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SUMMARY

Suppression of innate immune responses during
filoviral infection contributes to disease severity.
Ebola (EBOV) and Marburg (MARV) viruses each
encode a VP35 protein that suppresses RIG-I-like re-
ceptor signaling and interferon-a/b (IFN-a/b) produc-
tion by several mechanisms, including direct binding
to double stranded RNA (dsRNA). Here, we demon-
strate that in cell culture, MARV infection results in a
greater upregulation of IFN responses as compared
to EBOV infection. This correlates with differences in
the efficiencies by which EBOV and MARV VP35s
antagonize RIG-I signaling. Furthermore, structural
and biochemical studies suggest that differential
recognition of RNA elements by the respective VP35
C-terminal IFN inhibitory domain (IID) rather than affin-
ity for RNA by the respective VP35s is critical for this
observation. Our studies reveal functional differences
in EBOV versusMARVVP35RNAbinding that result in
unexpecteddifferences in thehost response todeadly
viral pathogens.

INTRODUCTION

Zaire ebolavirus (EBOV) and Marburg marburgvirus (MARV) are

members of the Filoviridae family of negative sense single

strandedRNA (ssRNA) virusesandcausehighly lethal hemorrhag-

ic fever in humans (Bray and Murphy, 2007). The virulence of filo-

viruses is due in part to the potent inhibition of the innate immune

system (Basler and Amarasinghe, 2009; Messaoudi and Basler,

2015). Although both EBOV and MARV inhibit the production of

interferon (IFN)-a/b and the ability of cells to respond to IFNs, the

mechanisms of inhibition differ. For example, the EBOV VP24

protein inhibits IFN-induced Jak-STAT signaling by blocking kar-

yopherin alpha mediated nuclear accumulation of tyrosine phos-
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phorylated STAT1, whereas MARV VP40 prevents STAT protein

tyrosine phosphorylation (Mateo et al., 2010; Reid et al., 2006,

2007; Valmas and Basler, 2011; Valmas et al., 2010; Xu et al.,

2014).

EBOV VP35 (eVP35) and MARV VP35 (mVP35) also block IFN

production by binding double stranded (ds)RNAs through the

C-terminal IFN inhibitory domain (IID) and prevent retinoic-acid

inducible gene-I (RIG-I)-like receptor (RLR) activity (Albariño

et al., 2015; Cárdenas et al., 2006; Hartman et al., 2006; Leung

et al., 2010a; Prins et al., 2010; Ramanan et al., 2012; Yen

et al., 2014). Mutation of VP35 residues critical for dsRNA bind-

ing results in increased IFN-a/b responses, reduced viral replica-

tion, and attenuation of EBOV in animal models, demonstrating

the importance of VP35 as a virulence determinant (Hartman

et al., 2008; Prins et al., 2010). Despite functional and structural

similarities, comparison of the crystal structures of eVP35 and

mVP35 IIDs in complex with dsRNA suggests differences in

how eVP35 and mVP35 interact with dsRNA. Specifically,

eVP35 interacts with the phosphodiester backbone and caps

the ends of dsRNA (Kimberlin et al., 2010; Leung et al., 2010b),

preventing pattern associated molecular pattern (PAMP) recog-

nition by RIG-I. However, evidence for end-capping interactions

by mVP35 is lacking and mVP35 appears to interact with the

dsRNA backbone only (Ramanan et al., 2012). The biological

consequences of these differences are unclear.

Here, we compared antiviral responses to EBOV and MARV

infections in THP-1 cells and investigated the mechanistic basis

for the suppression of IFN-a/b responses by eVP35 and mVP35.

Our data reveal that MARV infections trigger a greater IFN

response than does EBOV, which correlates with a stronger inhi-

bition of RLR signaling by eVP35 compared tomVP35. This func-

tional difference can be mapped to VP35 IID and its capacity to

block PAMP recognition by RLRs. Our data, for the first time,

implicate the mode of interaction of viral VP35 with immunosti-

mulatory RNA as a determinant of early host IFN response to

filovirus infection. These observations also demonstrate that

complete suppression of IFN-a/b responses is not a prerequisite

for MARV to cause severe disease.
ors
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Figure 1. EBOV and MARV Show Differential Expression of IFN-Regulated Genes

(A–C) THP-1 cells were either mock-infected or infected with EBOV or MARV-Ang at an MOI of three.

(A) RNA from infected THP-1 cells was subjected to expression analysis by mRNA deep sequencing (mRNA-seq). The heatmap displays the expression profile of

IFN response genes at 6, 12, and 24 hpi. The expression levels have been normalized to account for varying library sizes. These have been scaled and centered,

with green indicating a larger number of transcripts and red indicating a fewer number of transcripts.

(B) Filoviral VP35 and NP mRNA expression levels represented in terms of transcript counts.

(C) Expression levels of 6 ISGs from EBOV and MARV-Ang infected cells were analyzed by qRT-PCR at 6, 12, and 24 hpi. The values were normalized to RPS11.

The y axis scale for CXCL10 and MX1 is log10. The y axis scale for IFIT2, IDO1, IFITM1, and BST2 is linear.
RESULTS

MARV and EBOV Show Differential Expression of
IFN-Regulated Genes
RNA sequencing was performed on mRNAs from THP-1 cells

infected with EBOV or the MARV Angola strain (MARV-Ang) at

an MOI of three. This demonstrated a substantial upregulation

of IFN-stimulated genes (ISGs) at 24 hr post-infection (hpi) by

MARV-Ang, but not EBOV (Figure 1A). MARV NP and VP35

mRNA levels were modestly lower than eVP35 mRNA levels at

the three time points assayed, suggesting slightly slower replica-
Cell R
tion for MARV (Figure 1B). The enhanced induction of ISGs in

MARV-infected versus EBOV-infected cells was confirmed by

performing quantitative (q)RT-PCR for six representative ISG

mRNAs (Figure 1C). To determine whether the induction of an

IFN response was specific to the MARV-Ang strain, the expres-

sion of the same six ISGs was assessed following new infections

of THP-1 cells with MARV-Ang, MARV Musoke (MARV-Mus), or

EBOV at an MOI of one (Figure S1). MARV-Ang and EBOV NP

mRNA levels were comparable, but MARV-Mus NPmRNA levels

were lower at 6 hpi (Figure S1A). By 24 hpi however, NP mRNA

levels were comparable among all three infections. qRT-PCR
eports 14, 1632–1640, February 23, 2016 ª2016 The Authors 1633



also confirmed the lack of ISG induction in EBOV-infected cells

in contrast to the upregulation of ISGs by MARV-Ang. MARV-

Mus also exhibited upregulation of several ISGs, although the

levels of induction were not as uniform or robust as for MARV-

Ang, including at 24 hpi when viral replication levels were com-

parable (Figure S1B). These data suggest that MARV infection

activates a greater IFN response than does EBOV, with some dif-

ferences observed between MARV strains.

mVP35 and eVP35 Inhibit Virus-Induced IFN-b
Production with Different Efficiencies
To determine whether the differences in IFN gene expression

might be attributable to VP35 RIG-I inhibitory activity, FLAG-

tagged eVP35, MARV-Mus (mVP35), or MARV-Ang (aVP35)

were evaluated for inhibition of IFN-b promoter activity induced

by Sendai virus (SeV) infection, a documented RIG-I activator

(Kato et al., 2006). Although all VP35 proteins tested inhibited

IFN-b promoter activity, eVP35 was a more potent inhibitor

compared tomVP35 or aVP35 at comparable protein expression

levels (Figure 2A). As both mVP35 and aVP35 inhibit SeV-

induced IFN-b reporter activity to statistically indistinguishable

degrees, mVP35 was used in subsequent studies.

We used an IFN bioassay to measure the release of endog-

enous IFN-a/b in cells expressing either eVP35 or mVP35,

where replication of an IFN-sensitive recombinant Newcastle

disease virus (NDV) that expresses GFP serves as a readout

for antiviral activity. Supernatant from empty vector-transfected

SeV-infected cells inhibited NDV-GFP infection, indicating the

presence of IFN. Supernatants from mVP35 expressing cells

also showed high levels of antiviral activity with a correspond-

ing decrease in NDV-GFP infection (Figure 2B), consistent with

the elevated expression levels of ISGs observed in cells in-

fected with MARV (Figure 1). In contrast, supernatant from

eVP35 expressing cells displayed reduced antiviral activity,

consistent with better suppression of IFN-a/b production by

eVP35.

To determine the efficiency by which eVP35 andmVP35 inhibit

different steps in the RLR signaling pathway, eVP35 and mVP35

were co-expressed with activators of the IFN-a/b response,

including a constitutively active form of RIG-I (RIG-IN), TBK1,

or IKKε. Inhibition of IFN induction by all these signaling proteins

was comparable between eVP35 and mVP35 (Figures S2A–

S2C). However, when full-length RIG-I was expressed in RIG-I

knockout cells infected with SeV, eVP35 was the more potent

inhibitor than mVP35 (Figure S2D), suggesting differential inhibi-

tion of the RIG-I pathway at a point upstream of activated RIG-I.

To map the determinant of the different inhibitory efficiencies,

we generated truncated and chimeric VP35 proteins (Figure 2C).

As previously shown, wild-type eVP35 was more efficient at

inhibiting SeV-induced IFN-b reporter activity than wild-type

mVP35 (Figure 2D). The N terminus alone of eVP35 or mVP35

was only modestly inhibitory. The C-terminal IID of eVP35 dis-

played more robust inhibitory activity compared to mVP35 IID

(Figure 2D). The eNmCVP35 construct, which contains the

eVP35 N terminus and mVP35 IID, lost inhibitory activity com-

pared to wild-type eVP35 and more closely resembled wild-

type mVP35 (Figure 2D). Conversely, mNeCVP35, which con-

tains the mVP35 N terminus and eVP35 IID, behaved similarly
1634 Cell Reports 14, 1632–1640, February 23, 2016 ª2016 The Auth
to wild-type eVP35. These results suggest that the IID is the

source of functional differences between eVP35 and mVP35.

eVP35 IID and mVP35 IID Have Different Affinities and
Binding Modes for dsRNA
The crystal structures of eVP35 IID and mVP35 IID in complex

with dsRNA and corresponding biochemical analyses revealed

that eVP35 IID bound to both the backbone and blunt ends of

dsRNA (Figure 3A) (Leung et al., 2010b), whereas mVP35 IID

bound only to the dsRNA backbone (Figure 3B) (Ramanan

et al., 2012; Bale et al., 2012). To understand the significance

of the different modes of dsRNA interaction, we measured

the affinities of eVP35 IID and mVP35 IID for 25 bp dsRNA using

a dot blot assay and found that eVP35 IID has a 4-fold higher af-

finity for dsRNA thanmVP35 IID (KD,eIID = 3.40 ± 0.070 mMversus

KD,mIID = 14.8 ± 1.1 mM) (Figure 3C).

To test if the differences in binding affinities for dsRNA are

the main contributors to relative RIG-I inhibition, we generated

mutant eVP35 IIDs with reduced dsRNA affinity to serve as

functional mimics of mVP35 IID. eVP35 residues R305, K309,

and K319 were mutated because of their proximity to basic res-

idues that are directly involved in dsRNA interactions (R312,

R322, K339, and F239). While the side chains of R305, K309,

and K319 do not form direct interactions with dsRNA, they

are involved in van der Waals contacts or water-mediated

contacts with dsRNA and therefore contribute to electrostatic

interactions that are important for dsRNA binding (Figures

4A–4C). Dot blot assays demonstrated that mutation of resi-

dues R305, K309, and K319 results in a decrease in affinity

for 25 bp dsRNA, yielding KD values comparable to that of

mVP35 IID (Figure 4D).

To test whether eVP35 and mVP35 IID inhibition of RIG-I can

be attributed to interaction with a RNA element, namely the

dsRNA backbone, the dsRNA blunt ends, or both, we measured

inhibition of RIG-I ATPase activity by VP35 IID in vitro. We used

short 50-triphosphate dsRNA (25 bp), longer dsRNA, or poly(I:C)

as RIG-I activators. By varying the lengths of dsRNA, we varied

the ratio of blunt ends to double strandedness, which enabled us

to assess the role of each RNA element. When RIG-I is activated

with 25 bp dsRNA, eVP35 IID is a potent inhibitor of RIG-I activity,

whereas mVP35 IID displayed >1,000-fold lower level of inhibi-

tion (Figure 4E, bars 2–4). This observation was consistent over

a 50-fold concentration range (0.0005 mM to 0.025 mM) for

mVP35 IID, while only 0.025 mM eVP35 IID was required to

achieve near-complete inhibition of RIG-I ATPase activity (Fig-

ures S3A and S3B). We also tested full-length VP35, which is

tetrameric due to the presence of an N-terminal oligomerization

domain (Table S1). While oligomerization enhanced the overall

inhibition observed for eVP35 IID and mVP35 IID, eVP35 was

the better inhibitor of RIG-I activity (Figures S3A andS3B). There-

fore, when blunt ends are the more prevalent PAMP than double

strandedness, eVP35 is a better inhibitor.

We next tested the eVP35 IID R305A, K309A, and K319A mu-

tants and observed that all mutants were impaired in their ability

to inhibit RIG-I compared towild-type eVP35 IID (Figure 4E), sug-

gesting that the decreased affinity for dsRNA corresponds to

diminished inhibition of RIG-I ATPase activity. However, eVP35

IID R305A and K319A inhibit RIG-I activation by short dsRNA
ors
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Figure 2. eVP35 and mVP35 Inhibit Virus-Induced IFN-b Production with Different Efficiencies

(A) An IFN-b luciferase reporter assay in the presence of empty vector (pCAGGS) or increasing concentrations of eVP35,mVP35, or aVP35 (2.5, 25, and 250 ng). At

24 hr post-transfection, cells were infected with SeV, and IFN-b activity was assessed by measuring luciferase activity 18 hr later. The VP35 expression was

assessed by western blot for FLAG (right).

(B) An IFN bioassay in the presence of empty plasmid (pCAGGS), eVP35, or mVP35. The transfected cells were infected with SeV to activate RIG-I signaling. The

supernatants were harvested 18 hpi andUV inactivated. The serial 5-fold dilutions of the supernatant were used to overlay Vero cells. At 24 hr later, Vero cells were

infected with NDV-GFP (MOI = 1), and the percent of infected cells was determined 18 hr later by monitoring GFP. The GFP signal obtained for Vero cells un-

treated by supernatants and infected with NDV-GFP was set at 100%; all other conditions were normalized to this control. The results from 1:625 dilution of

supernatants are shown.

(legend continued on next page)
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Figure 3. eVP35 IID and mVP35 IID Have Different Interaction Modes and Binding Affinities for dsRNA

(A) The two types of interactions are highlighted in the cartoon representation of the asymmetric unit of Protein Data Bank (PDB): 3L25. The eVP35 IID recognizes

both the blunt ends (red molecule) and double stranded backbone of dsRNA (yellow molecule). The symmetry related eVP35 IID molecules are colored gray.

(B) mVP35 IID interacts with the backbone of dsRNA. Shown are the mVP35 IID molecules in the crystal structure (PDB: 4GHL). One mVP35 IID molecule is

colored blue, and the symmetry mates are shown in gray.

(C) Dot blot assay shows that eVP35 IID (red) has a higher affinity for 25 bp thanmVP35 IID (blue). 0 to 250 mMof IID was incubated with 5 nM of P32-25 bp dsRNA.

The fraction bound of dsRNA was normalized and plotted against protein concentration (mM). The error bars in the figure represent SD.

(D) Sequences of mVP35 IID and eVP35 IID are aligned using ClustalW. The fully conserved residues are colored blue and labeled with an asterisk (*); the strongly

conserved are colored green and labeled with a colon (:); and the weakly conserved are colored navy and labeled with a period (.). The residues, R305, K309, and

K319, are highlighted.
more efficiently than eVP35 IID K309A (Figure 4E, bars 2 and

5–7). eVP35 IID K309A and mVP35 IID have affinities for dsRNA

comparable to the other eVP35 IID mutants, yet these two pro-

teins exhibit more severe defects as compared to the R305A

and K319A mutants. This suggests that VP35-mediated inhibi-

tion of RIG-I does not strictly depend upon the IID affinity

for dsRNA. Instead, the capacity of wild-type eVP35 and the
(C) Schematic of chimeric and truncated VP35 constructs. The filovirus VP35 prote

oligomerization domain and a C-terminal dsRNA-binding domain termed the IID. T

and MARV (black).

(D) Same assay protocol as (A), but transfected with wild-type eVP35, wild-typem

controls and the samples receiving the highest concentration of VP35 constructs

(A, B, and D) Values represent the mean and SEM of triplicate samples, and statis

indicated: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

1636 Cell Reports 14, 1632–1640, February 23, 2016 ª2016 The Auth
R305A and K319A mutants to mask the 50-triphosphate on the

blunt ends of dsRNA further contributes to effective suppression

of RIG-I.

Next, we used low molecular weight (LMW) poly(I:C) to

activate RIG-I in the ATPase assay. Unlike 25 bp dsRNA,

LMW poly(I:C) (0.2–1 kbp) contains longer stretches of dsRNA,

and therefore, double strandedness is likely the predominant
ins contain an N-terminal nucleoprotein binding peptide (NPBP) followed by an

he chimeric VP35s were designed by swapping the C terminus of EBOV (gray)

VP35, chimeric VP35, or N- or C-terminal VP35s. The protein expression for the

was assessed by western blot for FLAG (right).

tical significance was assessed by a one-way ANOVA comparing columns as

ors
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PAMP. Our results show that both eVP35 IID and mVP35 IID

inhibit RIG-I ATPase activity with similar efficiency when stimu-

lated with poly(I:C) (Figure 4F, lanes 2–4). Therefore, when dou-

ble strandedness predominates, the difference in inhibitory ac-

tivity between eVP35 and mVP35 decreases, suggesting that

the VP35 binding mode is a determinant of RLR inhibition.

eVP35 IID R305A, K309A, and K319A mutants are less effec-

tive inhibitors of RIG-I activation by poly(I:C) than wild-type

eVP35 and mVP35 IIDs. This can be attributed to the fact that

key residues within the central basic patch (CBP) are important

for both dsRNA binding and protein-protein interactions be-

tween protomers of VP35 IID that can stabilize the dsRNA bound

conformation of the VP35 IID when bound to dsRNA (Bale et al.,

2013; Leung et al., 2010a). Therefore, the effect of mutating CBP

residues reflects not only the impact of the binding modes (i.e.,

potential loss of blunt end binding), but also the impact of binding
Cell R
affinities between VP35 IID and dsRNA. Together, these data

demonstrate that eVP35 IID and mVP35 IID use multiple modes

of interaction with RNA PAMPs to prevent RLR activation.

To further assess the ability of the VP35s to inhibit dsRNAs

with different ratios of double strandedness to blunt ends in a

cell-based system, we used SeV defective interfering (DI)

RNAs that were previously described as specific activators of

RIG-I (Patel et al., 2013). These DI RNAs have the same sized

loop region with differing lengths of complementary dsRNA

stem regions (25, 46, and 94 bp). Consistent with previous

studies, we observe a corresponding increase in IFN-b promoter

activity as the length of the double stranded region increases

(Figure S3C) (Patel et al., 2013). Furthermore, eVP35 displays

modest differences in inhibition of IFN-b reporter activity

compared to mVP35 at all lengths of SeV DI dsRNA tested (Fig-

ure S3C), further supporting our in vitro observations.
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eVP35 IID and mVP35 IID Inhibit RIG-I Activation by
Protein Activator of the Interferon-Induced Protein
Kinase with Similar Efficiency
Because previous studies demonstrated that protein activator of

the interferon-induced protein kinase (PACT) (encoded by the

PRKRA gene) activation of RIG-I is inhibited by eVP35 (Luthra

et al., 2013), we also performed the ATPase assay in the presence

of PACT (Figure S4).mVP35 IIDwas able to inhibit RIG-I activation

by PACT with the same efficiency as eVP35 IID (Figure S4A).

Furthermore, there was no significant difference in the ability of

eVP35 or mVP35 to inhibit PACT-mediated enhancement of

RIG-I-induced IFNb reporter assaywhenPACTwas the only stim-

ulus (Figure S4B). However, in the presence of SeV infection,

eVP35 inhibited IFNb reporter activity more efficiently than

mVP35 (Figure S4C). These observations suggest that inhibition

of PACT does not account for the differences in IFN suppression

activity between eVP35 and mVP35 and point to differences

related to suppression by an RNA stimulus.

DISCUSSION

Our data reveal a surprising difference in how EBOV and MARV

modulate IFN responses. Prior studies have demonstrated that

the VP35 proteins of EBOV andMARV suppress IFN-a/b produc-

tion induced via the RLR pathway (Bale et al., 2012, 2013; Cárde-

nas et al., 2006; Leung et al., 2010a; Prins et al., 2009; Ramanan

et al., 2012) and mutation of residues in VP35 IIDs results in

attenuation of recombinant EBOV or MARV in IFN-producing

cells (Albariño et al., 2015; Hartman et al., 2006; Prins et al.,

2010). For EBOV, the VP35 IFN-antagonist function was also

required for robust growth and virulence in rodent models (Hart-

man et al., 2008; Prins et al., 2010). Therefore, it was surprising

that in macrophage-like THP-1 cells, either of two MARV strains

induced an IFN response that is absent in EBOV infected cells.

Importantly, the MARV-Ang isolate used in our studies was

from the Angola outbreak in 2005, which had an 88% case fatal-

ity rate and is highly lethal in non-human primates (Geisbert et al.,

2007). Therefore, the increased IFN responses observed for

MARV do not appear to attenuate the virus. These observations

suggest that an undefined mechanism(s) may allow MARV to

tolerate a higher level of IFN response than EBOV.

Direct comparison of the dsRNA-binding properties of eVP35

and mVP35 provides an explanation as to why EBOV and MARV

induce different degrees of IFN response. We, and others, have

shown that filoviral VP35 proteins function to inhibit IFN re-

sponses via the IID through direct interaction with dsRNA,

thereby competing with the cytosolic PAMP receptors RIG-I

and MDA5 (Bale et al., 2012, 2013; Kimberlin et al., 2010; Leung

et al., 2010a; Ramanan et al., 2012). However, it was unclear

from previous studies if the lack of dsRNA blunt end binding by

mVP35 IID resulted in a functionally significant outcome. Our

data here show that select eVP35 IID mutants (R305A and

K319A) retain some ability to bind dsRNA blunt ends and limit

IFN production resulting from blunt end mediated RLR activa-

tion, suggesting that the binding mode by which filoviral VP35

IID interacts with dsRNA plays a more significant role in the

cellular IFN response to filovirus infections than previously

appreciated. Whether the inhibitory activities of either MARV
1638 Cell Reports 14, 1632–1640, February 23, 2016 ª2016 The Auth
VP40 or EBOV VP24, which antagonize IFN-induced Jak-STAT

signaling, also contribute to the differential IFN response re-

quires further study.

Our findings have implications for viral infection, diagnosis,

and therapy. EBOV and MARV each induce severe hemor-

rhagic fever with high case fatality rates and similar pathogen-

esis (Martines et al., 2015). The viruses also share many sim-

ilarities in their replication cycles (Sanchez et al., 2007).

Despite these similarities, our present data and other studies

demonstrate important differences in the molecular biology

of these pathogens. Accumulating data point to differential in-

teractions with host signaling pathways including pathways

connected to host IFN responses (Edwards and Basler,

2015; Edwards et al., 2014; Page et al., 2014; Reid et al.,

2006; Shabman et al., 2014; Valmas et al., 2010; Xu et al.,

2014). The results presented here identify additional differ-

ences with regard to suppression of an IFN response that

should be taken into account when developing antifiloviral

countermeasures.

EXPERIMENTAL PROCEDURES

Constructs

Expression plasmids in the pCAGGs backbone include FLAG-tagged eVP35,

mVP35, IKKε, TBK-1, and HA-tagged RIG-I have been described previously

(Cárdenas et al., 2006; Ramanan et al., 2012). aVP35 was amplified from

RNA isolated from MARV-Ang infected THP-1 cells and cloned into pCAGGS

with an N-terminal FLAG tag. FLAG-tagged truncations of eVP35 or mVP35

included eNVP35 (residues 1–198), eCVP35 (residues 199–340), mNVP35 (res-

idues 1–187), and mCVP35 (residues 188–329). eNmCVP35 contains residues

1–198 from eVP35 and 188–329 from mVP35. mNeCVP35 contains residues

1–187 from mVP35 and 199–340 from eVP35.

Generation of Proteins and RNA

VP35wild-type andmutant proteins were expressed and purified as previously

described (Leung et al., 2010a; Ramanan et al., 2012). Mutations were intro-

duced into the sequence through overlap PCR and confirmed by DNA

sequencing. There were 25 bp dsRNA and LMW poly(I:C) that were purchased

from IDT Technologies and Invivogen, respectively, and desalted prior to use.

The sequence of 25 bp dsRNA used in the ATPase and filter binding

assays is rArArArCrUrGrArArArGrGrGrArGrArArGrUrGrArArArGrUrG for the

sense strand and rCrArCrUrUrUrCrArCrUrUrCrUrCrCrCrUrUrUrCrArGrUrUrU

for the antisense strand.

RNA Binding Assays

25 bp dsRNAwas labeled by 32P-ATP and purified by 10% urea gel. 5 nM RNA

was incubated with VP35 IID constructs at various concentrations for 15 min,

loaded onto a dot blot apparatus (Bio-Rad), and passed through nitrocellulose

(NC) and nylon (NY) membranes. Membranes were scanned using a Typhoon

9410 Variable Mode Imager (GE Healthcare) and the amount of dsRNA bound

to NC and NY membranes was quantified from the radioactivity detected. The

fraction of RNA bound to IID proteins was calculated using the equation shown

below:

fraction bound=
RNA bound to NC

RNA bound to NC+RNA bound to NY

Data were fit to the Hill equation and dissociation constants (KD) were calcu-

lated using Origin software.

ATPase Assays

MBP tagged RIG-I (1 mM) was incubated with 32P-ATP (1 mCi), and dsRNA or

MBP tagged PACT (0.7 mM) was used as the agonist in the absence or
ors



presence of VP35 IID proteins for 30 min. 1 ml of the reactions was loaded onto

a polyethyleneimine (PEI)-cellulose TLC plate and developed in 3M KH2PHO4

buffer. The ATPase activity of RIG-I was quantified by the relative amount of
32P inorganic phosphate (Pi) present using the following equation:

ATPase activity =
32P� Pi

32P� Pi + 32P� ATP

Cells and Viruses

HEK293T cells were maintained in Dulbecco’s minimal essential medium sup-

plemented with 10% fetal bovine serum and cultured at 37�C and 5% CO2.

SeV and NDV were grown in 10-day-old embryonated chicken eggs for two

days at 37�C.

Western Blots and Antibodies

Lysates were run on 10% acrylamide SDS-PAGE gels and transferred to PVDF

membranes. Membranes were probed with monoclonal mouse anti-FLAG M2

(Sigma-Aldrich) and anti-b-tubulin antibodies (Sigma-Aldrich) prior to develop-

ment with Western Lightning ECL (Perkin-Elmer).

Filovirus Infections

Infections were performed under BSL-4 conditions at the Galveston National

Laboratory. THP-1 cells were differentiated overnight with 100 nM PMA and

infected with MARV-Ang (MOI = 3 or 1), MARV-Mus (MOI = 1), or EBOV

(MOI = 3). Viral total RNAwas extractedwith TRIzol at the indicated time points

for analysis by deep sequencing or qRT-PCR. For deep sequencing, mRNA

was purified with Oligo(dT) magnetic beads (Invitrogen). cDNA libraries were

generated (NEBNext; New England Biolabs) and sequenced on the Illumina Hi-

Seq 2500 platform as described (Shabman et al., 2014). The sequenced reads

were aligned to human genome hg19 using TopHat2 (Kim et al., 2013) and

gene-wise transcript numbers were counted and normalized using DESeq2

(Love et al., 2014). To visualize the transcription changes in IFN-a/b and ISG

mRNA levels, we used these gene-wise transcript counts, centered, and

scaled them based on the mean and variance of all the counts from all time

points. The heatmap was generated using levelplot function in R. To quantify

the viral transcripts, the reads were aligned to respective viral genomes using

Bowtie2 (Langmead and Salzberg, 2012) and gene-wise transcript numbers

calculated using intersectBed function from BEDTools package (Quinlan and

Hall, 2010). For qRT-PCR, cDNA was generated with Oligo(dT) primers and

relative expression for each gene of interest was determined by normalizing

to RPS11.

IFN Bioassay

AnNDV-GFP bioassay was used to quantify secreted IFN-a/b levels according

to previously described methods (Shaw et al., 2004). In brief, supernatants

from HEK293T cells transfected with empty plasmid, eVP35, or mVP35 and in-

fected with SeVwere UV irradiated for 10min on ice to inactivate the SeV. Vero

cells grown in 96-well format were overlaid with serial 5-fold dilutions of the su-

pernatants for 24 hr, after which they were infectedwith NDV-GFP as indicated

at anMOI of three. There were 24 hpi cells that were fixed with 4% paraformel-

dehyde. GFP fluorescence was measured using the Acumen Explorer HTS

plate reader. GFP fluorescence from Vero cells untreated by supernatant

and infected with NDV-GFP was set at 100% infection and all other conditions

were normalized to this. Error bars represent the mean and SEM of triplicate

samples. Statistical significance was assessed by a one-way ANOVA followed

by an independent samples t test with the Bonferroni correction.

IFN-b Luciferase Reporter Assays

SeV-induced reporter assays: HEK293T cells were transfected using Lipofect-

amine 2000 (Invitrogen) with the IFN-b firefly luciferase reporter plasmid, a

constitutively expressed Renilla luciferase reporter plasmid (pRLTK, Prom-

ega), and the indicated expressions plasmids. At 24 hr post-transfection, cells

were mock infected or infected with SeV to induce reporter activation. 18 hpi

luciferase activity was determined. RIG-I and kinase overexpression-induced

reporter assays: HEK293T cells were transfected as before with the addition of

RIG-IN, IKKε, or TBK-1 as indicated. 18 hpi luciferase activity was determined.

Reporter assays in RIG-I KO cells: RIG-I KO HEK293T cells were transfected
Cell R
as before with the addition of RIG-I as indicated. At 24 hr post-transfection,

cells were infected with SeV or transfected with LMW poly(I:C) (250 ng) (Inviv-

ogen) for 18 hr, after which luciferase activity was determined. SeV DI RNA-

induced reporter assay: SeV DI RNAs were generated as previously described

(Patel et al., 2013). HEK293T cells were transfected as before. At 24 hr post-

transfection, cells were transfected with SeV DI RNAs (35 fmol) to induce re-

porter activity for 24 hr, after which luciferase activity was determined. For

all reporter assays, a dual luciferase assay (Promega) was performed and

firefly luciferase values were normalized to Renilla luciferase values. Error

bars represent themean and SEM of triplicate samples. Statistical significance

was assessed with a one-way ANOVA followed by an independent samples

t test with the Bonferroni correction.
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