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Many extensions of the Standard Model involve two Higgs doublet fields to break the electroweak
symmetry, leading to the existence of three neutral and two charged Higgs particles. In particular, this is
the case of the Minimal Supersymmetric extension of the Standard Model, the MSSM. A very important
parameter is tanβ defined as the ratio of the vacuum expectation value of the two Higgs doublets. In
this Letter we focus on the left–right asymmetry in the production of polarised top quarks in association
with charged Higgs bosons at the LHC. This quantity allows for a theoretically clean determination of
tan β . In the MSSM, the asymmetry remains sensitive to the strong and electroweak radiative corrections
and, thus, to the superparticle spectrum. Some possible implications of these results are discussed.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Widely studied extensions of the Standard Model (SM) are the
two-Higgs doublet model (2HDM) in which two SU(2) doublets
of complex scalar fields are introduced to break the electroweak
symmetry [1]. In particular the Higgs sector of the Minimal Super-
symmetric extension of the Standard Model (MSSM) [2] is a type
II 2HDM. These models lead to the existence of five scalar parti-
cles, two CP-even bosons (h, H) a CP-odd one (A) and two charged
particles (H±). The Higgs sector of a 2HDM model is described by
six parameters. They can be chosen to be the four masses of the
Higgs particles, the mixing angle α in the CP-even Higgs sector
and the ratio tanβ of the vacuum expectation values of the two
Higgs doublets. In the MSSM these parameters are no longer in-
dependent. The two parameters describing the Higgs sector of the
MSSM may be taken to be the charged Higgs mass MH± and tanβ .
The precise determination of these parameters is of great impor-
tance to identify the underlying model and to determine its basic
features.
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Once the Higgs bosons have been produced, their mass can
be measured looking at the kinematical distributions of the de-
cays products [3]. In the MSSM the parameter tanβ can be de-
termined looking at the total cross section of processes involving
Higgs bosons. For instance in the MSSM the total cross sections
pp(p̄) → H, A are proportional to tan2 β [4]. A measurement of
the relevant production cross sections at the LHC allows for a de-
termination of tan β [5] with an uncertainty of the order of 30%.

Another interesting process is the production of the charged
Higgs boson in association with a top quark in bottom-gluon fu-
sion at hadron colliders [6–10]

bg → t H−, b̄g → t̄ H+, (1)

in which the bottom quark is directly taken from the proton in
a five flavour scheme. The cross section of this process is pro-
portional to the square of the Yukawa coupling gH±tb . In type II
2HDMs gH±tb reads as follows [1],

gH±tb = g√
2MW

Vtb
{

H+t̄[mb tanβ P R + mt cotβ P L]b + h.c.
}
, (2)

where g = e/sW is the SU(2) coupling and P L/R = (1 ∓ γ5)/2 are
the chiral projectors. The Cabibbo–Kobayashi–Maskawa matrix el-
ement Vtb can be set, to a good approximation, to unity [11].
At tree-level the total production cross sections of the processes
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in Eq. (1) are equal and proportional to (m2
t cot2 β + m2

b tan2 β).
They are significant both in the tan β � 1 and in the tanβ � 1
regions.1 In type I 2HDMs, all fermions couple to only one Higgs
field. The gH±tb coupling has to be modified performing the sub-
stitution mb tan β → mb cot β in Eq. (2). The sum of the total cross
section of the two processes in Eq. (1) is proportional to cot2 β and
is enhanced for small tanβ values only.2

Besides the experimental uncertainties, the cross section mea-
surement is plagued with various theoretical uncertainties [12].
The most important uncertainties are related to the dependence
of the observables on the renormalisation and factorisation scales,
as well as the dependence on the choice of the parton distribu-
tion functions (PDFs), and the related errors on the strong coupling
constant αs . These theoretical uncertainties can be of the order of
20–30% [5] and are a major source of errors in the determination
of tanβ directly from the Higgs production cross section.

In this Letter, we propose an alternative way to measure the pa-
rameter tan β which is free of these theoretical uncertainties. The
method uses the left–right asymmetry constructed from the longi-
tudinal polarisation of the top quarks produced in association with
the charged Higgs bosons, the latter decaying via the clean and
detectable H± → τ±ν decay channel. The polarisation asymmetry
At

LR is defined as the difference of cross sections for the produc-
tion of left-handed and right-handed top quarks divided by their
sum3

At
LR ≡ σL − σR

σL + σR
, (3)

where σL/R is the total hadronic cross section of the process of
tL/R H− associated production. The asymmetry is a ratio of ob-
servables of similar nature. Compared to the cross section, the
asymmetry is thus significantly less affected by the scale and PDF
uncertainties. One is then mainly left only with the experimental
uncertainties in the determination of the cross sections and with
the measurement of the polarisation of the top quarks.4 In the
MSSM, the asymmetry will nevertheless remain sensitive to the
electroweak and strong radiative corrections from supersymmetric
particles which also strongly affect the cross sections at high tanβ

values [7,15,16].
The polarisation asymmetry in t H− associated production has

been discussed in Ref. [17], following an original study of the
asymmetry in the case of associated top-charged slepton produc-
tion in the MSSM [18]. A detailed analysis of the top polarisation in
bg → t H− production has also been given in Ref. [10] which pro-
vides material that partly overlaps with the one presented here.

In the next section, we discuss this asymmetry in the Born
approximation and exhibit its dependence on tan β . In Section 3,
we show that it is essentially independent of the scale and PDF
choices but remains dependent on the important SUSY radiative
corrections that occur in the MSSM. A brief conclusion is given in
Section 4.

2. The At
LR asymmetry at tree-level

The starting point is the partonic process

1 The total cross section exhibits a minimum at tan β = √
mt/mb ≈ 7.

2 In the MSSM the lower bound of the mass of h requires that tanβ � 2–3 [2,
11]. In a general 2HDM tan β is less constrained. The region 0.2 � tanβ � 50 is not
ruled out and preserves the perturbativity of the Higgs Yukawa coupling (2).

3 This asymmetry shares common interesting features with the long celebrated
ALR asymmetry for fermion pair production in longitudinally polarised electron–
positron annihilation on the Z pole [13].

4 We will not address here the issue of the experimental determination of the top
quark polarisation from analyses of kinematical distributions of its decay products.
For a detailed discussion, see for instance Ref. [14].
b(pb, λb)g(pg, λg) → t(pt, λt)H−(pH ). (4)

The momentum (helicity) of the particle i is denoted by pi (λi). In
the Born approximation the process is mediated by two Feynman
diagrams, one with s-channel bottom quark exchange and another
with u-channel top quark exchange. In the case of type II 2HDM
couplings the helicity amplitude Fλbλgλt reads as follows [9]

Fλbλgλt = ggsλ
l√x+

2MW

{
δλbλg√

ŝ

[
λ(1 − rt)sθ/2δλbλt

+ 1 + rt

2
cθ/2δλb−λt

]

+ mtδλbλg

û − m2
t

[
(1 + rt)sθ/2λδλbλt + 1 − rt

2
cθ/2δλb−λt

]

+ (1 − rt)sθ/2λδλbλt

û − m2
t

[−p(1 + cθ )δλb−λg + dtδλbλg

]

+ (1 + rt)cθ/2δλb−λt

2(û − m2
t )

[
p(1 − cθ )δλb−λg + dtδλbλg

]}

× [mt cot βδλt L + mb tanβδλt R ]. (5)

The partonic Mandelstam variables are defined as ŝ = (pb + pg)
2

and û = (pb − pH )2. The angle θ is the azimuthal angle in the
center-of-mass frame, while gs is the strong coupling constant. The
abbreviations dt , rt , x± and λ read as follows

dt =
√

ŝ − Et + p cos θ, rt =
√

x−
x+

,

x± = (√
ŝ ± mt

)2 − M2
H± ,

λ =
√(

1 − (xt + xh)
2
)(

1 − (xt − xh)
2
)
, (6)

while p ≡ |pt |, cα ≡ cosα, and sα ≡ sinα. The partonic cross sec-
tions for L/R polarised top quarks in the final state is

σ̂L/R = p

384π ŝ3/2

+1∫
−1

d cos θ
∑
λb,λg

|Fλbλg L/R |2. (7)

The integration over the angle θ leads to

σ̂L = G F αs

24
√

2ŝλ

{
λ

[
m2

t cot2 β

(
7

2
λx2

ht

+ 2x2
ht + 2

(
1 − x2

ht

)2 + 3

2
(λ − 1)λ

)

− m2
b tan2 β

(
−7

2
λx2

ht + 2x2
ht + 2

(
1 − x2

ht

)2 + 3

2
λ(λ + 1)

)]

+ Λ
[
m2

t cot2 β
((

x2
ht + 2λ

)(
1 − x2

ht

)2

+ (λ + 1)
(
x2

ht(λ + 1) − 1
))

+ m2
b tan2 β

((
2λ − x2

ht

)(
1 − x2

ht

)2

+ (
(λ − 1)x2

ht + 1
)
(1 − λ)

)]}
,

σ̂R = G F αs

24
√

2ŝλ

{
λ

[
m2

b tan2 β

(
7

2
λx2

ht + 2x2
ht

+ 2
(
1 − x2

ht

)2 + 3

2
(λ − 1)λ

)

− m2
t cot2 β

(
−7

2
λx2

ht + 2x2
ht + 2

(
1 − x2

ht

)2 + 3

2
λ(λ + 1)

)]

+ Λ
[
m2 tan2 β

((
x2 + 2λ

)(
1 − x2 )2
b ht ht
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Fig. 1. The cross sections σL and σR (left) and the asymmetry ALR (right) at leading order in type II 2HDMs as a function of tan β in two benchmark scenarios with
MH± = 230 and 412 GeV.
+ (λ + 1)
(
x2

ht(λ + 1) − 1
))

+ m2
t cot2 β

((
2λ − x2

ht

)(
1 − x2

ht

)2

+ (
(λ − 1)x2

ht + 1
)
(1 − λ)

)]}
, (8)

where xi = mi/
√

ŝ and x2
ht = x2

h − x2
t and Λ is defined as

Λ = log

(
1 − x2

ht + λ

1 − x2
ht − λ

)
. (9)

The total partonic cross section is then simply the sum of the cross
sections σ̂L and σ̂R

σ̂tot = G F αs

24
√

2ŝ

(
m2

t cot2 β + m2
b tan2 β

)

× {
2
[
1 − 2x2

ht

(
1 − x2

ht

)]
Λ − (

3 − 7x2
ht

)
λ
}
. (10)

As usual, these partonic cross sections have to be folded with the
bottom-quark and gluon densities to obtain the hadronic ones σL ,
σR , and σtot. The expressions in the type I 2HDM can be obtained
performing the substitution mb tan β → mb cotβ .

In Fig. 1 we display the left- and right-handed cross sections
σL and σR as well as the asymmetry At

LR at the LHC as a function
of tanβ . We choose two values of MH± , MH± = 230 and 412 GeV
corresponding to the two 2HDMs scenarios of type II proposed in
Refs. [15] (LS2) and [19] (SPS1a) respectively. The hadronic center-
of-mass energy is fixed to

√
s = 7 TeV, and we adopt the CTEQ6L1

leading order PDFs [20] with αs(M2
Z ) = 0.130. The factorisation

scale μF has been set to the value μ0 = (MH± + mt)/6 which
minimises the higher order QCD corrections [7]. For the H−tb cou-
pling, we use the on-shell top mass value mt = 173.1 GeV and the
MS mass of the bottom quark evaluated at a scale of μ = μF ; in
the SUSY scenario analysed in this Letter mb(μF ) ranges from 2.95
GeV to 3.10 GeV for all the values of μF considered.

As can bee seen σL and σR have the same order of magni-
tude: they are large at small tan β values, when the component
mt cot β of the H−tb coupling is significant, as well as at large
tan β value when the mb tan β component of the coupling is en-
hanced. The cross sections are equal and minimal at the value
tan β = √

mt/mb 	 7 for which the H−tb coupling is the small-
est. Therefore in type II 2HDM At

LR is maximal at low tanβ values
when the associated top quark is mostly left-handed and minimal
at large tan β values when the top quarks are right-handed. For a
given value of the charged Higgs mass, the modulus of At

LR is the
same in the tanβ � 1 and in the tan β � 1 region. In the scenarios
under consideration |At
LR| = 0.31 (0.21) for MH± = 230 (412) GeV.

The two tan β regions differ for the sign of the asymmetry. There-
fore the sign of At

LR differentiates between the low and large tan β

scenarios. In the intermediate tan β region, tanβ 	 7 for which
σL 	 σR , the asymmetry goes through zero.

In a type I 2HDM, the left- and right-components of the Yukawa
coupling gH±tb are both proportional to cot β , and there is no tanβ

dependence in At
LR . The asymmetry is thus constant and is simply

given by the At
LR value in the corresponding type II model eval-

uated at tanβ = 1. For type I 2HDM characterised by MH± = 230
(412) GeV the value of At

LR can be read off Fig. 1, At
LR = 0.31 (0.21).

Combining this value with the value of σtot ∝ cot2 β , the predic-
tions of 2HDMs of type I and II can eventually be discriminated.

Note that while σL , σR and thus σtot strongly depend on the
hadronic center-of-mass energy, the energy dependence of At

LR is
mild. The asymmetry is comparable for

√
s = 7 and 14 TeV. For

instance at
√

s = 14 TeV in the type I model one obtains At
LR =

0.27 (0.18) for MH± = 230 (412) GeV.

3. Scale and PDF dependence and impact of the NLO corrections

In this Letter, the asymmetry At
LR has been evaluated at tree-

level. The yet uncalculated higher order QCD contributions on this
observable can be estimated from its dependence on the factorisa-
tion scale μF at which the process is evaluated. Starting from our
reference scale μ0 we vary μF within the range μ0/κ � μF � κμ0
with the constant factor chosen to be κ = 2,3 or 4. The left panel
of Fig. 2 shows the variation of the polarisation asymmetry for the
choices κ = 2,3 and 4. The insert shows the scale variation rel-
ative to the asymmetry value when the central scale is adopted.
As one can see the scale dependence is very mild. In the low and
in the high tan β region, it is at most at the level of 2%, even for
κ = 4. At moderate values of tan β , tanβ 	 7, the relative varia-
tion is much larger since the asymmetry vanishes. However the
absolute impact of the scale variation is comparable to the one ob-
tained for low and high tanβ values, and thus small in absolute
terms. It is worth to notice that the NLO QCD total cross section
σtot exhibits a bigger residual scale uncertainty estimated to be of
the order of 10–20% at the LHC with

√
s = 7 TeV [21].

Another source of uncertainty stems from the presently not sat-
isfactory determination of the gluon and bottom quark PDFs. We
estimate this type of uncertainty evaluating the asymmetry with
several PDF parameterisations. In the right panel of Fig. 2 we show
the dependence of the asymmetry on tan β when the CTEQ, the
MSTW [22], and the ABKM [23] PDF sets are used. We consider
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Fig. 2. The scale variation (left) and the PDF dependence (right) of the asymmetry At
LR at leading order at the LHC with

√
s = 7 TeV as a function of tanβ . We consider the

type II 2HDM characterised by MH± = 230 GeV. In the inserts, shown are the variations with respect to the central value.

Fig. 3. The total production cross section (left) and the asymmetry At
LR (right) at leading order and including the NLO SUSY corrections at the LHC with

√
s = 14 TeV. We

consider the MSSM scenario of Ref. [15] characterised by a heavy sparticle spectrum and MH± = 270 GeV. tanβ is varied from 5 to 40.
the type II 2HDM characterised by MH± = 230 GeV. As usual the
asymmetry has been computed at the LHC with

√
s = 7 TeV. In

the insert we show the relative deviation from the CTEQ central
prediction. As can be seen, the difference between the various pre-
dictions is rather small, less than few percents at low and high
tan β values. The peaks in the insert for tanβ 	 7 correspond to
the vanishing of At

LR . The effect of the PDF variation on the to-
tal cross section σtot is expected to be much larger. For instance
at NLO the PDF uncertainty is expected to be of the order of
10% [21].

A final remark has to be made on the radiative corrections
in supersymmetric scenarios. In the MSSM, the process (4) is af-
fected by radiative corrections involving the supersymmetric par-
ticles spectrum. The NLO QCD and electroweak corrections have
been discussed in Ref. [7] and in Ref. [15] respectively. Some of
these corrections are known to be large for high values of tan β

and some other parameters such as the higgsino mass parame-
ter μ. It turns out that the bulk of these radiative corrections can
be accounted for by modifying the Yukawa coupling (2) as de-
scribed in Ref. [16]. This modification is equivalent of using an
effective bottom-quark mass. The approximation is rather good for
the SUSY-QCD corrections (in particular when the SUSY spectrum
is rather heavy), and slightly worse in the case of the electroweak
ones.
In Fig. 3, we display the impact of these NLO SUSY radia-
tive corrections within the MSSM on both the total cross section
and the left–right asymmetry as a function of tanβ . The other
SUSY parameters are fixed according to the scenario presented
in Ref. [15], characterised by a heavy superparticle spectrum and
MH± = 270 GeV. The SUSY QCD corrections are included in the
approximation of Ref. [16], while the electroweak and the (very
small) QED corrections are computed exactly. In the tanβ range
considered the approximation for the SUSY QCD contributions is
expected to be valid.

As can be seen, the NLO corrections can be large in both the
cross section and the asymmetry. In the case of the latter ob-
servable the effect is of the order of 10% in the tan β � 15 re-
gion, where the asymmetry dependence on tanβ is almost flat.
Therefore the asymmetry is sensitive to the quantum contribu-
tions of the superparticle spectrum. A precise measurement of the
asymmetry could allow to probe these additional supersymmetric
corrections and, hence, could help to discriminate between super-
symmetric and non-supersymmetric 2HDM of type II.

4. Conclusion

In the process of t H− associated production at the LHC, the
left–right asymmetry, Eq. (3), obtained by identifying the polarisa-
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tion of the top quarks is rather stable against the scale and PDF
variation. It is still sensitive to quantum effects in new physics
scenarios such as Supersymmetry. If measured with some accu-
racy, the top quark polarisation asymmetry in this process allows
a very nice determination of the parameter tan β . The combined
measurement of the production cross section and the polarisation
asymmetry could discriminate between various new physics sce-
narios: two-Higgs doublet models of type I versus type II and the
MSSM versus non-supersymmetric models, at least for intermedi-
ate values of tan β . For tan β � 1 or tanβ � 1 the method allows
for the determination of the region of tan β but not for the exact
value of tanβ , since in this two regions At

LR has a plateau. Note
also that in the tanβ � 1 region the predictions for the asymme-
try in the THDM I and II coincide. This polarisation asymmetry is
thus worth investigating theoretically and experimentally in more
detail.
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