Discrete Applied Mathematics 78 (1997) 163-174

Optimal orientations of products of paths and cycles

K.M. Koh*, E.G. Tay
Department of Mathematics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260

Received 13 February 1996; revised 5 December 1996

Abstract

For a graph G, let $\mathscr{D}(G)$ be the family of strong orientations of $G, \boldsymbol{d}(G)=\min \{d(D) \mid D \in \mathscr{F}$ $(G)\}$ and $\rho(G)=\boldsymbol{d}(G)-d(G)$, where $d(G)$ and $d(D)$ are the diameters of G and D respectively. In this paper we show that $\rho(G)=0$ if G is a cartesian product of (1) paths, and (2) paths and cycles, which satisfy some mild conditions.

Keywords: Path; Cycle; Bipartite graph; Diameter; Strong orientation

1. Introduction

Let G (resp., D) be a graph (resp., digraph) with vertex set $V(G)$ (resp., $V(D)$) and edge set $E(G)$ (resp., $E(D)$). For $v \in V(G)$, the eccentricity $e(v)$ of v is defined as $e(v)=\max \{d(v, x) \mid x \in V(G)\}$, where $d(v, x)$ denotes the distance from v to x. The notion $e(v)$ in D is similarly defincd. The diameter of G (rcsp., D), denoted by $d(G)$ (resp., $d(D)$), is defined as $d(G)=\max \{e(v) \mid v \in V(G)\}($ resp., $d(D)=\max \{e(v) \mid v \in$ $V(D)\})$.

An orientation of a graph G is a digraph obtained from G by assigning to each edge in G a direction. An orientation D of G is strong if every two vertices in D are mutually reachable in D. An edge e in a connected graph G is a bridge if $G-e$ is disconnected. Robbins' celebrated one-way street theorem [15] states that a connected graph G has a strong orientation if and only if no edge of G is a bridge. As a possible way of extending Robbins' theorem, Boesch and Tindell [1] introduced the notion $\rho(G)$ given below. For a connected graph G containing no bridges, let $\mathscr{D}(G)$ be the family

[^0]of strong orientations of G. Define
$$
\boldsymbol{d}(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\} \quad \text { and } \quad \rho(G)=\boldsymbol{d}(G)-d(G)
$$

The problem of evaluating $\rho(G)$ for an arbitrary connected graph G is very difficult. As a matter of fact, Chvátal and Thomassen [2] showed that the problem of deciding whether a graph admits an orientation of diameter two is NP-hard.

On the other hand, the parameter $\rho(G)$ has been studied in various classes of graphs including complete graphs [1,11,14], complete bipartite graphs [1,3,20], complete k-partite $(k \geqslant 3)$ graphs [4, 6, 7, 13], and n-cubes [12, 20]. Let $G \times H$ denote the cartesian product of two graphs G and H (see Section 2 for the definition), and P_{r}, C_{r} and K_{r}, respectively, the path, cycle and complete graph of order r. Roberts and Xu [16-19], and independently Koh and Tan [5], evaluated the quantity $\rho\left(P_{m} \times P_{n}\right)$. Very recently, Koh and Tay have further determined the quantities $\rho\left(C_{2 m} \times P_{k}\right)$ [8], $\rho\left(K_{m} \times P_{k}\right), \rho\left(K_{m} \times C_{2 k+1}\right)$ and $\rho\left(K_{m} \times K_{n}\right)$ [9] and $\rho\left(C_{2 m} \times K_{n}\right)$ [10]. In this paper, we shall evaluate $\rho\left(G_{1} \times G_{2} \times \cdots \times G_{m}\right)$, where $m \geqslant 2$ and $\left\{G_{i} \mid 1 \leqslant i \leqslant m\right\}$ is a combination of paths and cycles.

2. Cartesian product of paths

The cartesian product of a family of graphs $G_{1}, G_{2}, \ldots, G_{n}$, denoted by $G_{1}, G_{2} \times \cdots \times$ G_{n} or $\prod_{i=1}^{n} G_{i}$, where $n \geqslant 2$, is the graph G having $V(G)-V\left(G_{1}\right) \times V\left(G_{2}\right) \times \cdots \times$ $V\left(G_{n}\right)$ and two vertices $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are adjacent if and only if there exists $r \in\{1,2, \ldots, n\}$ such that $u_{r} v_{r} \in E\left(G_{r}\right)$ and $u_{i}=v_{i}$ for all $i=1,2, \ldots, n$ with $i \neq r$. In this section, we shall evaluate $\rho(G)$, where G is of the form $\prod_{i=1}^{n} P_{k_{i}}$ with $n \geqslant 2$ and $k_{i} \geqslant 2$ for each $i=1,2, \ldots, n$. For convenience, the vertices in the graph are labelled $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $1 \leqslant x_{i} \leqslant k_{i}$ for each $i=1,2, \ldots, n$, such that the vertices $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and ($b_{1}, b_{2}, \ldots, b_{n}$) are adjacent iff $\left|a_{r}-b_{r}\right|=1$ for exactly one $r \in\{1,2, \ldots, n\}$, and $a_{i}=b_{i}$ for all i with $i \neq r$.

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp., cycle) in D. A path from u to v in D is simply called a $u-v$ path. For $X \subseteq V(D)$, the subdigraph of D induced by X is denoted by $D[X]$. For $x, y \subset V(D)$ and $A \subseteq V(D)$, we write ' $x \rightarrow y$ ' if x is adjacent to y in D, and write ' $x \rightarrow A$ ' (resp., ' $A \rightarrow y$ ') if $x \rightarrow y$ for each $y \in A$ (resp., for each $x \in A$).

Our first main result is as follows:
Theorem 1. $\rho\left(\prod_{i=1}^{n} P_{k_{i}}\right)=0$, where $n \geqslant 2, k_{1} \geqslant 3, k_{2} \geqslant 6$ with $\left(k_{1}, k_{2}\right) \neq(3,6)$.
Let

$$
G_{n}=\overbrace{P_{2} \times P_{2} \times \cdots \times P_{2}}^{n}
$$

(i.e., the n-cube). In proving that $\rho\left(G_{n}\right)=0$ for $n \geqslant 4$, McCanna [12] made use of the following subtle observation due to C . Thomassen.

Lemma 1. If a bipartite graph G admits an orientation of diameter at most k, where $k \geqslant 3$, such that every vertex is in a cycle of length at most k, then the graph $G \times P_{2}$ admits an orientation of diameter at most $k+1$ such that every vertex is in a cycle of length at most k.

We shall now extend Thomassen's observation from P_{2} to $\prod_{i=1}^{n} P_{k_{i}}$, and shall make use of the extension to prove some of our main results in this paper.

Lemma 2. If a bipartite graph G admits an orientation of diameter at most k, where $k \geqslant 3$, such that every vertex is in a cycle of length at most k, then the graph $G \times \prod_{i=1}^{n} P_{k_{i}}$, where $n \geqslant 1$, admits an orientation of diameter at most $k-n+\sum_{i=1}^{n} k_{i}$ such that every vertex is in a cycle of length at most k.

Proof. Let V_{1} and V_{2} be the partite sets of G. Let $F \in \mathscr{D}(G)$ with $d(F) \leqslant k$ such that every vertex is in a cycle of length at most k in F. We shall now orient $G \times \prod_{i=1}^{n} P_{k}$ inductively as follows:
(i) In $G \times P_{k_{1}}$, for $1 \leqslant i \leqslant k_{1}-1$, orient $(x, i) \rightarrow(x, i+1)$ iff $x \in V_{1}$; and for $1 \leqslant i \leqslant k_{1}$, orient $(x, i) \rightarrow(y, i)$ iff $x y \in E(F)$.
(ii) Suppose $G \times \prod_{i=1}^{r} P_{k_{i}}$, where $1 \leqslant r \leqslant n-1$, has been oriented. Orient $G \times \prod_{i=1}^{r+1} P_{k_{i}}$ so that the orientation of $G \times \prod_{i=1}^{r} P_{k_{i}} \times\{j\}$ is isomorphic to that of $G \times \prod_{i=1}^{r} P_{k,}$ for each $j=1,2, \ldots, k_{r+1}$, and for $1 \leqslant i \leqslant k_{r+1}-1$, orient $\left(x, a_{1}, a_{2}, \ldots, a_{r}, i\right) \rightarrow$ $\left(x, a_{1}, a_{2}, \ldots, a_{r}, i+1\right)$ iff $x \in V_{1}$.
Let F^{*} be the resulting orientation of $G \times \prod_{i=1}^{n} P_{k_{i}}$.
Claim. $e(u) \leqslant k-n+\sum_{i=1}^{n} k_{i}$ for each vertex u in F^{*}.
Let $u=\left(x, a_{1}, a_{2}, \ldots, a_{n}\right)$ and assume that $x \in V_{1}$, say. Take an arbitrary vertex $v=$ ($y, b_{1}, b_{2}, \ldots, b_{n}$) in F^{*}. As the cartesian product is commutative, we may assume that $a_{i} \leqslant b_{i}$ for $1 \leqslant i \leqslant m$ and $a_{i}>b_{i}$ for $m+1 \leqslant i \leqslant n$, where $m \leqslant n$.
(1) Let $w=\left(x, b_{1}, b_{2}, \ldots, b_{m}, a_{m+1}, \ldots, a_{n}\right)$. Observe that there is a $u-w$ path of length at most $\sum_{i=1}^{m} k_{i}-m$ in F^{*}.
(2) If $x \neq y$, let $w^{\prime}-\left(x^{\prime}, b_{1}, b_{2}, \ldots, b_{m}, a_{m+1}, \ldots, a_{n}\right)$, where x^{\prime} is adjacent from x in an $x-y$ path of length at most k in F. Then $w \rightarrow w^{\prime}$ in F^{*}. (Note that $x^{\prime} \in V_{2}$.) If $x=y$, take a cycle of length at most k containing x in F.
(3) There is a path of length at most $\sum_{i=m+1}^{n} k_{i}-(n-m)$ from w^{\prime} to $\left(x^{\prime}, b_{1}, b_{2}, \ldots, b_{n}\right)$ in F^{*}.
(4) There is a path of length at most $k-1$ from $\left(x^{\prime}, b_{1}, b_{2}, \ldots, b_{n}\right)$ to v in F^{*}.

Combining (1)-(4), $d(u, v) \leqslant \sum_{i=1}^{m} k_{i}-m+1+\sum_{i=m+1}^{n} k_{i}-(n-m)+k-1=k-$ $n+\sum_{i=1}^{n} k_{i}$. This proves the claim.

Thus $d\left(F^{*}\right) \leqslant k-n+\sum_{i=1}^{n} k_{i}$. The second part of Lemma 2 is obvious as each vertex in F^{*} is contained in a cycle of length at most k in F.

We need also the following result.

Fig. 1. Orientation of $P_{3} \times P_{12}$.

Lemma 3. For $m \geqslant 3$, $n \geqslant 6$ with $(m, n) \neq(3,6)$, there exists $F \in \mathscr{D}\left(P_{m} \times P_{n}\right)$ such that
(i) $d(F)=\boldsymbol{d}\left(P_{m} \times P_{n}\right)=m+n-2$ and
(ii) every vertex in $P_{m} \times P_{n}$ is in a cycle of length at most $m+n-2$ in F.

Note. (1) $d\left(P_{m} \times P_{n}\right)=m+n-2$ for all $m, n \geqslant 1$.
(2) It was shown in [5] that $d\left(P_{3} \times P_{6}\right)=8(=m+n-1)$.

Proof of Lemma 3. Part (i) (except some isolated cases) was first obtained by Roberts and Xu [16-19]. Here, we shall use the orientations of $P_{m} \times P_{n}$ introduced by Koh and Tan [5] to prove part (ii). Following [5], we have seven cases to consider.

Case A: $m=3$ and $n \equiv 0(\bmod 2)$ with $n \geqslant 8$. Define $F \in \mathscr{D}\left(P_{m} \times P_{n}\right)$ as follows (see Fig. 1):
(1) For $i=1,3$ and $j=1,2, \ldots, n-1$, orient $(i, j+1) \rightarrow(i, j)$;
(2) For $j=1,2, \ldots, n-1$, orient $(2, j) \rightarrow(2, j+1)$;
(3) For $j=1,2,3$, orient $\{(1, j),(3, j)\} \rightarrow(2, j)$;
(4) Orient $(2,4) \rightarrow\{(1,4),(3,4)\}$;
(5) Orient $(2, n) \rightarrow\{(1, n),(3, n)\}$ and $(2, n-1) \rightarrow\{(1, n-1),(3, n-1)\}$;
(6) For $j=5,6, \ldots, n-2$, orient $(3, j) \rightarrow(2, j) \rightarrow(1, j)$ if $j \equiv 0(\bmod 2)$; and $(1, j) \rightarrow$ $(2, j) \rightarrow(3, j)$ if $j \equiv 1(\bmod 2)$.

Note that $d(F)=m+n-2$. Now, consider the following cycles (see also Fig. 1):
$\left(A_{1}\right)(1,1)(2,1)(2,2)(2,3)(2,4)(1,4)(1,3)(1,2)(1,1)$,
$\left(A_{2}\right)(3,1)(2,1)(2,2)(2,3)(2,4)(3,4)(3,3)(3,2)(3,1)$,
$\left(A_{3}\right)(3,5)(3,4)(3,3)(2,3)(2,4)(2,5)(3,5)$,
$\left(A_{4}\right)(1, n)(1, n-1)(1, n-2)(1, n-3)(2, n-3)(2, n-2)(2, n-1)(2, n)(1, n)$,
$\left(A_{5}\right)(3, n)(3, n-1)(3, n-2)(2, n-2)(2, n-1)(2, n)(3, n)$.
It can be checked that each of the above cycles is of length at most $m+n-2$, and that the cycles cover vertices $(3,5),(1, n-3),(2, n-3)$ and (i, j), where $i=1,2,3$ and $j=1,2,3,4, n-2, n-1, n$. On the other hand, each of the remaining vertices lies in a cycle of length 4 in F.

Case B: $m=3$ and $n=7$. Define $F \in \mathscr{D}\left(P_{3} \times P_{7}\right)$ as shown in Fig. 2. It can be checked that $d(F)=8=m+n-2$ and that (ii) is satisfied as shown in Fig. 2.

Case C: $m=3$ and $n \equiv 1(\bmod 2)$ with $n \geqslant 9$. Define $F \in \mathscr{D}\left(P_{m} \times P_{n}\right)$ as follows (see Fig. 3):

Fig. 2. Orientation of $P_{3} \times P_{7}$.

Fig. 3. Orientation of $P_{3} \times P_{13}$.

Fig. 4. Orientation of $P_{6} \times P_{8}$.
(1) $F\left[P_{m} \times P_{n-1}\right]$ is identical with the orientation in Case A ;
(2) Orient $(2, n) \rightarrow\{(1, n),(3, n)\}$;
(3) Orient $(1, n) \rightarrow(1, n-1),(2, n-1) \rightarrow(2, n)$, and $(3, n) \rightarrow(3, n-1)$.

Note that $d(F)=m+n-2$. Now, consider the following cycles (see also Fig. 3):
$\left(C_{1}\right)(1,1)(2,1)(2,2)(2,3)(2,4)(1,4)(1,3)(1,2)(1,1)$,
$\left(C_{2}\right)(3,1)(2,1)(2,2)(2,3)(2,4)(2,5)(3,5)(3,4)(3,3)(3,2)(3,1)$,
$\left(C_{3}\right)(1, n)(1, n-1)(1, n-2)(1, n-3)(1, n-4)(2, n-4)(2, n-3)(2, n-2)(2, n-1)$ $(2, n)(1, n)$,
$\left(C_{4}\right)(3, n)(3, n-1)(3, n-2)(3, n-3)(2, n-3)(2, n-2)(2, n-1)(2, n)(3, n)$.
Each of these cycles is of length at most $m+n-2$ and they cover vertices (3,5), $(1, n-4),(2, n-4)$ and (i, j), where $i=1,2,3$ and $j=1,2,3,4, n-3, n-2, n-1, n$. On the other hand, each of the remaining vertices lies in a cycle of length 4 in F.

Case D: $m \equiv n \equiv 0(\bmod 2)$ with $m \geqslant 4$ and $n \geqslant 6$. Define $F \in \mathscr{L}\left(P_{m} \times P_{n}\right)$ as follows (see Fig. 4):

Fig. 5. Orientation of $P_{6} \times P_{9}$.
(1) For $i=1,2, \ldots, m$ and $j=1,2, \ldots, n-1$, orient

$$
\begin{array}{ll}
(i, j) \rightarrow(i, j+1) & \text { if } i \equiv 0(\bmod 2) \\
(i, j+1) \rightarrow(i, j) & \text { if } i \equiv 1(\bmod 2)
\end{array}
$$

(2) For $i=1,2, \ldots, m-1$ and $j=2,3, \ldots, n-1$, orient

$$
\begin{array}{ll}
(i, j) \rightarrow(i+1, j) & \text { if } j \equiv 0(\bmod 2) \\
(i+1, j) \rightarrow(i, j) & \text { if } j \equiv 1(\bmod 2)
\end{array}
$$

(3) Orient $(1,1) \rightarrow(2,1)$ and $(i, 1) \rightarrow\{(i-1,1),(i+1,1)\}$ for each $i=3,5, \ldots, m-1$;
(4) Orient $(i, n) \rightarrow\{(i-1, n),(i+1, n)\}$ for each $i=2,4, \ldots, m-2$; and
(5) Orient $(m, n) \rightarrow(m-1, n)$.

Note that $d(F)=m+n-2$. Now, consider the following cycles:
$\left(D_{1}\right)$ For $i=1,3, \ldots, m-1$,

$$
(i, 1)(i+1,1)(i+1,2)(i+1,3)(i, 3)(i, 2)(i, 1)
$$

$\left(D_{2}\right)$ For $i=1,3, \ldots, m-1$,

$$
(i, n)(i, n-1)(i, n-2)(i+1, n-2)(i+1, n-1)(i+1, n)(i, n)
$$

Each of these cycles is of length not exceeding $m+n-2$, and the cycles cover vertices (i, j), where $i=1,2, \ldots, m$ and $j=1,2,3, n-2, n-1, n$. On the other hand, each of the remaining vertices lies in a cycle of length 4 in F.

Case E: $m \equiv 0(\bmod 2)$ and $n \equiv 1(\bmod 2)$ with $m \geqslant 4$ and $n \geqslant 7$. Define $F \in$ $\mathscr{D}\left(P_{m} \times P_{n}\right)$ as follows (see Fig. 5):
(1) $F\left[P_{m} \times P_{n-1}\right]$ is identical with the orientation in Case D ;
(2) For $i=1,3, \ldots, m-1$, orient $(i, n-1) \rightarrow(i, n)$ and $(i+1, n) \rightarrow(i+1, n-1)$;
(3) For $i=3,5, \ldots, m-1$, orient $(i, n) \rightarrow\{(i-1, n),(i+1, n)\}$;
(4) Orient $(1, n) \rightarrow(2, n)$.

Fig. 6. Orientation of $P_{7} \times P_{9}$.

Note that $d(F)=m+n-2$. Also, it can be shown (see Fig. 5 as an illustration) that each vertex is in a cycle of length not exceeding $m+n-2$ in F.

Case $\mathrm{F}: m \equiv n \equiv 1(\bmod 2)$ with $m \geqslant 5$ and $n \geqslant 7$. Define $F \in \mathscr{D}\left(P_{m} \times P_{n}\right)$ as follows (see Fig. 6):
(1) $F\left[P_{m-1} \times P_{n}\right]$ is identical with the orientation in Case E ;
(2) For each $j=2,4, \ldots, n-1$, orient

$$
(m, j) \rightarrow\{(m, j-1),(m, j+1)\}
$$

$(m-1, j) \rightarrow(m, j)$ and

$$
(m, j-1) \rightarrow(m-1, j-1)
$$

(3) Orient $(m, n) \rightarrow(m-1, n)$.

Note that $d(F)=m+n-2$. Also, it can be checked (see Fig. 6 as an illustration) that each vertex is in a cycle of length not exceeding $m+n-2$ in F.

Finally, we consider the case when $m \equiv 1(\bmod 2)$ and $n \equiv 0(\bmod 2)$ with $m \geqslant 5$ and $n \geqslant 6$. By symmetry and the result in Case E , we need only consider the following:

Case G: $m=5$ and $n \equiv 0(\bmod 2)$ with $n \geqslant 6$. Let $n=2 k$ and define $F \in \mathscr{D}\left(P_{5} \times P_{n}\right)$ as follows (see Fig. 7):
(1) For $i=1,2,4,5$ and $j=1,2, \ldots, k-1$, orient $(i, j) \rightarrow(i, j+1)$ and $(3, j+1) \rightarrow(3, j)$;
(2) For $i=1,2,4,5$ and $j=k+1, k+2, \ldots, 2 k-1$, orient $(i, j+1) \rightarrow(i, j)$ and $(3, j) \rightarrow(3, j+1)$;
(3) For $j \neq k, k+1$, orient $(1, j) \leftarrow(2, j) \leftarrow(3, j) \rightarrow(4, j) \rightarrow(5, j)$;
(4) For $j=k, k+1$, orient $(1, j) \rightarrow(2, j) \rightarrow(3, j) \leftarrow(4, j) \leftarrow(5, j)$;
(5) Orient $(2, k) \rightarrow(2, k+1),(3, k) \leftarrow-(3, k+1)$ and $(4, k) \rightarrow(4, k+1)$. The edges $(1, k)(1, k+1)$ and $(5, k)(5, k+1)$ may be arbitrarily oriented.

Note that $d(F)=n+3$ and each vertex is in a cycle of length not exceeding $n+3$ (see Fig. 7 as an illustration).

Fig. 7. Orientation of $P_{5} \times P_{8}$.

The proof of Lemma 3 is now complete.

Proof of Theorem 1. Let $G=P_{k_{1}} \times P_{k_{2}}$. By Lemma 3, the bipartite graph G admits an orientation F with $d(F)=k_{1}+k_{2}-2$ such that each vertex in G is in a cycle of length at most $k_{1}+k_{2}-2$ in F. By Lemma 2, the graph $\prod_{i=1}^{n} P_{k_{i}}$ admits an orientation F^{*} with

$$
\begin{aligned}
d\left(F^{*}\right) & \leqslant\left(k_{1}+k_{2}-2\right)-(n-2)+\sum_{i=3}^{n} k_{i} \\
& =\sum_{i=1}^{n} k_{i}-n \\
& =d\left(\prod_{i=1}^{n} P_{k_{i}}\right)
\end{aligned}
$$

The result thus follows.

3. Cartesian product of paths and cycles

The main aim in this section is to prove the following results.

Theorem 2. (i) $\rho\left(C_{2 n} \times \prod_{i=1}^{m} P_{k_{i}}\right)=0$ for $m \geqslant 1, n \geqslant 2$ and $k_{1} \geqslant 4$.
(ii) $\rho\left(\prod_{i=1}^{m} P_{k_{i}} \times \prod_{i=1}^{r} C_{n_{i}}\right)=0$ for $m \geqslant 2, r \geqslant 0, k_{1} \geqslant 3$ and $k_{2} \geqslant 6$ with $\left(k_{1}, k_{2}\right) \neq$ $(3,6)$.
(iii) $\rho\left(C_{2 n} \times \prod_{i=1}^{m} P_{k_{i}} \times \prod_{i=1}^{r} C_{n_{i}}\right)=0$ for $m \geqslant 1, r \geqslant 0, n \geqslant 2$ and $k_{1} \geqslant 4$.

Note that results (ii) and (iii) are overlapping with (ii) requiring stronger conditions on two paths whereas (iii) requiring a cycle to be even and the length of a path at least four.

In what follows, the vertices of $\prod_{i=1}^{r} C_{n_{i}}$ are labelled ($x_{1}, x_{2}, \ldots, x_{r}$), where $1 \leqslant x_{i} \leqslant n_{i}$, $1 \leqslant i \leqslant r$ so that $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ are adjacent iff $\left|a_{k}-b_{k}\right|=1\left(\bmod n_{k}-2\right)$

Fig. 8. Orientation of $C_{6} \times P_{5}$.
for exactly one $k, 1 \leqslant k \leqslant r$, and $a_{i}=b_{i}$ for all i with $i \neq k$. For a real x, we shall denote by $[x]$ the greatest integer not exceeding x.

To prove Theorem 2(i), we need the following result.

Lemma 4. For $n \geqslant 2$ and $k \geqslant 4$, there exists $F \in \mathscr{L}\left(C_{2 n} \times P_{k}\right)$ such that
(i) $d(F)=\boldsymbol{d}\left(C_{2 n} \times P_{k}\right)=n+k-1$ and
(ii) every vertex in $C_{2 n} \times P_{k}$ is in a cycle of length at most $n+k-1$ in F.

Proof. In [8], the following orientation F of $C_{2 n} \times P_{k}$ was introduced (see Fig. 8):
(i) For $i \equiv 1(\bmod 2)$ and $1 \leqslant i \leqslant 2 n-1$, orient $(i, 1) \rightarrow\{(i+1,1),(i-1,1)\}$:
(ii) For $j \equiv 0(\bmod 2), 2 \leqslant j \leqslant k-1$, and $1 \leqslant i \leqslant 2 n$, orient $(i, j) \rightarrow(i+1, j)$;
(iii) For $j \equiv 1(\bmod 2), 3 \leqslant j \leqslant k-1$, and $1 \leqslant i \leqslant 2 n$, orient $(i, j) \rightarrow(i-1, j)$;
(iv) For $i \equiv 0(\bmod 2)$ and $2 \leqslant i \leqslant 2 n$, orient $(i, k) \rightarrow\{(i+1, k),(i-1, k)\}$;
(v) For $i \equiv 0(\bmod 2), 2 \leqslant i \leqslant 2 n$ and $1 \leqslant j \leqslant k-1$, orient $(i, j) \rightarrow(i, j+1)$;
(vi) For $i \equiv 1(\bmod 2), 1 \leqslant i \leqslant 2 n-1$ and $2 \leqslant j \leqslant k$, orient $(i, j) \rightarrow(i, j-1)$.

It was shown in [8] also that $d(F)=\boldsymbol{d}\left(C_{2 n} \times P_{k}\right)=n+k-1$ for $k \geqslant 4$ and $n \geqslant 2$. It remains to prove (ii).

Consider the following cycles (see also Fig. 8):
(A_{1}) For $j \equiv 0(\bmod 2)$ with $2 \leqslant j \leqslant k-3$ for odd k or $2 \leqslant j \leqslant k-2$ for even k, and $i \equiv 1(\bmod 2)$ with $1 \leqslant i \leqslant 2 n-1,(i, j)(i+1, j)(i+1, j+1)(i, j+1)(i, j) ;$
(A_{2}) For $i \equiv 1(\bmod 2), 1 \leqslant i \leqslant 2 n-1$, $(i, 1)(i-1,1)(i-1,2)(i, 2)(i, 1)$; and
$\left(A_{3}\right)$ For $i \equiv 1(\bmod 2), 1 \leqslant i \leqslant 2 n-1,(i+1, k)(i, k)(i, k-1)(i+1, k-1)(i+1, k)$ if k is odd, or $(i-1, k)(i, k)(i, k-1)(i-1, k-1)(i-1, k)$ if k is even.
Clearly, all the above cycles are of length $4(\leqslant n+k-1)$ and they cover $V\left(C_{2 n} \times P_{k}\right)$.

Proof of Theorem 2(i). Let $G=C_{2 n} \times P_{k_{1}}$. By Lemma 4, the bipartite graph G admits an orientation F with $d(F)=n+k_{1}-1$ such that each vertex in G is in a cycle of length at most $n+k_{1}-1$ in F. By Lemma 2, the graph $H=C_{2 n} \times \prod_{i=1}^{m} P_{k_{k}}$ admits an
orientation F^{*} with

$$
\begin{aligned}
d\left(F^{*}\right) & \leqslant n+k_{1}-1-(m-1)+\sum_{i=2}^{m} k_{i} \\
& =n-m+\sum_{i=1}^{m} k_{i} \\
& =d(H) .
\end{aligned}
$$

This proves Theorem 2(i).
To prove Theorem 2(ii), we shall extend Thomassen's observation from P_{2} to $\prod_{i=1}^{n} C_{k_{i}}$.

Lemma 5. If a bipartite graph G admits an orientation of diameter at most k, where $k \geqslant 3$, such that each vertex is in a cycle of length at most k, then the graph $G \times \prod_{i=1}^{n} C_{k_{i}}$ admits an orientation of diameter not exceeding $k+\sum_{i=1}^{n}\left[k_{i} / 2\right]$ such that each vertex is in a cycle of length at most k.

Proof. Let V_{1} and V_{2} be the partite sets of G. Let $F \in \mathscr{D}(G)$ with $d(F) \leqslant k$ such that every vertex is in a cycle of length at most k in F.

Orient $G \times \prod_{i=1}^{n} C_{k_{i}}$ inductively as follows:
(i) In $G \times C_{k_{1}}$, for $1 \leqslant i \leqslant k_{1}$, orient

$$
\begin{aligned}
& (x, i) \rightarrow(x, i+1) \quad \text { iff } x \in V_{1} \\
& (x, i) \rightarrow(y, i) \quad \text { iff } \quad x y \in E(F)
\end{aligned}
$$

(Note that the second coordinate of $(x, i+1)$ is taken modulo k_{1}.)
(ii) Suppose $G \times \prod_{i=1}^{r} C_{k_{i}}$, where $1 \leqslant r \leqslant n-1$, has been oriented. Orient $G \times$ $\prod_{i=1}^{r+1} C_{k_{i}}$ so that the orientation of $G \times \prod_{i=1}^{r} C_{k_{i}} \times\{j\}$ is isomorphic to that of $G \times \prod_{i=1}^{r} C_{k_{i}}$ for each $j=1,2, \ldots, k_{r+1}$, and for $1 \leqslant i \leqslant k_{r+1}$, orient ($x, a_{1}, a_{2}, \ldots, a_{r}, i$) $\rightarrow\left(x, a_{1}, a_{2}, \ldots, a_{r}, i+1\right)$ iff $x \in V_{1}$ (note that the last coordinate is taken modulo k_{r+1}).

Let F^{*} be the resulting orientation of $G \times \prod_{i=1}^{n} C_{k_{i}}$. We shall now show that there is a path of length at most $k+\sum_{i=1}^{n}\left[k_{i} / 2\right]$ from an arbitrary vertex u to any other vertex v in F^{*}. Let $u=\left(x, a_{1}, a_{2}, \ldots, a_{n}\right)$ and $v=\left(y, b_{1}, b_{2}, \ldots, b_{n}\right)$. We may assume that $x \in V_{1}$. As the cartesian product is commutative, we further assume that

$$
0 \leqslant b_{i}-a_{i} \leqslant\left[\frac{k_{i}}{2}\right]\left(\bmod k_{i}\right) \text { for } i=1,2, \ldots, m
$$

and

$$
0 \leqslant a_{i}-b_{i} \leqslant\left[\frac{k_{i}}{2}\right]\left(\bmod k_{i}\right) \quad \text { for } i=m+1, \ldots, n .
$$

(1) Let $w=\left(x, b_{1}, b_{2}, \ldots, b_{m}, a_{m+1}, \ldots, a_{n}\right)$. Clearly, there is a $u-w$ path in F^{*} of length at most $\sum_{i=1}^{m}\left[k_{i} / 2\right]$.
(2) If $x \neq y$, let $w^{\prime}=\left(x^{\prime}, b_{1}, b_{2}, \ldots, b_{m}, a_{m+1}, \ldots, a_{n}\right)$, where x^{\prime} is adjacent from x in an $x-y$ path of length at most k in F. Observe that $x^{\prime} \in V_{2}$. If $x=y$, take a cycle of length at most k containing x in F.
(3) Let $w^{*}=\left(x^{\prime}, b_{1}, b_{2}, \ldots, b_{n}\right)$. Clearly, there is a $w^{\prime}-w^{*}$ path of length at most $\sum_{i=m+1}^{n}\left[k_{i} / 2\right]$ in F^{*}.
(4) There is a $w^{*}-v$ path of length at most $k-1$ in F^{*}.

Combining (1)-(4), we have

$$
\begin{aligned}
d(u, v) & \leqslant \sum_{i=1}^{m}\left[\frac{k_{i}}{2}\right]+1+\sum_{i=m+1}^{n}\left[\frac{k_{i}}{2}\right]+k-1 \\
& =k+\sum_{i=1}^{n}\left[\frac{k_{i}}{2}\right] .
\end{aligned}
$$

This shows that $d\left(F^{*}\right) \leqslant k+\sum_{i=1}^{n}\left[k_{i} / 2\right]$. The second part of Lemma 5 is obvious as each vertex in F^{*} is contained in a cycle of length at most k in F.

Proof of Theorem 2(ii). Let $G=\prod_{i=1}^{m} P_{k_{i}}$. By Theorem 1 and Lemma 2, the bipartite graph G admits an orientation F with $d(F)=\sum_{i=1}^{m} k_{i}-m$, and every vertex in G lies in a cycle of length not exceeding $k_{1}+k_{2}-2\left(\leqslant \sum_{i=1}^{m} k_{i}-m\right)$ in F. Thus by Lemma 5, the graph $H=G \times \prod_{i=1}^{r} C_{n_{i}}$ admits an orientation F^{*} with

$$
\begin{aligned}
d\left(F^{*}\right) & \leqslant \sum_{i=1}^{m} k_{i}-m+\sum_{i=1}^{r}\left[\frac{n_{i}}{2}\right] \\
& =d(H)
\end{aligned}
$$

This proves Theorem 2(ii).
Proof of Theorem 2(iii). Let $G=C_{2 n} \times \prod_{i=1}^{m} P_{k_{i}}$. By Theorem 2(i) and Lemma 2, the bipartite graph G admits an orientation F with $d(F)=n+\sum_{i=1}^{m} k_{i}-m$, and every vertex in G lies in a cycle of length at most $4\left(\leqslant n+\sum_{i=1}^{m} k_{i}-m\right)$ in F (see the proof of Lemma 4(ii)). Thus by Lemma 5, the graph $H=G \times \prod_{i=1}^{r} C_{n_{i}}$ admits an orientation F^{*} with

$$
\begin{aligned}
d\left(F^{*}\right) & \leqslant n+\sum_{i=1}^{m} k_{i}-m+\sum_{i=1}^{r}\left[\frac{n_{i}}{2}\right] \\
& =d(H)
\end{aligned}
$$

This proves Theorem 2(iii).

Acknowledgements

The authors would like to thank the referees for their helpful comments.

References

[1] F. Boesch and R. Tindell, Robbin's theorem for mixed multigraphs, Amer. Math. Monthly 87 (1980) 716-719.
[2] V. Chvátal and C. Thomassen, Distances in orientations of graphs, I. Combin. Theory Ser. B 24 (1978) 61-75.
[3] G. Gutin, m-sources in complete multipartite digraphs, Vestsi Acad. Navuk BSSR, Ser. Fiz.-Mat. Navuk. 5 (1989) 101-106 (In Russian).
[4] G. Gutin, Minimizing and maximizing the diameter in orientations of graphs, Graphs Combin. 10 (1994) 225-230.
[5] K.M. Koh and B.P. Tan, The diameters of a graph and its orientations, Res. Rep. (1992).
[6] K.M. Koh and B.P. Tan, The diameter of an orientation of a complete multipartite graph, Discrete Math. 149 (1996) 131-139.
[7] K.M. Koh and B.P. Tan, The minimum diameter of orientations of complete multipartite graphs, Graphs Combin. 12 (1996) 333-339.
[8] K.M. Koh and E.G. Tay, On optimal orientations of cartesian products of even cycles and paths, Networks, to appear.
[9] K.M. Koh and E.G. Tay, Optimal orientations of products of graphs (I), in preparation.
[10] K.M. Koh and E.G. Tay, Optimal orientations of products of graphs (II), in preparation.
[11] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
[12] J.E. McCanna, Orientations of the n-cube with minimum diameter, Discrete Math. 68 (1988) 309-310.
[13] J. Plesnik, Remarks on diameters of orientations of graphs, Acta Math. Univ. Comenian. 46/47-1985 (1986) 225-236.
[14] K.B. Reid, Every vertex a king, Discrete Math. 38 (1982) 93-98.
[15] H.E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281-283.
[16] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM J. Discrete Math. 1 (1988) 199-222.
[17] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs II: Two east-west avenues or north-south streets, Networks 19 (1989) 221-233.
[18] F.S. Roberts and Y. Xu, On the optimal strongly connccted oricntations of city strect graphs III: Threc east-west avenues or north-south streets, Networks 22 (1992) 109-143.
[19] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs IV: Four east-west avenues or north-south streets, Discrete Appl. Math. 49 (1994) 331-356.
[20] Ľ. Šoltés, Orientations of graphs minimizing the radius or the diameter, Math. Slovaca 36 (1986) 289-296.

[^0]: * Corresponding author. E-mail: matkohkm@leonis.nus.sg.

