞),

ζε(x,0) = ζ0(x) in R
N .

This is the classical Schrödinger equation with a spatial potential. For general results about local and global existence of
solutions, regularity, orbital stability and instability, we refer the reader to [6] and to the references therein. From the point
of view of the semi-classical analysis of standing wave solutions ζε(x, t) = uε(x)e−iEt for E ∈ R, the Schrödinger equation
reduces to a semi-linear elliptic equation. In the last few years a huge literature has developed starting from the celebrated
paper by Floer and Weinstein [10] (see the monograph [2] by Ambrosetti and Malchiodi and references therein). Concerning
the soliton (or, equivalently, point-particle) dynamics, that is the study of the qualitative behaviour of the solutions of this
equation by choosing as initial datum a suitably rescaled ground state solution of an associated elliptic problem, we refer
e.g. to the works [4,11,13,17] and to the recent monograph [5] (see also e.g. [15,16] for works in the mathematical physics
community). Very recently, in [3], Benci, Ghimenti and Micheletti provided the first result on the soliton dynamics with
uniform global estimates in time.

Class II. If m = 1, β j = ωi j = γi j = 0 and α j = 1, one finds:⎧⎨
⎩ iε∂tζε − 1

2

(
ε

i
∇ − A(x)

)2

ζε − V (x)ζε + |ζε|2pζε = 0 in R
N × (0,∞),

ζε(x,0) = ζ0(x) in R
N .

This is the Schrödinger equation with a time-independent external magnetic field. For general facts about this equation, we
refer again to [6] and to the references therein. For the semi-classical analysis of standing wave solutions, we refer the
reader to the recent work [7] and to the various references included. For the full (soliton) dynamics, we refer to the recent
papers [23,25] which, to our knowledge, are the first contributions for this equation. In [25], the concentration centre is
precisely the one predicted by the WKB theory.

Class III. If m = 1, A = 0 and α j = γi j = ωi j = 0, one finds:⎧⎨
⎩ iε∂tζε + ε2

2
�ζε − V (x)ζε + β

εN
Φ ∗ |ζε|2ζε = 0 in R

N × (0,∞),

ζε(x,0) = ζ0(x) in R
N .

This is the Hartree or Newton–Schrödinger type equation. For basic facts about this equation, we refer again to [6] and refer-
ences therein. For the study of standing waves in the semi-classical regime, we refer to [26] and the references included.
The physical motivations for these equations were detected by Penrose who derived the Schrödinger–Newton equation by
coupling the linear 3D Schrödinger equation with the Newton law of gravitation, yielding⎧⎨

⎩ iε∂tζε + ε2

2
�ζε − V (x)ζε + Ψε ∗ ζε = 0 in R

3 × (0,∞),

2 2 3
−ε �Ψε = μ|ζε| in R ,



778 R. Servadei, M. Squassina / J. Math. Anal. Appl. 365 (2010) 776–796
where μ is a positive constant. Of course, this system is equivalent to the nonlocal equation

iε∂tζε + ε2

2
�ζε − V (x)ζε + Ψε ∗ |ζε|2ζε = 0 in R

3 × (0,∞), Ψε(x) = μ

4πε2

1

|x| .
For the study of point-particle dynamics for this equation with smooth nonlocal potentials, we refer the reader to [12],
where the authors follow an approach different from that used in [4,17].

Class IV. If m = 1 and α j = γi j = ωi j = 0, one finds:⎧⎨
⎩ iε∂tζε − 1

2

(
ε

i
∇ − A(x)

)2

ζε − V (x)ζε + β

εN
Φ ∗ |ζε|2ζε = 0 in R

N × (0,∞),

ζε(x,0) = ζ0(x) in R
N .

This is the Hartree type equation with magnetic field. As for the previous cases, concerning the basic facts about this equation,
we refer to [6]. With respect to the semi-classical analysis of standing waves we are not aware of any paper. The soliton
dynamics behaviour is contained in the present paper for smooth potentials.

Class V. If m = 2, A = 0 and β j = ωi j = 0, one finds:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iε∂tζ
1
ε + ε2

2
�ζ 1

ε − V (x)ζ 1
ε + α1

∣∣ζ 1
ε

∣∣2p
ζ 1
ε + γ12

∣∣ζ 2
ε

∣∣p+1∣∣ζ 1
ε

∣∣p−1 = 0 in R
N × (0,∞),

iε∂tζ
2
ε + ε2

2
�ζ 2

ε − V (x)ζ 2
ε + α2

∣∣ζ 2
ε

∣∣2p
ζ 2
ε + γ12

∣∣ζ 1
ε

∣∣p+1∣∣ζ 2
ε

∣∣p−1 = 0 in R
N × (0,∞),

ζε(x,0) = ζ0(x) in R
N .

This is the weakly coupled Schrödinger system with two components. With respect to the semi-classical analysis of standing
waves, in the last few years the interest for this systems has considerably increased. We refer for instance to [1,18,20,24] for
the study of the structure of the associated ground states solutions (vector versus scalar ground states depending upon the
strength of the interaction γ12 > 0). For the behaviour in the semi-classical limit, we refer the reader to [8,20]. The soliton
dynamics behaviour is contained in [21,22], essentially in the 1D case.

1.2. The main result

In this section we shall provide the suitable background allowing us to formulate the statement of the main theorem of
the paper.

1.2.1. Framework and main ingredients
Throughout this paper we denote by H A,ε the Hilbert space defined as the closure of C∞

c (RN ;C
m) under the scalar

product

(u, v)H A,ε = �
∫ (

Du · D v + V (εx)uv̄
)

dx,

where Du = (D1u, . . . , DN u) and D j = i−1∂ j − A j(εx), with induced norm

‖u‖2
H A,ε

=
∫ ∣∣∣∣1

i
∇u − A(εx)u

∣∣∣∣
2

dx +
∫

V (εx)|u|2 dx < ∞.

The dual space of H A,ε is denoted by H ′
A,ε , while the space H2

A,ε is the set of u such that

‖u‖2
H2

A,ε
= ‖u‖2

L2 +
∥∥∥∥
(

1

i
∇ − A(εx)

)2

u

∥∥∥∥
2

L2
< ∞.

Finally, H1(RN ;C
m) is equipped with the standard norm ‖φ‖2

H1 = ‖∇φ‖2
L2 + ‖φ‖2

L2 . We study problem (P ) for an initial

datum φ0 : R
N → C

m given by

φ
j
0(x) = r j

(
x − xε(0)

)
ei[A(εxε(0))·(x−xε(0))+x·ξε(0)], j = 1, . . . ,m, (I)

where x0/ε and ξ0 are the initial position and the initial velocity in R
N of the following first order differential system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋε(t) = ξε(t),

ξ̇ε(t) = −ε∇V
(
εxε(t)

) − εξε(t) × B
(
εxε(t)

)
,

xε(0) = x0

ε
,

(D)
ξε(0) = ξ0,
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with B = ∇ × A. Notice that, for the solution of (D), we have

xε(t) = x(εt)

ε
, ξε(t) = ξ(εt),

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = ξ(t),
ξ̇ (t) = −∇V

(
x(t)

) − ξ(t) × B
(
x(t)

)
,

x(0) = x0,

ξ(0) = ξ0.

(1.3)

The rescaled components (x(t), ξ(t)) of system (1.3) might appear in the proofs of some result. Notice that the initial datum
referred to the original problem (S) reads as

ζ
j

0 (x) = φ
j
0

(
x

ε

)
= r j

(
x − x0

ε

)
e

i
ε [A(x0)·(x−x0)+x·ξ0], x ∈ R

N , j = 1, . . . ,m.

This is the usual formula for the (soliton) initial datum considered in [4,17] when A = 0 and in [23,25] when A �= 0.
Furthermore, we assume that r = (r1, . . . , rm) ∈ H1(RN ,R

m) is (up to translation) a real ground state solution of the elliptic
system{

−1

2
�r j + r j = |r|2p

j r j in R
N ,

j = 1, . . . ,m,

(S)

with respect to the notation of | · | j previously introduced. We also set

m j := ‖r j‖2
L2 , j = 1, . . . ,m, M :=

m∑
j=1

m j. (1.4)

Notice that, setting for all t ∈ R
+

H(t) = 1

2

∣∣ξε(t)∣∣2 + V
(
εxε(t)

) + M, (1.5)

where

M := −Φ(0)

2M

{
m∑

j=1

β jm
2
j +

m∑
i �= j

ωi jmim j

}
,

it follows that H is a first integral associated with (D), namely

H(t) = H(0) = 1

2
|ξ0|2 + V (x0) + M, for all t ∈ R

+.

In turn, the function H is independent of both time and ε > 0.

1.2.2. Assumptions on the potentials
We first give the following

Definition 1.1. Consider the potentials V : R
N → R, A : R

N → R
N and Φ : R

N → R and a ground state solution r of (S) which
is chosen to build up the initial datum (I). We say that (V , A,Φ, r) is an admissible string for the point-particle dynamics of
problem (P ) if r j is radially symmetric, xir j ∈ L2(RN ) for all i = 1, . . . , N and j = 1, . . . ,m and the following Properties 1.2
(well-posedness) and 1.3 (non-degeneracy/energy convexity inequality) hold true.

Property 1.2 (Well-posedness). Assume that 0 < p < 2/N . Then, for all ε > 0 and φ0 ∈ H A,ε , there exists a unique global
solution

φε ∈ C
(
R

+, H A,ε

) ∩ C1(
R

+, H ′
A,ε

)
,

of problem (P ) with supt∈R+ ‖φε(t)‖H A,ε < ∞. Furthermore, the mass N j
ε associated with φ

j
ε(t),

N j
ε (t) :=

∫ ∣∣φ j
ε(t)

∣∣2
dx, t ∈ R

+, j = 1, . . . ,m,

and the total energy Eε ,

Eε(t) := 1

2

∫ ∣∣∣∣1

i
∇φε(x) − A(εx)φε

∣∣∣∣
2

dx +
∫

V (εx)
∣∣φε(x)

∣∣2
dx − 1

p + 1

m∑
α j

∫ ∣∣φ j
ε(x)

∣∣2p+2
dx
j=1
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− 1

p + 1

m∑
i, j, i �= j

γi j

∫ ∣∣φi
ε(x)

∣∣p+1∣∣φ j
ε(x)

∣∣p+1
dx − 1

2

m∑
j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x)

∣∣2∣∣φ j
ε(y)

∣∣2
dx dy

− 1

2

m∑
i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x)

∣∣2∣∣φ j
ε(y)

∣∣2
dx dy, t ∈ R

+,

are conserved in time, namely

N j
ε (t) = N j

ε (0) and Eε(t) = Eε(0), for all t ∈ R
+, j = 1, . . . ,m.

Finally if φ0 ∈ H2
A,ε , then φε ∈ C(R+, H2

A,ε) ∩ C1(R+, L2(RN ;C
m)).

We also consider the functional E : H1(RN ;R
m) → R associated with system (S)

E (u) = 1

2

∫ ∣∣∇u(x)
∣∣2

dx −
m∑

j=1

α j

p + 1

∫ ∣∣u j(x)
∣∣2p+2

dx −
m∑

i, j, i �= j

γi j

p + 1

∫ ∣∣ui(x)
∣∣p+1∣∣u j(x)

∣∣p+1
dx.

In a large range of relevant situations, a ground state solution r of (S) satisfies the characterisation

E (r) = min
{

E (u): u ∈ H1(
R

N ,R
m)

, ‖u‖L2 = ‖r‖L2

}
. (1.6)

For m = 1 this is a classical fact. For m = 2 see e.g. [19].
We consider now the following

Property 1.3 (Non-degeneracy/energy convexity inequality). There exist two positive constants C and C ′ such that the following
condition holds: if U ∈ H1(RN ;C

m) is such that ‖U‖L2 = ‖r‖L2 , where r is a ground state solution of (S), then

ΓU � C
(

E (U ) − E (r)
)
, (1.7)

where

ΓU = inf
y∈R

N

θ1,...,θm∈[0,2π)

∥∥U (·) − (
eiθ1 r1(· + y), . . . , eiθm rm(· + y)

)∥∥2
H1 , (1.8)

provided that ΓU < C ′ .

The energy convexity inequality is essentially a feature of a ground state solution r. It is generally a quite delicate
issue to consider, based upon nontrivial spectral estimates and the fact that the kernel of the linearized operator is N-
dimensional and spanned by the partial derivatives ∂ jr of r. Let us point out which is the current knowledge of particular
cases, within our framework, where this assumption is indeed satisfied. For the Schrödinger equation with or without
magnetic field, Property 1.3 is satisfied, since the (unique) ground state solution of − 1

2 �r + r = r2p+1 is non-degenerate
and satisfies suitable spectral estimates (see the striking works of Weinstein [27,28]). For systems, already in the case of
two components, the situation is still very far from being completely understood. On the other hand, very recently Dancer
and Wei have proved in [8] the existence of non-degenerate ground state solutions in some particular cases, providing an
important tool in connection with Property 1.3. In the one-dimensional case, Property 1.3 has been verified in [22] for
two-components weakly coupled nonlinear Schrödinger system. The main obstacle in dealing with the higher-dimensional
case is the smoothness of the energy functional E which is not of class C2 due to the presence of the coupling terms∫ |φi|p+1|φ j|p+1, being p < 2/N < 1.

1.2.3. Statement of the result
On the external potentials V and A, on the nonlocal term Φ and on the ground state solution r of (S) which is chosen

to build the initial datum (I), we assume that they are admissible for the point-particle dynamics in the sense indicated
above and that the following conditions hold:

(V) V ∈ C3(RN ) is positive and ‖V ‖C3 < ∞;
(A) A ∈ C3(RN ;R

N ) with ‖A‖C3 < ∞;
(Φ) Φ ∈ C3(RN ) positive with ‖Φ‖C3 < ∞.

We shall think Φ as a smooth function decaying at infinity as |x|−ρ for some ρ > 0 (for instance, in R
N with N � 3,

decaying as the Coulomb potential |x|2−N ) having a maximum point at the origin.
Under the previous assumptions, we can state the main result of this paper.
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Theorem 1.4. Assume that Φ = 0 in the vectorial case m > 1. Let φε be the family of solutions to problem (P ) corresponding to the
initial datum (I) modelled on a ground state r of (S) and let (xε(t), ξε(t)) be the solution of (D). Then there exist δ > 0, ε0 > 0 and
shift functions θ1

ε , . . . , θm
ε : R

+ → [0,2π) such that, if ‖A‖C2 < δ, then

φ
j
ε(x, t) = ei(ξε(t)·x+θ

j
ε (t)+A(εxε(t))·(x−xε(t)))r j

(
x − xε(t)

) + ω
j
ε(x, t),

where ‖ω j
ε(t)‖H1 � O(ε), for all ε ∈ (0, ε0) and j = 1, . . . ,m, locally uniformly in time with the time scale ε−1 . Furthermore, without

restrictions on ‖A‖C2 , there exists ε0 > 0 such that∣∣φ j
ε(x, t)

∣∣ = r j
(
x − xε(t)

) + ω̂
j
ε(x, t), (1.9)

where ‖ω̂ j
ε‖H1 � O(ε), for all ε ∈ (0, ε0) and j = 1, . . . ,m, locally uniformly in time with the time scale ε−1 .

This kind of results has the origin in some works in linear geometric asymptotics which go back to the 70’s (see [14]).
We stress that, in the vectorial case m > 1, we are not aware of any physically reasonable model including the nonlocal
coupling terms. Hence, for m > 1, we consider systems of coupled Schrödinger equations with local terms, which are being
extensively studied in the literature of recent years.

Remark 1.5. Rescaling back to problem (S), the approximated representation formula reads as

ζ
j
ε (x, t) = e

i
ε (ξ(t)·x+ϑ

j
ε (t)+A(x(t))·(x−x(t)))r j

(
x − x(t)

ε

)
+ Ξ

j
ε (x, t),

locally uniformly in time, where we have set ϑ
j
ε (t) = εθ

j
ε (t/ε) and Ξ

j
ε (x, t) = ω

j
ε(x/ε, t/ε), which reads as in [25] and in

the previously cited papers in the particular cases m = 1, A = 0 and Φ = 0.

Plan of the paper. In Section 2, we prove various preliminary lemmas, particularly focused on the asymptotic behaviour of
the energy, for ε small. In Section 3, we prove some lemmas, focused on the asymptotic behaviour of the density and of
the momentum associated with the solution, for ε small. In Section 4, we prove a result yielding a precise control on the
norm of the error function ω

j
ε which appears in Theorem 1.4. Finally, in Section 5, we conclude the proof of the main result,

Theorem 1.4.

Notations.

(1) The imaginary unit is denoted by i.
(2) The conjugate of any z ∈ C is denoted by z̄, the real and imaginary parts by �z and �z.
(3) The symbol R

+ means the positive real line [0,∞).
(4) The ordinary inner product between two vectors a,b ∈ R

N is denoted by a · b.
(5) The standard L p norm, 1 < p � ∞ of a function u is denoted by ‖u‖Lp .
(6) The symbols ∂t and ∂ j mean ∂

∂t and ∂
∂x j

, respectively. � means ∂2

∂x2
1

+ · · · + ∂2

∂x2
N

.

(7) The symbol Ck(RN ;C
m), for k ∈ N, denotes the space of functions with continuous derivatives up to the order k.

Sometimes Ck(RN ;C
m) is endowed with the norm

‖φ‖Ck =
∑

|α|�k

∥∥Dαφ
∥∥

L∞ < ∞.

(8) The symbol
∫

f (x)dx stands for the integral of f over R
N with the Lebesgue measure.

(9) The symbol C2∗ denotes the dual space of C2. The norm of a ν in C2∗ is

‖ν‖C2∗ = sup

{∣∣∣∣
∫

φ(εx)ν dx

∣∣∣∣: φ ∈ C2(
R

N)
, ‖φ‖C2 � 1

}
.

Clearly, C2∗ contains the space of bounded Radon measures.
(10) C denotes a generic positive constant, which may vary inside a chain of inequalities.
(11) O(ε) is a generic function such that the lim sup of ε−1 O(ε) is finite, as ε → 0.

2. Some preliminary stuff

Observe that, from Property 1.2, due to the choice of the initial datum (I), the masses N j
ε (t) are also independent of ε.

Indeed, via the mass conservation law, by the form of the initial datum and (1.4), we have

N j
ε (t) = N j

ε (0) =
∫ ∣∣φ j

ε(x,0)
∣∣2

dx =
∫ ∣∣r j

(
x − xε(0)

)∣∣2
dx = ‖r j‖2

L2 = m j, (2.1)

for all ε > 0, t ∈ R
+ and j = 1, . . . ,m.
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We now recall a useful identity (see e.g. [17, Lemma 3.3]).

Lemma 2.1. Assume that g : R
N → R is a function of class C2(RN ), ‖g‖C2 < ∞, and that r is a ground state solution of (S). Then,

as ε goes to zero, for any i = 1, . . . ,m it holds∫
g(εx + y)r2

i (x)dx =
∫

g(y)r2
i (x)dx + O

(
ε2),

for every y ∈ R
N .

In a similar fashion, we have the following counterpart to be used for the nonlocal term.

Lemma 2.2. Assume that g : R
N → R is a function of class C2(RN ), ‖g‖C2 < ∞, and that r is a ground state solution of (S). Then,

as ε goes to zero, for any i, j = 1, . . . ,m it holds∫ ∫
g
(
ε(x − y)

)
r2

i (x)r2
j (y)dx dy = mim j g(0) + O

(
ε2).

Proof. By Taylor expansion, for some point ξ of the form ξ = ετ (x − y) with τ ∈ (0,1), we have

∫ ∫
g
(
ε(x − y)

)
r2

i (x)r2
j (y)dx dy = g(0)

∫ ∫
r2

i (x)r2
j (y)dx dy + ε

N∑
h=1

Dh g(0) ·
∫ ∫

(xh − yh)r
2
i (x)r2

j (y)dx dy

+ ε2

2

N∑
h,k=1

∫ ∫
D2

hk g(ξ)(xh − yh)(xk − yk)r
2
i (x)r2

j (y)dx dy

= mim j g(0) + ε

N∑
h=1

Dh g(0)

∫
xhr2

i (x)dx

∫
r2

j (y)dy

− ε

N∑
h=1

Dh g(0)

∫
yhr2

j (y)dy

∫
r2

i (x)dx

+ ε2

2

N∑
h,k=1

∫ ∫
D2

hk g(ξ)(xh − yh)(xk − yk)r
2
i (x)r2

j (y)dx dy

= mim j g(0) + ε2

2

N∑
h,k=1

∫ ∫
D2

hk g(ξ)(xh − yh)(xk − yk)r
2
i (x)r2

j (y)dx dy

= mim j g(0) + O
(
ε2).

In the above computations we used the fact that |D2
hk g(ξ)| � ‖g‖C2 < ∞, that, since ri is radially symmetric,

∫
zhr2

i (z)dz = 0
and, finally, that zhri ∈ L2(RN ) for any h and i (cf. Definition 1.1). �

In the next result we obtain an asymptotic formula for the energy, linking the functionals Eε , E and H, up to an error
O(ε2) (see also [25]).

Lemma 2.3. For every t ∈ R
+ , as ε goes to zero, it holds

Eε(t) = E (r) + M H(t) + O
(
ε2).

Proof. Taking into account that, in view of Lemma 2.1, for all j = 1, . . . ,m we have∫
r2

j (x)
∣∣A(εx + x0)

∣∣2
dx = ∣∣A(x0)

∣∣2
m j + O

(
ε2),∫

r2
j (x)A(εx + x0) · (A(x0) + ξ0

)
dx = A(x0) · (A(x0) + ξ0

)
m j + O

(
ε2),

as ε goes to zero, it is readily checked that, for any j = 1, . . . ,m, we get∫ ∣∣∣∣
(∇ − A(εx)

)(
r j

(
x − xε(0)

)
ei[A(x0)·(x−xε(0))+x·ξ0])∣∣∣∣

2

dx =
∫ ∣∣∇r j(x)

∣∣2
dx + m j|ξ0|2 + O

(
ε2).
i



R. Servadei, M. Squassina / J. Math. Anal. Appl. 365 (2010) 776–796 783
In turn, by combining the conservation of energy (see Property 1.2) and the conservation of the function H (see defini-
tion (1.5)), taking into account Lemmas 2.1 and 2.2, as ε goes to zero, we get

Eε(t) = Eε(0) = Eε

(
r
(
x − xε(0)

)
ei[A(x0)·(x−xε(0))+x·ξ0])

= 1

2

m∑
j=1

∫ ∣∣∣∣
(∇

i
− A(εx)

)(
r j

(
x − xε(0)

)
ei[A(x0)·(x−xε(0))+x·ξ0])∣∣∣∣

2

dx

+
m∑

j=1

∫
V (x0 + εx)r2

j (x)dx −
m∑

j=1

α j

p + 1

∫
|r j|2p+2 dx −

m∑
i, j=1, i �= j

γi j

p + 1

∫
|ri|p+1|r j|p+1 dx

−
m∑

j=1

β j

2

∫ ∫
Φ

(
ε(x − y)

)∣∣r j(x)
∣∣2∣∣r j(y)

∣∣2
dx dy −

m∑
i, j, i �= j

ωi j

2

∫ ∫
Φ

(
ε(x − y)

)∣∣ri(x)
∣∣2∣∣r j(y)

∣∣2
dx dy

= E (r) +
m∑

j=1

∫
V (x0 + εx)r2

j (x)dx + 1

2

m∑
j=1

m j|ξ0|2 + M M + O
(
ε2)

= E (r) +
m∑

j=1

m j V (x0) + 1

2

m∑
j=1

m j|ξ0|2 + M M + O
(
ε2) = E (r) + M H(t) + O

(
ε2). �

The function p A
ε : R

N × R
+ → R

m+N is the (magnetic) momentum of φε , defined as

p A
ε (x, t) := �(

φ̄ε(x, t)
(∇φε(x, t) − iA(εx)φε(x, t)

))
, x ∈ R

N , t ∈ R
+. (2.2)

Then, we have the following

Lemma 2.4. Let φε be the solution to problem (P ) corresponding to the initial datum (I). Then there exists a positive constant C such
that ∥∥i−1∇φε(·, t) − A(εx)φε(·, t)

∥∥2
L2 � C,

for all t ∈ R
+ and any ε ∈ (0,1]. In particular,

sup
t∈R+

∣∣∣∣
∫

p A
ε (x, t)dx

∣∣∣∣ < ∞.

Proof. By Property 1.2 the total energy Eε is conserved and, in addition, can be bounded independently of ε (due to the
choice of initial datum, see Lemma 2.3). Taking into account the positivity of V and the definition of Eε , it follows that
there exists a positive constant C such that

∥∥∥∥1

i
∇φε(·, t) − A(εx)φε(·, t)

∥∥∥∥
2

L2
=

∫ ∣∣∣∣1

i
∇φε(x, t) − A(εx)φε(x, t)

∣∣∣∣
2

dx

= 2Eε(t) − 2
∫

V (εx)
∣∣φε(x, t)

∣∣2
dx + 2

p + 1

m∑
j=1

α j

∫ ∣∣φ j
ε(x, t)

∣∣2p+2
dx

+ 2

p + 1

m∑
i, j, i �= j

γi j

∫ ∣∣φi
ε(x, t)

∣∣p+1∣∣φ j
ε(x, t)

∣∣p+1
dx

+
m∑

j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy

+
m∑

i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy

� C + 2

p + 1

m∑
α j

∫ ∣∣φ j
ε(x, t)

∣∣2p+2
dx
j=1
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+ 2

p + 1

m∑
i, j, i �= j

γi j

∫ ∣∣φi
ε(x, t)

∣∣p+1∣∣φ j
ε(x, t)

∣∣p+1
dx

+
m∑

j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x)

∣∣2∣∣φ j
ε(y)

∣∣2
dx dy

+
m∑

i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy. (2.3)

By combining the diamagnetic inequality (see e.g. [9] for a proof)

∣∣∇∣∣φ j
ε

∣∣∣∣ �
∣∣∣∣
(∇

i
− A(εx)

)
φ

j
ε

∣∣∣∣, a.e. in R
N

with the Gagliardo–Nirenberg inequality, setting ϑ = pN
2p+2 ∈ (0,1), we obtain

∥∥φ
j
ε(·, t)

∥∥
L2p+2 �

∥∥φ
j
ε(·, t)

∥∥1−ϑ

L2

∥∥∇∣∣φ j
ε(·, t)

∣∣∥∥ϑ

L2 �
∥∥φ

j
ε(·, t)

∥∥1−ϑ

L2

∥∥∥∥
(∇

i
− A(εx)

)
φ

j
ε(·, t)

∥∥∥∥
ϑ

L2

for any j = 1, . . . ,m. While, by the conservation of mass, we deduce that∥∥φ
j
ε(·, t)

∥∥2
L2 = N j

ε (t) = m j, j = 1, . . . ,m,

independently of ε (see formula (2.1)). Hence, for all ε > 0, we get

∥∥φ
j
ε(·, t)

∥∥2p+2
L2p+2 � m(1−θ)(p+1)

j

∥∥∥∥1

i
∇φ

j
ε(·, t) − A(εx)φ j

ε(·, t)

∥∥∥∥
pN

L2
� C

(
Υε(t)

)pN
, (2.4)

for any j = 1, . . . ,m and for some positive constant C , where we have set, for t > 0,

Υε(t) = max
j=1,...,m

Υ
j

ε (t), Υ
j

ε (t) =
∥∥∥∥1

i
∇φ

j
ε(·, t) − A(εx)φ j

ε(·, t)

∥∥∥∥
L2

.

Observe also that, as Φ is uniformly bounded, for any i, j = 1, . . . ,m we have∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy � C

∫ ∣∣φi
ε(x, t)

∣∣2
dx

∫ ∣∣φ j
ε(y, t)

∣∣2
dy = Cmim j.

Finally, notice that, by Young inequality∫ ∣∣φi
ε(x, t)

∣∣p+1∣∣φ j
ε(x, t)

∣∣p+1
dx � 1

2

∥∥φi
ε(·, t)

∥∥2p+2
L2p+2 + 1

2

∥∥φ
j
ε(·, t)

∥∥2p+2
L2p+2 , (2.5)

for any j = 1, . . . ,m. Putting now together all the previous inequalities from (2.3) to (2.5), we finally obtain (Υε(t))2 �
C + C(Υε(t))pN for t > 0. Taking into account that pN < 2 by the assumption on p, if Υε(t) was unbounded with respect
to t or ε, the above inequality would yield a contradiction. Hence Υε is uniformly bounded with respect to t and ε, so
that the first assertion of Lemma 2.4 holds. In order to prove the final assertion observe that, taking into account the mass
conservation law, by Hölder inequality we get∣∣∣∣

∫
p A
ε (x, t)dx

∣∣∣∣ �
∫ ∣∣p A

ε (x, t)
∣∣dx �

∥∥φε(·, t)
∥∥

L2

∥∥∥∥1

i
∇φε(·, t) − A(εx)φε(·, t)

∥∥∥∥
L2

� C,

for all t ∈ R
+ . The assertion follows by taking the supremum over t in R

+ . �
For the next lemma we need to introduce the total magnetic momentum qA

ε defined as

qA
ε (x, t) =

m∑
j=1

(
p A
ε

) j
(x, t), x ∈ R

N , t > 0.

Then, on a suitable function ψε (related to the solution φε), we have the following

Lemma 2.5. Let φε be the family of solutions to problem (P ) corresponding to the initial datum (I). Let us set, for any ε > 0, t ∈ R
+

and x ∈ R
N

ψ
j
ε (x, t) = e−iξε(t)·[x+xε(t)]e−iA(εxε(t))·xφ j

ε

(
x + xε(t), t

)
, j = 1, . . . ,m, (2.6)
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where (xε(t), ξε(t)) is the solution of system (D). Then, as ε goes to zero,

E
(
ψε(t)

) − E (r) = M H(t) −
∫

V (εx)
∣∣φε(x, t)

∣∣2
dx + 1

2
M

∣∣ξε(t) + A
(
εxε(t)

)∣∣2

− (
ξε(t) + A

(
εxε(t)

)) ·
∫

qA
ε (x, t)dx − (ξε(t) + A

(
εxε(t)

) ·
∫

A(εx)
∣∣φε(x, t)

∣∣2
dx

+ 1

2

∫ ∣∣A(εx)
∣∣2∣∣φε(x, t)

∣∣2
dx +

∫
A(εx) · qA

ε (x, t)dx

+ 1

2

m∑
j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy

+ 1

2

m∑
i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy + O

(
ε2).

Proof. By a change of variable we see that ‖ψ j
ε (t)‖2

L2 = m j for j = 1, . . . ,m. Hence the mass of ψε(t) is conserved through

the motion. Let p j
ε(x, t) = �(φ̄

j
ε(x, t)∇φ

j
ε(x, t)) for x ∈ R

N , t ∈ R
+ and j = 1, . . . ,m be the j-th magnetic-free momentum.

A direct computation yields

E
(
ψε(t)

) = 1

2

∫ ∣∣∇φε(x, t)
∣∣2

dx + 1

2

m∑
j=1

m j
∣∣ξε(t) + A

(
εxε(t)

)∣∣2 −
m∑

j=1

(
ξε(t) + A

(
εxε(t)

)) ·
∫

p j
ε(x, t)dx

− 1

p + 1

m∑
j=1

α j

∫ ∣∣φ j
ε(x, t)

∣∣2p+2
dx − 1

p + 1

m∑
i, j, i �= j

γi j

∫ ∣∣φi
ε(x, t)

∣∣p+1∣∣φ j
ε(x, t)

∣∣p+1
dx,

so that we obtain

E
(
ψε(t)

) = 1

2

∫ ∣∣∣∣1

i
∇φε(x, t) − A(εx)φε(x, t)

∣∣∣∣
2

dx − 1

2

∫ ∣∣A(εx)
∣∣2∣∣φε(x, t)

∣∣2
dx +

m∑
j=1

∫
A(εx) · p j

ε(x, t)dx

+ 1

2

m∑
j=1

m j
∣∣ξε(t) + A

(
εxε(t)

)∣∣2 −
m∑

j=1

(
ξε(t) + A

(
εxε(t)

)) ·
∫

p j
ε(x, t)dx

− 1

p + 1

m∑
j=1

α j

∫ ∣∣φ j
ε(x, t)

∣∣2p+2
dx − 1

p + 1

m∑
i, j, i �= j

γi j

∫ ∣∣φi
ε(x, t)

∣∣p+1∣∣φ j
ε(x, t)

∣∣p+1
dx.

Then, taking into account the definition of Eε(t) and of H and Lemma 2.3, we obtain

E
(
ψε(t)

) − E (r) = M H(t) −
∫

V (εx)
∣∣φε(x, t)

∣∣2
dx + 1

2
M

∣∣ξε(t) + A
(
εxε(t)

)∣∣2

− (
ξε(t) + A

(
εxε(t)

)) ·
∫ m∑

j=1

p j
ε(x, t)dx − 1

2

∫ ∣∣A(εx)
∣∣2∣∣φε(x, t)

∣∣2
dx

+
∫

A(εx) ·
m∑

j=1

p j
ε(x, t)dx + 1

2

m∑
j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy

+ 1

2

m∑
i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy + O

(
ε2),

as ε goes to zero. Finally, since p j
ε(x, t) = (p A

ε ) j(x, t) + A(εx)|φ j
ε(x, t)|2 and recalling the definition of qA

ε , we obtain the
desired conclusion. �

Now let us introduce two functionals in the dual space of C2∫
Π1

ε (x, t) · ϕ(x)dx =
∫

ϕ(εx) · qA
ε (x, t)dx − Mϕ

(
εxε(t)

) · ξε(t), ∀ϕ ∈ C2(
R

N ;R
N)

, (2.7)∫
Π2

ε (x, t)ϕ(x)dx =
∫

ϕ(εx)
∣∣φε(x, t)

∣∣2
dx − Mϕ

(
εxε(t)

)
, ∀ϕ ∈ C2(

R
N ;R

)
, (2.8)
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for all t ∈ R
+ , where M is given in formula (1.4). Moreover, define the function Ωε : R

+ → R
+ as Ωε(t) = Ω̂ε(t) + ρ A

ε (t),
where

Ω̂ε(t) :=
∣∣∣∣
∫

Π1
ε (x, t)dx

∣∣∣∣ + sup
‖ϕ‖C3 �1

∣∣∣∣
∫

Π2
ε (x, t)ϕ(x)dx

∣∣∣∣ + ∣∣γε(t)
∣∣, t ∈ R

+,

ρ A
ε (t) :=

∣∣∣∣
∫

Π1
ε (x, t) · A(x)dx

∣∣∣∣, t ∈ R
+ (2.9)

and

γε(t) := Mεxε(t) −
∫

εxχ(εx)
∣∣φε(x, t)

∣∣2
dx, t ∈ R

+,

where χ ∈ C∞(RN ) is such that 0 � χ � 1, χ(x) = 1 in B(0, ρ̃) and χ(x) = 0 in R
N \ B(0,2ρ̃), for a suitable ρ̃ > 0 that will

be suitably chosen later.
Now we are able to prove an estimate on the energy of ψε .

Lemma 2.6. Assume that Φ = 0 if m > 1 and let ψε be the function defined in formula (2.6). Then there exists a positive constant C
independent of ε such that

0 � E
(
ψε(t)

) − E (r) � CΩε(t) + O
(
ε2),

for all t ∈ R
+ and any ε > 0.

Proof. We claim that Ωε(0) = O(ε2) as ε goes to zero. In fact, by definition of Ωε , we have

Ωε(0) =
∣∣∣∣
∫

Π1
ε (x,0)dx

∣∣∣∣ + sup
‖ϕ‖C3 �1

∣∣∣∣
∫

Π2
ε (x,0)ϕ(x)dx

∣∣∣∣ + ∣∣γε(0)
∣∣ + ρ A

ε (0). (2.10)

First of all, let us estimate the first term in the right-hand side of (2.10). Taking ϕ ≡ 1 in (2.7) and using (I), we get∫
Π1

ε (x,0)dx =
∫

qA
ε (x,0)dx − Mξ(0)

=
m∑

j=1

∫
�(

φ̄
j
ε(x,0)

(∇φ
j
ε(x,0) − iA(εx)φ j

ε(x,0)
))

dx − Mξ0

=
m∑

j=1

∫
r2

j

(
x − xε(0)

)[
A(x0) + ξ0 − A(εx)

]
dx − Mξ0

= M A(x0) −
m∑

j=1

∫
r2

j

(
x − xε(0)

)
A(εx)dx

= M A(x0) −
m∑

j=1

∫
r2

j (x)A(εx + x0)dx = O
(
ε2),

as ε goes to zero, in light of Lemma 2.1. In a similar fashion, one gets ρ A
ε (0) = O(ε2). Now consider the second term in the

right-hand side of (2.10). Let ϕ ∈ C3(RN ) with ‖ϕ‖C3 � 1. Then,∫
Π2

ε (x,0)ϕ(x)dx =
∫

ϕ(εx)
∣∣φε(x,0)

∣∣2
dx − Mϕ

(
x(0)

)

=
m∑

j=1

∫
ϕ(εx + x0)r

2
j (x)dx − Mϕ(x0) = O

(
ε2)

as ε goes to zero, again using Lemma 2.1. We finally estimate γε(0). As above we have

γε(0) = Mx(0) − ε

∫
xχ(εx)

∣∣φε(x,0)
∣∣2

dx

= Mx0 − ε

m∑
j=1

∫
xχ(εx)r2

j

(
x − xε(0)

)
dx = Mx0 −

m∑
j=1

∫
(εx + x0)χ(εx + x0)r

2
j (x)dx

= Mx0 −
m∑∫

x0χ(x0)r
2
j (x)dx + O

(
ε2) = Mx0

(
1 − χ(x0)

) + O
(
ε2),
j=1
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thanks to Lemma 2.1. Now, from [17, Lemmas 3.1–3.2] (where one has to use the δa at some point a is defined as 〈δa,ϕ〉 =
ϕ(εa) for all ϕ ∈ C2(RN )), we learn that there exist three positive constants K0, K1, K2 such that, for all y, z ∈ R

N , K1|εy −
εz| � ‖δy − δz‖C2∗ � K2|εy −εz|, provided that ‖δy − δz‖C2∗ � K0. Let then ρ̃ = K1 supε∈[0,1] supt∈[0,T0/ε] |εxε(t)|+ K0, where
T0 > 0 is fixed (to be chosen later on, see Lemma 3.4). Then, in view of the definition of χ , we obtain that γε(0) = O(ε2)

as ε goes to zero, since |x0| < ρ̃ . Hence the claim is proved.
Now we are ready to prove the assertion of Lemma 2.6. By using Lemma 2.5, the definition of H, (2.7) and (2.8) we

obtain

E
(
ψε(t)

) − E (r) = 1

2
M

∣∣ξε(t)∣∣2 + M V
(
εxε(t)

) + M M

−
∫

V (εx)
∣∣φε(x, t)

∣∣2
dx + 1

2
M

∣∣ξε(t) + A
(
εxε(t)

)∣∣2

−
∫

Π1
ε (x, t)

[(
ξε(t) + A

(
εxε(t)

))]
dx − M

[
ξε(t) + A

(
εxε(t)

)] · ξε(t)

− (
ξε(t) + A

(
εxε(t)

)) ·
(∫

Π2
ε (x, t)A(x)dx + M A

(
εxε(t)

))

+ 1

2

∫ ∣∣A(εx)
∣∣2∣∣φε(x, t)

∣∣2
dx +

∫
Π1

ε (x, t)A(x)dx + M A
(
εxε(t)

) · ξε(t)

+ 1

2

m∑
j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy

+ 1

2

m∑
i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy + O

(
ε2).

Let us set (with the convention that ωii = βi )

ηε(t) =
∣∣∣∣∣

m∑
i, j=1

ωi j

2

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy − Φ(0)

m∑
i, j=1

ωi j

2
mim j

∣∣∣∣∣.
In turn, using the definition of M, we have

E
(
ψε(t)

) − E (r) � ηε(t) + M V
(
εxε(t)

) −
∫

Π2
ε (x, t)V (x)dx − M V

(
εxε(t)

) + 1

2
M

∣∣A
(
εxε(t)

)∣∣2

−
∫

Π1
ε (x, t)

[
ξε(t) + A

(
εxε(t)

)]
dx − (

ξε(t) + A
(
εxε(t)

))∫
Π2

ε (x, t)A(x)dx − M
∣∣A

(
εxε(t)

)∣∣2

+ 1

2

∫
Π2

ε (x, t)
∣∣A(x)

∣∣2
dx + 1

2
M

∣∣A
(
εxε(t)

)∣∣2 +
∫

Π1
ε (x, t)A(x)dx + O

(
ε2)

= ηε(t) −
∫

Π2
ε (x, t)V (x)dx −

∫
Π1

ε (x, t)
[
ξε(t) + A

(
εxε(t)

)]
dx

− (
ξε(t) + A

(
εxε(t)

)) ∫
Π2

ε (x, t)A(x)dx

+ 1

2

∫
Π2

ε (x, t)
∣∣A(x)

∣∣2
dx +

∫
Π1

ε (x, t)A(x)dx + O
(
ε2)

� ηε(t) + CΩε(t) + O
(
ε2),

for ε sufficiently small. If m > 1 we assume that Φ = 0, and the assertion follows. If instead m = 1, observe first that from
definition (2.8), by choosing ϕ(x) = Φ(x − εy) and ϕ(y) = Φ(εxε(t) − y) respectively, we have∫

Φ(εx − εy)
∣∣φ1

ε (x, t)
∣∣2

dx =
∫

Π2
ε (x, t)Φ(x − εy)dx + m1Φ

(
εxε(t) − εy

)
,

m1

∫
Φ

(
εxε(t) − εy

)∣∣φ1
ε (y, t)

∣∣2
dy = m1

∫
Π2

ε (y, t)Φ
(
εxε(t) − y

)
dy + Φ(0)m2

1.

In turn, we have
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ηε(t) � C

∣∣∣∣
∫ [∫

Π2
ε (x, t)Φ(x − εy)dx + m1Φ

(
εxε(t) − εy

)]∣∣φ1
ε (y, t)

∣∣2
dy − Φ(0)m2

1

∣∣∣∣
= C

∣∣∣∣
∫ [∫

Π2
ε (x, t)Φ(x − εy)dx

]∣∣φ1
ε (y, t)

∣∣2
dy + m1

∫
Φ

(
εxε(t) − εy

)∣∣φ1
ε (y, t)

∣∣2
dy − Φ(0)m2

1

∣∣∣∣
� Cm1 sup

‖ϕ‖C3 �1

∣∣∣∣
∫

Π2
ε (x, t)ϕ(x)dx

∣∣∣∣ + Cm1

∣∣∣∣
∫

Π2
ε (y, t)Φ

(
εxε(t) − y

)
dy

∣∣∣∣
� C sup

‖ϕ‖C3 �1

∣∣∣∣
∫

Π2
ε (x, t)ϕ(x)dx

∣∣∣∣ � CΩ̂ε(t) � CΩε(t).

In turn, we conclude that

E
(
ψε(t)

) − E (r) � CΩε(t) + O
(
ε2)

as ε goes to zero, for some positive constant C . Hence the proof of Lemma 2.6 is complete. �
Since the function {t �→ Ωε(t)} given in (2.9) is continuous and recalling that Ωε(0) = O(ε2) as ε → 0 (see the proof of

Lemma 2.6), for any fixed T0 > 0 and σ0 > 0, we can define the time

T ∗
ε := sup

{
t ∈ [0, T0/ε]: Ωε(s), Γψε(s) � σ0, for all s ∈ (0, t)

}
> 0, (2.11)

for any ε > 0, where Γψε is defined according to (1.8) and Γψε(0) = 0. Now we are able to provide the main result of this
section, related to a representation formula for the solution φε of problem (P ). For the proof, it is enough to adapt the proof
of [25, Theorem 4.2]. The fact:

Theorem 2.7. Let φε be the family of solutions to problem (P ) corresponding to the initial datum (I) modelled on a ground state
solution r of problem (S) and let (xε(t), ξε(t)) be the global solution of (D). Then there exist positive constants ε0 and C, locally
bounded functions θ1

ε , . . . , θm
ε : R

+ → [0,2π) and yε : R
+ → R

N such that

φ
j
ε(x, t) = ei(ξε(t)·x+θ

j
ε (t)+A(εxε(t))·(x−xε(t)))r j

(
x − yε(t)

) + ω
j
ε(t),

where ‖ω j
ε(t)‖H1 � C

√
Ωε(t) + O(ε), for all ε ∈ (0, ε0), t ∈ [0, T ∗

ε ) and j = 1, . . . ,m.

3. Density and momentum identities

This section is devoted to some important identities involving the momentum p A
ε and the total magnetic momentum qA

ε
related to problem (P ).

Proposition 3.1. Let φε be the solution to problem (P ) corresponding to the initial datum (I). Then the following identities hold true

∂|φ j
ε|2

∂t
(x, t) = −divx

(
p A
ε

) j
(x, t), x ∈ R

N , t ∈ R
+, j = 1, . . . ,m, (3.1)

∫
∂qA

ε

∂t
(x, t)dx = −

∫
qA
ε (x, t) × εB(εx)dx −

∫
ε∇V (εx)

∣∣φε(x, t)
∣∣2

dx

+
m∑

j=1

β j

∫ ∫
ε∇Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

+
m∑

i, j=1, i �= j

ωi j

∫ ∫
ε∇Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy, (3.2)

for t ∈ R
+ , where B = ∇ × A is the magnetic field associated with A.

Proof. The proof follows the lines of the corresponding proof in [25] for the scalar case without the presence of nonlocal
potentials. By formula (2.2), for any j = 1, . . . ,m, (p A

ε ) j is the vector whose components, which we denote by (p A
ε )

j
� , are

given by (p A
ε )

j = �(φ̄
j
ε(x, t)(∂�φ

j
ε(x, t) − iA�(εx)φ j

ε(x, t))), for � = 1, . . . , N . Let us fix j = 1, . . . ,m. Hence
�
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−divx
(

p A
ε

) j
(x, t) = −

N∑
�=1

�(
∂�φ̄

j
ε(x, t)

(
∂�φ

j
ε(x, t) − iA�(εx)φ j

ε(x, t)
))

−
N∑

�=1

�(
φ̄

j
ε(x, t)

(
∂2
��φ

j
ε(x, t) − i∂� A�(εx)φ j

ε(x, t) − iA�(εx)∂�φ
j
ε(x, t)

))

= 2A(εx) · �(∇φ̄
j
ε(x, t)φ j

ε(x, t)
) − �(

φ̄
j
ε(x, t)�φ

j
ε(x, t)

) + divx A(εx)
∣∣φ j

ε(x, t)
∣∣2

.

Moreover, using (P ) and taking into account the definition of L A , we get

∂|φ j
ε|2

∂t
(x, t) = 2�(

φ̄
j
ε(x, t)

(
L Aφ

j
ε(x, t) + V (εx)φ j

ε(x, t) − ∣∣φε(x, t)
∣∣2p

j φ
j
ε(x, t) − Φ(εx) ∗ |φε|2j φ j

ε(x, t)
))

= −�(
φ̄

j
ε(x, t)�φ

j
ε(x, t)

) + 2A(εx) · �(
φ

j
ε(x, t)∇φ̄

j
ε(x, t)

) + divx A(εx)
∣∣φ j

ε(x, t)
∣∣2

,

so that identity (3.1) holds true. Now let us prove the second one. By definition of the total magnetic momentum qA
ε , for

any � = 1, . . . , N , we have

∂(qA
ε )�

∂t
=

m∑
j=1

∂(p A
ε )

j
�

∂t
=

m∑
j=1

(�(
∂t φ̄

j
ε∂�φ

j
ε

) + �(
∂�

(
φ

j
ε∂tφ

j
ε

))) −
m∑

j=1

�(
∂�φ̄

j
ε∂tφ

j
ε

) − A�(εx)
m∑

j=1

∂|φ j
ε|2

∂t

= 2
m∑

j=1

�(
∂t φ̄

j
ε∂�φ

j
ε

) −
m∑

j=1

�(
∂�

(
φ̄

j
ε∂tφ

j
ε

)) − A�(εx)
m∑

j=1

∂|φ j
ε|2

∂t
,

and so, integrating over R
N , it is easy to see that∫

∂(qA
ε )�

∂t
dx = 2

m∑
j=1

∫
�(

∂t φ̄
j
ε∂�φ

j
ε

)
dx −

m∑
j=1

∫
�(

∂�

(
φ̄

j
ε∂tφ

j
ε

))
dx −

m∑
j=1

∫
A�(εx)

∂|φ j
ε|2

∂t
dx. (3.3)

Let us consider the first term in the right-hand side of (3.3). Conjugating the equation, multiplying it by 2i∂�φ
j
ε , � = 1, . . . , N ,

and taking the imaginary part, we have

2�(
∂t φ̄

j
ε∂�φ

j
ε

) = −�(
�φ̄

j
ε∂�φ

j
ε

) + 2A(εx) · �(∇φ̄
j
ε∂�φ

j
ε

) + ∣∣A(εx)
∣∣2�(

φ̄
j
ε∂�φ

j
ε

) + divx A(εx)�(
φ̄

j
ε∂�φ

j
ε

)
+ 2V (εx)�(

φ̄
j
ε∂�φ

j
ε

) − 2�(|φε|2p
j φ̄ε

j
∂�φ

j
ε

) − 2�((
Φ(εx) ∗ |φε|2j

)
φ̄

j
ε∂�φ

j
ε

)
= −

m∑
i=1

�(
∂i

(
∂iφ̄

j
ε∂�φ

j
ε

)) +
m∑

i=1

∂�

( |∂iφ
j
ε|2

2

)
+ 2A(εx) · �(∇φ̄

j
ε∂�φ

j
ε

) + ∣∣A(εx)
∣∣2�(

φ̄
j
ε∂�φ

j
ε

)

+ divx A(εx)�(
φ̄

j
ε∂�φ

j
ε

) + ∂�

(
V (εx)

∣∣φ j
ε

∣∣2) − ε∂�V (εx)
∣∣φ j

ε

∣∣2

− α j

p + 1
∂�

(∣∣φ j
ε

∣∣2p+2) − 2
m∑

i=1, i �= j

γi j
∣∣φi

ε

∣∣p+1∣∣φ j
ε

∣∣p−1�(
φ̄

j
ε∂�φ

j
ε

)

− 2β j�
((

Φ(εx) ∗ ∣∣φ j
ε

∣∣2)
φ̄

j
ε∂�φ

j
ε

) − 2
m∑

i=1, i �= j

ωi j�
((

Φ(εx) ∗ ∣∣φi
ε

∣∣2)
φ̄

j
ε∂�φ

j
ε

)
.

Hence, integrating over R
N and using the H2-regularity of the functions involved, for all � = 1, . . . , N we obtain the follow-

ing identity

2
∫

�(
∂t φ̄

j
ε∂�φ

j
ε

)
dx = 2

∫
A(εx) · �(∇φ̄

j
ε∂�φ

j
ε

)
dx +

∫ ∣∣A(εx)
∣∣2�(

φ̄
j
ε∂�φ

j
ε

)
dx +

∫
divx A(εx)�(

φ̄
j
ε∂�φ

j
ε

)
dx

− ε

∫
∂�V (εx)

∣∣φ j
ε

∣∣2
dx − 2

m∑
i=1, i �= j

γi j

∫ ∣∣φi
ε

∣∣p+1∣∣φ j
ε

∣∣p−1�(
φ̄

j
ε∂�φ

j
ε

)
dx

− 2β j

∫
�((

Φ(εx) ∗ ∣∣φ j
ε

∣∣2)
φ̄

j
ε∂�φ

j
ε

)
dx − 2

m∑
ωi j

∫
�((

Φ(εx) ∗ ∣∣φi
ε

∣∣2)
φ̄

j
ε∂�φ

j
ε

)
dx.
i=1, i �= j
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Notice that∫
divx A(εx)�(

φ̄
j
ε∂�φ

j
ε

)
dx + 2

∫
A(εx) · �(∇φ̄

j
ε∂�φ

j
ε

)
dx = ε

m∑
i=1

∫
∂� Ai(εx)�(

φ̄
j
ε∂iφ

j
ε

)
dx.

Moreover, thanks to the regularity of φ
j
ε , we have

m∑
i, j=1, i �= j

∫ ∣∣φi
ε

∣∣p+1∣∣φ j
ε

∣∣p−1�(
φ̄

j
ε∂�φ

j
ε

)
dx =

m∑
i, j=1, i �= j

∫ ∣∣φi
ε

∣∣p+1∣∣φ j
ε

∣∣p−1
∂�

( |φ j
ε|2
2

)
dx

= 1

p + 1

m∑
i, j=1, i �= j

∫ ∣∣φi
ε

∣∣p+1
∂�

(∣∣φ j
ε

∣∣p+1)
dx

= 1

p + 1

m∑
i, j=1, i< j

∫
∂�

(∣∣φi
ε

∣∣p+1∣∣φ j
ε

∣∣p+1)
dx = 0,

and ∫
�((

Φ(εx) ∗ ∣∣φ j
ε

∣∣2)
φ̄

j
ε∂�φ

j
ε

)
dx =

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2�(
φ̄

j
ε(x)∂�φ

j
ε(x)

)
dy dx

=
∫ ∫

Φ
(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2
∂�

( |φ j
ε(x)|2

2

)
dy dx

= −1

2

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

for all � = 1, . . . , N . While, with the same arguments, we get

m∑
i=1, i �= j

ωi j

∫
�((

Φ(εx) ∗∣∣φi
ε

∣∣2)
φ̄

j
ε∂�φ

j
ε

)
dx = −1

2

m∑
i=1, i �= j

ωi j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy.

Hence, it is easy to see that

2
∫

�(
∂t φ̄

j
ε∂�φ

j
ε

)
dx =

m∑
i=1

∫
ε∂� Ai(εx)�(

φ̄
j
ε∂iφ

j
ε

)
dx +

∫ ∣∣A(εx)
∣∣2

∂�

( |φ j
ε|2
2

)
dx

−
∫

ε∂�V (εx)
∣∣φ j

ε

∣∣2
dx − β j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

−
m∑

i=1, i �= j

ωi j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

=
m∑

i=1

∫
ε∂� Ai(εx)�(

φ̄
j
ε∂iφ

j
ε

)
dx +

m∑
i=1

∫
εAi(εx)∂� Ai(εx)

∣∣φ j
ε

∣∣2
dx

−
∫

ε∂�V (εx)
∣∣φ j

ε

∣∣2
dx − β j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

−
m∑

i=1, i �= j

ωi j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy (3.4)

for all � = 1, . . . , N . As for the second term in (3.3), using again the regularity of φ
j
ε , we get

∫ �(∂�(φ̄
j
ε∂tφ

j
ε))dx = 0, for any

� = 1, . . . , N . Finally, as for the third term in the right-hand side of (3.3), by (3.1) we get

∫
A�(εx)

∂|φ j
ε|2

∂t
(x, t)dx = −

∫
A�(εx)divx

(
p A
ε

) j
(x, t)dx

=
m∑∫

ε∂i A�(εx)
(

p A
ε

) j
i (x, t)dx
i=1
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=
m∑

i=1

∫
ε∂i A�(εx)�(

φ̄
j
ε(x, t)

(
∂iφ

j
ε(x, t) − i Ai(εx)φ j

ε(x, t)
))

=
∫ m∑

i=1

ε∂i A�(εx)�(
φ̄

j
ε(x, t)∂iφ

j
ε(x, t)

)
dx −

∫ m∑
i=1

εAi(εx)∂i A�(εx)
∣∣φ j

ε(x, t)
∣∣2

dx (3.5)

for any � = 1, . . . , N . Then (3.3)–(3.5) yield∫
∂(qA

ε )�

∂t
(x, t)dx =

m∑
i, j=1

∫
ε
(
∂� Ai(εx) − ∂i A�(εx)

)�(
φ̄

j
ε∂iφ

j
ε

)
dx

+
m∑

i, j=1

∫
εAi(εx)

(
∂� Ai(εx) − ∂i A�(εx)

)∣∣φ j
ε

∣∣2
dx

−
m∑

j=1

∫
ε∂�V (εx)

∣∣φ j
ε

∣∣2
dx −

m∑
j=1

β j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

−
m∑

i=1, i �= j

ωi j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

= −
∫ (

qA
ε (x, t) × εB(εx)

)
�

dx −
∫

ε∂�V (εx)
∣∣φε

∣∣2
dx

−
m∑

j=1

β j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

−
m∑

i=1, i �= j

ωi j

∫ ∫
ε∂�Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

for any � = 1, . . . , N , so that (3.2) is proved. �
Remark 3.2. Taking into account the definition of qA

ε , by (3.1) easily follows

∂|φε|2
∂t

(x, t) = −divx qA
ε (x, t), x ∈ R

N , t ∈ R
+,

which is consistent with the conservation’s laws for the nonlinear Schrödinger equation.

We now give some estimates on the momentum p A
ε and the total magnetic momentum qA

ε related to problem (P ).

Lemma 3.3. Let φε be the solution of problem (P ) corresponding to the initial datum (I) and let (xε(t), ξε(t)) be the global solution
to (D). Then, in the notational framework of Theorem 2.7, there exist ε0 > 0 and C > 0 such that∥∥∣∣φ j

ε(x, t)
∣∣2

dx − m jδyε(t)
∥∥

C2∗ + ∥∥qA(εxε(t))
ε (x, t)dx − Mξε(t)δyε(t)

∥∥
C2∗ � CΩε(t) + O

(
ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0) and for all j = 1, . . . ,m, where T ∗

ε is given in (2.11).

Proof. For any v ∈ H1(RN ), we have the formula |∇|v||2 = |∇v|2 − |�(v̄∇v)|2
|v|2 . Then, by virtue of Lemma 2.6, it follows that

0 � E
(|ψε|

) − E (r) + 1

2

m∑
j=1

∫ |�(ψ̄
j
ε∇ψ

j
ε )|2

|ψ j
ε |2

dx � CΩε(t) + O
(
ε2),

for all t ∈ R
+ and ε > 0. Moreover, since ‖|ψ j

ε |‖L2 = ‖r j‖L2 for all j = 1, . . . ,m and E (|ψε|) � E (r) by means of (1.6), we
have ∫ |�(ψ̄

j
ε∇ψ

j
ε )|2

|ψ j
ε |2

dx � CΩε(t) + O
(
ε2), (3.6)

for every t ∈ R
+ and ε > 0 and for all j = 1, . . . ,m. Following the blueprint of [25, Lemma 6.1], we get the assertion (see

also [21]). �
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Lemma 3.3 allows us to prove the following result on the distance between the point yε(t) found out in Theorem 2.7
and the trajectory xε(t). For the proof, follow the blueprint of [25, Lemma 6.3].

Lemma 3.4. In the notational framework of Theorem 2.7 there exist ε0 > 0 and T0 > 0 (cf. the definition of T ∗
ε = T ∗

ε (T0)) such that

‖δxε(t) − δyε(t)‖C2∗ � C
∣∣εxε(t) − εyε(t)

∣∣ � CΩε(t) + O
(
ε2),

for all ε ∈ (0, ε0), t ∈ [0, T ∗
ε ), where T ∗

ε defined as in (2.11).

Next, we state a strengthened version of Lemma 3.3, obtained thanks to Lemma 3.4. Follow the blueprint of [25, Lem-
ma 6.4] for a proof.

Lemma 3.5. Let T0 be as in Lemma 3.4. Let φε be the family of solutions to problem (P ) with initial datum (I) and let (xε(t), ξε(t)) be
the global solution of (D). Then there exist ε0 > 0 and C > 0 such that∥∥∣∣φ j

ε(x, t)
∣∣2

dx − m jδxε(t)
∥∥

C2∗ + ∥∥qA
ε (x, t)dx − Mξε(t)δxε(t)

∥∥
C2∗ � CΩε(t) + O

(
ε2),

for all ε ∈ (0, ε0), t ∈ [0, T ∗
ε ).

In particular, by the definition of Ωε , there exists δ > 0 with∥∥∣∣φ j
ε(x, t)

∣∣2
dx − m jδxε(t)

∥∥
C2∗ + ∥∥qA

ε (x, t)dx − Mξε(t)δxε(t)
∥∥

C2∗ � CΩ̂ε(t) + O
(
ε2), (3.7)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ), provided that ‖A‖C2 < δ.

Remark 3.6. In Lemma 3.5, while the C2∗-norm control holds on Π
j
ε = |φ j

ε(x, t)|2 dx − m jδxε(t) for each j = 1, . . . ,m, the
control on the momentum holds for the total magnetic momentum qA

ε (x, t). This is in fact natural, since looking at the
second identity in Proposition 3.1, it is clear that it cannot hold for each individual (p A

ε ) j , unless some other (disturbing)
integral terms are added to the formula.

4. Uniform estimation of Ωε

Before proving the main result we give an estimate showing that the quantity Ωε(t) can be made small at the order
O(ε2), uniformly on finite time intervals, as ε goes to zero.

Lemma 4.1. Let T0 be as in Lemma 3.4 and ε0 , δ as in Lemma 3.5. Then there exists C > 0 such that Ω̂ε(t) � Cε2 , for all ε ∈ (0, ε0)

and t ∈ [0, T ∗
ε ).

In addition, if we assume that ‖A‖C2 < δ for δ > 0 sufficiently enough, then Ωε(t) � Cε2 , for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ).

Proof. By the definition of Π1
ε , Lemma 3.5, Proposition 3.1 and system (D), we obtain∣∣∣∣

∫
d

dt
Π1

ε (x, t)dx

∣∣∣∣ =
∣∣∣∣
∫

∂qA
ε

∂t
(x, t)dx − M ξ̇ε(t)

∣∣∣∣
=

∣∣∣∣
∫

qA
ε (x, t) × εB(εx)dx +

∫
ε∇V (εx)

∣∣φε(x, t)
∣∣2

dx

+
m∑

j=1

β j

∫ ∫
ε∇Φ

(
ε(x − y)

)∣∣φ j
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

+
m∑

i, j=1, i �= j

ωi j

∫ ∫
ε∇Φ

(
ε(x − y)

)∣∣φi
ε(y)

∣∣2∣∣φ j
ε(x)

∣∣2
dx dy

− Mε∇V
(
εxε(t)

) − Mεξε(t) × B
(
εxε(t)

)∣∣∣∣.
If m > 1, we do not have to manage the nonlocal terms, since Φ ≡ 0. If instead m = 1, recalling that ∇Φ(0) = 0, by
Lemma 3.5 and arguing as at the end of the proof of Lemma 2.6, we get∣∣∣∣

∫ ∫
ε∇Φ

(
ε(x − y)

)∣∣φ1
ε (y)

∣∣2∣∣φ1
ε (x)

∣∣2
dx dy

∣∣∣∣ � ε
[
CΩ̂ε(t) + O

(
ε2)], (4.1)

for some positive constant C , for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). In turn, it holds



R. Servadei, M. Squassina / J. Math. Anal. Appl. 365 (2010) 776–796 793
∣∣∣∣
∫

d

dt
Π1

ε (x, t)dx

∣∣∣∣ �
∣∣∣∣
∫

qA
ε (x, t) × εB(εx)dx +

∫
ε∇V (εx)

∣∣φε(x, t)
∣∣2

dx

−
∫

Mε∇V (εx)δxε(t) dx −
∫

Mεξε(t) × B(εx)δxε(t) dx

∣∣∣∣ + ε
[
CΩ̂ε(t) + O

(
ε2)]

� ε

∣∣∣∣
∫ (

qA
ε (x, t) − Mξε(t)δxε(t)

) × B(εx)dx

∣∣∣∣
+ ε

∣∣∣∣
∫

∇V (εx)
(∣∣φε(x, t)

∣∣2 − Mδxε(t)
)

dx

∣∣∣∣ + ε
[
CΩ̂ε(t) + O

(
ε2)]

� Cε
∥∥qA

ε (x, t)dx − Mξε(t)δxε(t)
∥∥

C2∗ + Cε
∥∥∣∣φε(x, t)

∣∣2
dx − Mδxε(t)

∥∥
C2∗ + ε

[
CΩ̂ε(t) + O

(
ε2)]

� ε
[
CΩ̂ε(t) + O

(
ε2)], (4.2)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Hence, recalling that Ωε(0) = O(ε2) as ε goes to zero,

∣∣∣∣
∫

Π1
ε (x, t)dx

∣∣∣∣ �
∣∣∣∣
∫

Π1
ε (x,0)dx

∣∣∣∣ +
t∫

0

∣∣∣∣
∫

d

dt
Π1

ε (x, τ )dx

∣∣∣∣dτ � Cε2(1 + εt) + Cε

t∫
0

Ω̂ε(τ )dτ , (4.3)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Now, let ϕ ∈ C3(RN ) such that ‖ϕ‖C3 � 1. Again in light of Proposition 3.1 and Lemma 3.5,

we have∣∣∣∣
∫

d

dt
Π2

ε (x, t)ϕ(x)dx

∣∣∣∣ =
∣∣∣∣
∫

ϕ(εx)
∂

∂t

∣∣φε(x, t)
∣∣2

dx − Mε∇ϕ
(
εxε(t)

) · ξε(t)
∣∣∣∣

=
∣∣∣∣−

∫
ϕ(εx)divx qA

ε (x, t)dx − Mε∇ϕ
(
εxε(t)

) · ξε(t)
∣∣∣∣

=
∣∣∣∣
∫

ε∇ϕ(εx) · qA
ε (x, t)dx −

∫
Mε∇ϕ(εx) · ξε(t)δxε(t) dx

∣∣∣∣
=

∣∣∣∣
∫

ε∇ϕ(εx) · (qA
ε (x, t) − Mξε(t)δxε(t)

)
dx

∣∣∣∣
� Cε

∥∥qA
ε (x, t)dx − Mξε(t)δxε(t)

∥∥
C2∗ � ε

[
CΩ̂ε(t) + O

(
ε2)], (4.4)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Thus, arguing as above, we get

sup
‖ϕ‖C3 �1

∣∣∣∣
∫

Π2
ε (x, t)ϕ(x)dx

∣∣∣∣ � Cε2(1 + εt) + Cε

t∫
0

Ω̂ε(τ )dτ , (4.5)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Finally, again via Proposition 3.1 and Lemma 3.5, we have

∣∣γ̇ε(t)
∣∣ =

∣∣∣∣Mεξε(t) +
∫

εxχ(εx)divx qA
ε (x, t)dx

∣∣∣∣
=

∣∣∣∣Mεξε(t) −
∫

∇(
εxχ(εx)

) · qA
ε (x, t)dx

∣∣∣∣
= ε

∣∣∣∣
∫

∇(
xχ(εx)

)
Mξε(t)δxε(t) dx −

∫
∇(

xχ(εx)
) · qA

ε (x, t)dx

∣∣∣∣
� εC

∥∥qA
ε (x, t)dx − Mξε(t)δxε(t)

∥∥
C2∗ � ε

[
CΩ̂ε(t) + O

(
ε2)], (4.6)

which implies

∣∣γε(t)
∣∣ � Cε2(1 + εt) + Cε

t∫
0

Ω̂ε(τ )dτ , (4.7)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Collecting the above inequalities, recalling the definition of Ω̂ε(t) and taking into account

that, for t < T ∗
ε , by the definition of T ∗

ε it holds εt < εT ∗
ε � T0, we get

Ω̂ε(t) � Cε2(1 + εt) + Cε

t∫
Ω̂ε(τ )dτ � Cε2 + Cε

t∫
Ω̂ε(τ )dτ
0 0
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for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Hence, Gronwall Lemma yields

Ω̂ε(t) � Cε2eεt � Cε2,

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ), which gives the assertion. Finally, concerning the last assertion of the lemma, recalling

again Lemma 3.5 and taking into account the definition of ρ A
ε (t), if ‖A‖C2 < δ for δ > 0 small enough, we conclude the

proof. �
5. Proof of Theorem 1.4 completed

5.1. First conclusion of Theorem 1.4

Let T0 be as in Lemma 3.4 and ε0, δ as in Lemma 3.5. By Lemma 4.1 and the definition (2.11) it follows that T ∗
ε = T0/ε,

for all ε ∈ (0, ε0). Hence, Ωε(t) � Cε2 for all ε ∈ (0, ε0) and t ∈ [0, T0/ε], in light of Lemma 4.1. Moreover, by Theorem 2.7
there exist functions θ1

ε , . . . , θm
ε : R

+ → [0,2π) and yε : R
+ → R

N such that

φ
j
ε(x, t) = ei(ξε(t)·x+θ

j
ε (t)+A(εxε(t))·(x−xε(t)))r j

(
x − yε(t)

) + ω
j
ε(t),

where ‖ω j
ε(t)‖Hε � C

√
Ωε(t)+ O(ε), and hence, we have ‖ω j

ε(t)‖Hε � O(ε), for all ε ∈ (0, ε0), t ∈ [0, T0/ε] and j = 1, . . . ,m.
Lemmas 3.4 and 4.1 also yield |xε(t) − yε(t)| � O(ε), for all ε ∈ (0, ε0) and t ∈ [0, T0/ε]. Finally, using (A), (V) and (1.5), we
get ∥∥ei(ξε(t)·x+θ

j
ε (t)+A(εxε(t))·(x−xε(t)))

(
r j

(
x − yε(t)

) − r j
(
x − xε(t)

))∥∥2
H1

�
∫ ∣∣ξε(t) + A

(
εxε(t)

)∣∣2∣∣r j
(
x − yε(t)

) − r j
(
x − xε(t)

)∣∣2
dx +

∫ ∣∣∇r j
(
x − yε(t)

) − ∇r j
(
x − xε(t)

)∣∣2
dx

+
∫ ∣∣r j

(
x − yε(t)

) − r j
(
x − xε(t)

)∣∣2
dx � C

∣∣xε(t) − yε(t)
∣∣2 � C O

(
ε2), (5.1)

for all ε ∈ (0, ε0), t ∈ [0, T0/ε]. Therefore, it follows that∥∥φ
j
ε(x, t) − ei(ξε(t)·x+θ

j
ε (t)+A(εxε(t))·(x−xε(t)))r j

(
x − xε(t)

)∥∥2
H1 � O

(
ε2), (5.2)

for all ε ∈ (0, ε0), t ∈ [0, T0/ε] and j = 1, . . . ,m. Hence, Theorem 1.4 holds true in [0, T0/ε]. Now, let us take xε
1 = xε(T0/ε)

and ξ1 = ξε(T0/ε) as new initial datum in system (D) and the functions

φ
j
1(x) = r j

(
x − xε

1

)
ei[A(εxε

1)·(x−xε
1)+x·ξε

1 ], x ∈ R
N , j = 1, . . . ,m,

as new initial datum for problem (P ). Arguing as above, we can show that Theorem 1.4 holds true in [T0/ε,2T0/ε] and
so, in any finite time interval [0, T /ε], with T > 0. The proof of Theorem 1.4 is now complete under the assumption that
‖A‖C2 < δ.

5.2. Second conclusion of Theorem 1.4

To prove the second part of Theorem 1.4, namely formula (1.9), we follow the argument of [23] (which is based upon
the original paper by Bronski and Jerrard [4]). Let us give a brief sketch of the proof. Based upon the identity (see for
instance [23, p. 2571]) holding for all v ∈ H1(RN )∣∣∣∣∇v

i
− A(εx)v

∣∣∣∣
2

= |p A(εx)(v)|2
|v|2 + ∣∣∇|v|∣∣2

, p A(v) := �(
v̄
(∇v(x, t) − iA(εx)v(x, t)

))
,

the energy functional of the Schrödinger problem is rewritten as

Eε(t) = Epot
ε (t) + Eb

ε(t) + Ek
ε(t) + Enl

ε (t),

where we have set

Epot
ε (t) :=

∫
V (εx)

∣∣φε(x, t)
∣∣2

dx,

Eb
ε(t) := 1

2

m∑
j=1

∫ ∣∣∇∣∣φ j
ε

∣∣(x, t)
∣∣2 − 1

p + 1

m∑
j=1

α j

∫ ∣∣φ j
ε(x, t)

∣∣2p+2
dx

− 1

p + 1

m∑
γi j

∫ ∣∣φi
ε(x, t)

∣∣p+1∣∣φ j
ε(x, t)

∣∣p+1
dx,
i, j, i �= j
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Ek
ε(t) := 1

2

m∑
j=1

∫ |(p A(εx)(x, t)) j |2
|φ j

ε(x, t)|2
dx,

Enl
ε (t) := −1

2

m∑
j=1

β j

∫ ∫
Φ

(
ε(x − y)

)∣∣φ j
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy

− 1

2

m∑
i, j, i �= j

ωi j

∫ ∫
Φ

(
ε(x − y)

)∣∣φi
ε(x, t)

∣∣2∣∣φ j
ε(y, t)

∣∣2
dx dy.

Notice that, with respect to our notations, we have Eb
ε(r1, . . . , rm) = E (r1, . . . , rm) since ri are real valued and positive func-

tions. Moreover Eb
ε(|ψ1

ε |, . . . , |ψm
ε |) = Eb

ε(|φ1
ε |, . . . , |φm

ε |) = E (|φ1
ε |, . . . , |φm

ε |). At this stage, keeping in mind that we possess
Lemma 2.3, which expands the energy Eε(t) up to an error O(ε2), by repeating the steps of the proof of [23, Lemma 3.5],
it is readily seen that, as ε goes to zero,

0 � Eb
ε

(∣∣φ1
ε

∣∣, . . . , ∣∣φm
ε

∣∣) − Eb
ε(r1, . . . , rm) � CΩ̂ε(t) + O

(
ε2).

This conclusion plays the role of Lemma 2.6 and, as a consequence, by the non-degeneracy/energy convexity property
(applied with U = (|φ1

ε |, . . . , |φm
ε |), see e.g. [4, Proposition 1] for the scalar case), yields∥∥(∣∣φ1

ε

∣∣, . . . , ∣∣φm
ε

∣∣) − (
r1

(· + yε(t)
)
, . . . , rm

(· + yε(t)
))∥∥2

H1 � CΩ̂ε(t) + O
(
ε2), (5.3)

for some yε(t) ∈ R
N .

Moreover, again by the steps of the proof of [23, Lemma 3.5], we get

0 � Ek
ε(t) − 1

2

m∑
j=1

| ∫ (p A(εx)(x, t)) j |2
m j

� CΩ̂ε(t) + O
(
ε2), (5.4)

as ε goes to zero. To achieve this conclusion, one also needs to take into account the following elementary inequality
(following from the standard Cauchy–Schwarz inequality)∣∣∣∣

∫
qA
ε (x, t)dx

∣∣∣∣
2

� M
m∑

j=1

| ∫ (p A(εx)(x, t)) j dx|2
m j

, t ∈ R
+.

Furthermore, for any j = 1, . . . ,m we have the inequality (see [23, inequality below formula (28)]; see also [4, formula (3.2)])

1

2

∫ ∣∣∣∣ (p A(εx)(x, t)) j

|φ j
ε(x)|

− (
∫
(p A(εx)(x, t)) j)

m j

∣∣φ j
ε(x)

∣∣∣∣∣∣
2

dx � 1

2

∫ |(p A(εx)(x, t)) j |2
|φ j

ε(x)|2
dx − 1

2

| ∫ (p A(εx)(x, t)) j |2
m j

.

Summing over j = 1, . . . ,m, we get

1

2

m∑
j=1

∫ ∣∣∣∣ (p A(εx)(x, t)) j

|φ j
ε(x)|

− (
∫
(p A(εx)(x, t)) j)

m j

∣∣φ j
ε(x)

∣∣∣∣∣∣
2

dx � Ek
ε(t) − 1

2

m∑
j=1

| ∫ (p A(εx)(x, t)) j |2
m j

.

In turn, in light of (5.4), we obtain∫ ∣∣∣∣ (p A(εx)(x, t)) j

|φ j
ε(x)|

− (
∫
(p A(εx)(x, t)) j)

m j

∣∣φ j
ε(x)

∣∣∣∣∣∣
2

dx � CΩ̂ε(t) + O
(
ε2), (5.5)

as ε goes to zero, for any j = 1, . . . ,m. Inequalities (5.3) and (5.5) are precisely what is needed in order to prove (3.7)
of Lemma 3.5 (see the proof of Lemma 6.1 in [25], in particular formula (6.5) therein; see also the proof of Lemma 4.3
in [21]). Once inequality (3.7) of Lemma 3.5 holds true the rest of the proof continues as before, yielding the assertion from
inequality (5.3).
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