

Discrete Applied Mathematics 78 (1997) 163-174

DISCRETE APPLIED MATHEMATICS

Optimal orientations of products of paths and cycles

K.M. Koh*, E.G. Tay

Department of Mathematics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260

Received 13 February 1996; revised 5 December 1996

Abstract

For a graph G, let $\mathcal{D}(G)$ be the family of strong orientations of G, $d(G) = \min\{d(D) | D \in \mathcal{D}(G)\}$ and $\rho(G) = d(G) - d(G)$, where d(G) and d(D) are the diameters of G and D respectively. In this paper we show that $\rho(G) = 0$ if G is a cartesian product of (1) paths, and (2) paths and cycles, which satisfy some mild conditions.

Keywords: Path; Cycle; Bipartite graph; Diameter; Strong orientation

1. Introduction

Let G (resp., D) be a graph (resp., digraph) with vertex set V(G) (resp., V(D)) and edge set E(G) (resp., E(D)). For $v \in V(G)$, the eccentricity e(v) of v is defined as $e(v) = \max\{d(v,x) | x \in V(G)\}$, where d(v,x) denotes the distance from v to x. The notion e(v) in D is similarly defined. The diameter of G (resp., D), denoted by d(G)(resp., d(D)), is defined as $d(G) = \max\{e(v) | v \in V(G)\}$ (resp., $d(D) = \max\{e(v) | v \in V(D)\}$).

An orientation of a graph G is a digraph obtained from G by assigning to each edge in G a direction. An orientation D of G is strong if every two vertices in D are mutually reachable in D. An edge e in a connected graph G is a bridge if G - e is disconnected. Robbins' celebrated one-way street theorem [15] states that a connected graph G has a strong orientation if and only if no edge of G is a bridge. As a possible way of extending Robbins' theorem, Boesch and Tindell [1] introduced the notion $\rho(G)$ given below. For a connected graph G containing no bridges, let $\mathcal{D}(G)$ be the family

^{*} Corresponding author. E-mail: matkohkm@leonis.nus.sg.

of strong orientations of G. Define

 $d(G) = \min\{d(D) \mid D \in \mathcal{D}(G)\}$ and $\rho(G) = d(G) - d(G)$.

The problem of evaluating $\rho(G)$ for an arbitrary connected graph G is very difficult. As a matter of fact, Chvátal and Thomassen [2] showed that the problem of deciding whether a graph admits an orientation of diameter two is NP-hard.

On the other hand, the parameter $\rho(G)$ has been studied in various classes of graphs including complete graphs [1, 11, 14], complete bipartite graphs [1, 3, 20], complete k-partite ($k \ge 3$) graphs [4, 6, 7, 13], and n-cubes [12, 20]. Let $G \times H$ denote the cartesian product of two graphs G and H (see Section 2 for the definition), and P_r, C_r and K_r , respectively, the path, cycle and complete graph of order r. Roberts and Xu [16–19], and independently Koh and Tan [5], evaluated the quantity $\rho(P_m \times P_n)$. Very recently, Koh and Tay have further determined the quantities $\rho(C_{2m} \times P_k)$ [8], $\rho(K_m \times P_k), \rho(K_m \times C_{2k+1})$ and $\rho(K_m \times K_n)$ [9] and $\rho(C_{2m} \times K_n)$ [10]. In this paper, we shall evaluate $\rho(G_1 \times G_2 \times \cdots \times G_m)$, where $m \ge 2$ and $\{G_i \mid 1 \le i \le m\}$ is a combination of paths and cycles.

2. Cartesian product of paths

The cartesian product of a family of graphs G_1, G_2, \ldots, G_n , denoted by $G_1, G_2 \times \cdots \times G_n$ or $\prod_{i=1}^n G_i$, where $n \ge 2$, is the graph G having $V(G) = V(G_1) \times V(G_2) \times \cdots \times V(G_n)$ and two vertices (u_1, u_2, \ldots, u_n) and (v_1, v_2, \ldots, v_n) are adjacent if and only if there exists $r \in \{1, 2, \ldots, n\}$ such that $u_r v_r \in E(G_r)$ and $u_i = v_i$ for all $i = 1, 2, \ldots, n$ with $i \ne r$. In this section, we shall evaluate $\rho(G)$, where G is of the form $\prod_{i=1}^n P_{k_i}$ with $n \ge 2$ and $k_i \ge 2$ for each $i = 1, 2, \ldots, n$. For convenience, the vertices in the graph are labelled (x_1, x_2, \ldots, x_n) , where $1 \le x_i \le k_i$ for each $i = 1, 2, \ldots, n$, such that the vertices (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are adjacent iff $|a_r - b_r| = 1$ for exactly one $r \in \{1, 2, \ldots, n\}$, and $a_i = b_i$ for all i with $i \ne r$.

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp., cycle) in D. A path from u to v in D is simply called a u-v path. For $X \subseteq V(D)$, the subdigraph of D induced by X is denoted by D[X]. For $x, y \in V(D)$ and $A \subseteq V(D)$, we write $(x \to y)$ if x is adjacent to y in D, and write $(x \to A)$ (resp., $(A \to y)$) if $x \to y$ for each $y \in A$ (resp., for each $x \in A$).

Our first main result is as follows:

Theorem 1. $\rho(\prod_{i=1}^{n} P_{k_i}) = 0$, where $n \ge 2$, $k_1 \ge 3$, $k_2 \ge 6$ with $(k_1, k_2) \ne (3, 6)$.

Let

$$G_n = \overbrace{P_2 \times P_2 \times \cdots \times P_2}^n$$

(i.e., the *n*-cube). In proving that $\rho(G_n) = 0$ for $n \ge 4$, McCanna [12] made use of the following subtle observation due to C. Thomassen.

Lemma 1. If a bipartite graph G admits an orientation of diameter at most k, where $k \ge 3$, such that every vertex is in a cycle of length at most k, then the graph $G \times P_2$ admits an orientation of diameter at most k + 1 such that every vertex is in a cycle of length at most k.

We shall now extend Thomassen's observation from P_2 to $\prod_{i=1}^{n} P_{k_i}$, and shall make use of the extension to prove some of our main results in this paper.

Lemma 2. If a bipartite graph G admits an orientation of diameter at most k, where $k \ge 3$, such that every vertex is in a cycle of length at most k, then the graph $G \times \prod_{i=1}^{n} P_{k_i}$, where $n \ge 1$, admits an orientation of diameter at most $k - n + \sum_{i=1}^{n} k_i$ such that every vertex is in a cycle of length at most k.

Proof. Let V_1 and V_2 be the partite sets of G. Let $F \in \mathcal{D}(G)$ with $d(F) \leq k$ such that every vertex is in a cycle of length at most k in F. We shall now orient $G \times \prod_{i=1}^{n} P_{k_i}$ inductively as follows:

- (i) In $G \times P_{k_1}$, for $1 \le i \le k_1 1$, orient $(x, i) \to (x, i+1)$ iff $x \in V_1$; and for $1 \le i \le k_1$, orient $(x, i) \to (y, i)$ iff $xy \in E(F)$.
- (ii) Suppose $G \times \prod_{i=1}^{r} P_{k_i}$, where $1 \le r \le n-1$, has been oriented. Orient $G \times \prod_{i=1}^{r+1} P_{k_i}$ so that the orientation of $G \times \prod_{i=1}^{r} P_{k_i} \times \{j\}$ is isomorphic to that of $G \times \prod_{i=1}^{r} P_{k_i}$ for each $j = 1, 2, ..., k_{r+1}$, and for $1 \le i \le k_{r+1} 1$, orient $(x, a_1, a_2, ..., a_r, i) \rightarrow (x, a_1, a_2, ..., a_r, i+1)$ iff $x \in V_1$.

Let F^* be the resulting orientation of $G \times \prod_{i=1}^n P_{k_i}$.

Claim. $e(u) \leq k - n + \sum_{i=1}^{n} k_i$ for each vertex u in F^* .

Let $u = (x, a_1, a_2, ..., a_n)$ and assume that $x \in V_1$, say. Take an arbitrary vertex $v = (y, b_1, b_2, ..., b_n)$ in F^* . As the cartesian product is commutative, we may assume that $a_i \leq b_i$ for $1 \leq i \leq m$ and $a_i > b_i$ for $m + 1 \leq i \leq n$, where $m \leq n$.

(1) Let $w = (x, b_1, b_2, \dots, b_m, a_{m+1}, \dots, a_n)$. Observe that there is a *u*-*w* path of length at most $\sum_{i=1}^{m} k_i - m$ in F^* .

(2) If $x \neq y$, let $w' = (x', b_1, b_2, ..., b_m, a_{m+1}, ..., a_n)$, where x' is adjacent from x in an x-y path of length at most k in F. Then $w \to w'$ in F^* . (Note that $x' \in V_2$.) If x = y, take a cycle of length at most k containing x in F.

(3) There is a path of length at most $\sum_{i=m+1}^{n} k_i - (n-m)$ from w' to $(x', b_1, b_2, \dots, b_n)$ in F^* .

(4) There is a path of length at most k - 1 from $(x', b_1, b_2, ..., b_n)$ to v in F^* .

Combining (1)-(4), $d(u,v) \leq \sum_{i=1}^{m} k_i - m + 1 + \sum_{i=m+1}^{n} k_i - (n-m) + k - 1 = k - n + \sum_{i=1}^{n} k_i$. This proves the claim.

Thus $d(F^*) \leq k - n + \sum_{i=1}^n k_i$. The second part of Lemma 2 is obvious as each vertex in F^* is contained in a cycle of length at most k in F. \Box

We need also the following result.

Fig. 1. Orientation of $P_3 \times P_{12}$.

Lemma 3. For $m \ge 3$, $n \ge 6$ with $(m, n) \ne (3, 6)$, there exists $F \in \mathcal{D}(P_m \times P_n)$ such that

(i) $d(F) = d(P_m \times P_n) = m + n - 2$ and

(ii) every vertex in $P_m \times P_n$ is in a cycle of length at most m + n - 2 in F.

Note. (1) $d(P_m \times P_n) = m + n - 2$ for all $m, n \ge 1$.

(2) It was shown in [5] that $d(P_3 \times P_6) = 8(=m+n-1)$.

Proof of Lemma 3. Part (i) (except some isolated cases) was first obtained by Roberts and Xu [16–19]. Here, we shall use the orientations of $P_m \times P_n$ introduced by Koh and Tan [5] to prove part (ii). Following [5], we have seven cases to consider.

Case A: m = 3 and $n \equiv 0 \pmod{2}$ with $n \ge 8$. Define $F \in \mathcal{D}(P_m \times P_n)$ as follows (see Fig. 1):

(1) For i = 1, 3 and j = 1, 2, ..., n - 1, orient $(i, j + 1) \rightarrow (i, j)$;

(2) For j = 1, 2, ..., n - 1, orient $(2, j) \rightarrow (2, j + 1)$;

(3) For j = 1, 2, 3, orient $\{(1, j), (3, j)\} \rightarrow (2, j);$

(4) Orient $(2,4) \rightarrow \{(1,4),(3,4)\};$

(5) Orient $(2,n) \rightarrow \{(1,n),(3,n)\}$ and $(2,n-1) \rightarrow \{(1,n-1),(3,n-1)\};$

(6) For j = 5, 6, ..., n-2, orient $(3, j) \to (2, j) \to (1, j)$ if $j \equiv 0 \pmod{2}$; and $(1, j) \to (2, j) \to (3, j)$ if $j \equiv 1 \pmod{2}$.

Note that d(F) = m + n - 2. Now, consider the following cycles (see also Fig. 1):

 (A_1) (1,1)(2,1)(2,2)(2,3)(2,4)(1,4)(1,3)(1,2)(1,1),

 (A_2) (3,1)(2,1)(2,2)(2,3)(2,4)(3,4)(3,3)(3,2)(3,1),

 (A_3) (3,5)(3,4)(3,3)(2,3)(2,4)(2,5)(3,5),

 (A_4) (1,n)(1,n-1)(1,n-2)(1,n-3)(2,n-3)(2,n-2)(2,n-1)(2,n)(1,n),

 (A_5) (3,n)(3,n-1)(3,n-2)(2,n-2)(2,n-1)(2,n)(3,n).

It can be checked that each of the above cycles is of length at most m + n - 2, and that the cycles cover vertices (3, 5), (1, n - 3), (2, n - 3) and (i, j), where i = 1, 2, 3 and j = 1, 2, 3, 4, n - 2, n - 1, n. On the other hand, each of the remaining vertices lies in a cycle of length 4 in F.

Case B: m=3 and n=7. Define $F \in \mathcal{D}(P_3 \times P_7)$ as shown in Fig. 2. It can be checked that d(F) = 8 = m + n - 2 and that (ii) is satisfied as shown in Fig. 2.

Case C: m = 3 and $n \equiv 1 \pmod{2}$ with $n \ge 9$. Define $F \in \mathscr{D}(P_m \times P_n)$ as follows (see Fig. 3):

Fig. 2. Orientation of $P_3 \times P_7$.

Fig. 3. Orientation of $P_3 \times P_{13}$.

Fig. 4. Orientation of $P_6 \times P_8$.

(1) $F[P_m \times P_{n-1}]$ is identical with the orientation in Case A;

(2) Orient $(2, n) \rightarrow \{(1, n), (3, n)\};$

(3) Orient $(1,n) \rightarrow (1,n-1), (2,n-1) \rightarrow (2,n), \text{ and } (3,n) \rightarrow (3,n-1).$

Note that d(F) = m + n - 2. Now, consider the following cycles (see also Fig. 3): (C₁) (1,1)(2,1)(2,2)(2,3)(2,4)(1,4)(1,3)(1,2)(1,1),

 (C_2) (3,1)(2,1)(2,2)(2,3)(2,4)(2,5)(3,5)(3,4)(3,3)(3,2)(3,1),

 (C_3) (1,n)(1,n-1)(1,n-2)(1,n-3)(1,n-4)(2,n-4)(2,n-3)(2,n-2)(2,n-1)(2,n)(1,n),

 (C_4) (3,n)(3,n-1)(3,n-2)(3,n-3)(2,n-3)(2,n-2)(2,n-1)(2,n)(3,n).

Each of these cycles is of length at most m + n - 2 and they cover vertices (3, 5), (1, n - 4), (2, n - 4) and (i, j), where i = 1, 2, 3 and j = 1, 2, 3, 4, n - 3, n - 2, n - 1, n. On the other hand, each of the remaining vertices lies in a cycle of length 4 in F.

Case D: $m \equiv n \equiv 0 \pmod{2}$ with $m \ge 4$ and $n \ge 6$. Define $F \in \mathscr{D}(P_m \times P_n)$ as follows (see Fig. 4):

Fig. 5. Orientation of $P_6 \times P_9$.

(1) For i = 1, 2, ..., m and j = 1, 2, ..., n - 1, orient

 $(i,j) \rightarrow (i,j+1)$ if $i \equiv 0 \pmod{2}$, $(i,j+1) \rightarrow (i,j)$ if $i \equiv 1 \pmod{2}$;

(2) For i = 1, 2, ..., m - 1 and j = 2, 3, ..., n - 1, orient

 $(i,j) \rightarrow (i+1,j)$ if $j \equiv 0 \pmod{2}$, $(i+1,j) \rightarrow (i,j)$ if $j \equiv 1 \pmod{2}$;

(3) Orient $(1, 1) \rightarrow (2, 1)$ and $(i, 1) \rightarrow \{(i-1, 1), (i+1, 1)\}$ for each i = 3, 5, ..., m-1; (4) Orient $(i, n) \rightarrow \{(i-1, n), (i+1, n)\}$ for each i = 2, 4, ..., m-2; and (5) Orient $(m, n) \rightarrow (m-1, n)$. Note that d(F) = m + n - 2. Now, consider the following cycles: (D₁) For i = 1, 3, ..., m-1,

(i,1)(i+1,1)(i+1,2)(i+1,3)(i,3)(i,2)(i,1);

 (D_2) For i = 1, 3, ..., m - 1,

$$(i,n)(i,n-1)(i,n-2)(i+1,n-2)(i+1,n-1)(i+1,n)(i,n).$$

Each of these cycles is of length not exceeding m + n - 2, and the cycles cover vertices (i, j), where i = 1, 2, ..., m and j = 1, 2, 3, n - 2, n - 1, n. On the other hand, each of the remaining vertices lies in a cycle of length 4 in F.

Case E: $m \equiv 0 \pmod{2}$ and $n \equiv 1 \pmod{2}$ with $m \ge 4$ and $n \ge 7$. Define $F \in \mathcal{D}(P_m \times P_n)$ as follows (see Fig. 5):

- (1) $F[P_m \times P_{n-1}]$ is identical with the orientation in Case D;
- (2) For i = 1, 3, ..., m 1, orient $(i, n 1) \rightarrow (i, n)$ and $(i + 1, n) \rightarrow (i + 1, n 1)$;
- (3) For i = 3, 5, ..., m 1, orient $(i, n) \rightarrow \{(i 1, n), (i + 1, n)\};$
- (4) Orient $(1, n) \to (2, n)$.

Fig. 6. Orientation of $P_7 \times P_9$.

Note that d(F) = m + n - 2. Also, it can be shown (see Fig. 5 as an illustration) that each vertex is in a cycle of length not exceeding m + n - 2 in F.

Case F: $m \equiv n \equiv 1 \pmod{2}$ with $m \ge 5$ and $n \ge 7$. Define $F \in \mathscr{D}(P_m \times P_n)$ as follows (see Fig. 6):

(1) $F[P_{m-1} \times P_n]$ is identical with the orientation in Case E;

(2) For each j = 2, 4, ..., n - 1, orient

 $(m, j) \rightarrow \{(m, j-1), (m, j+1)\},\$

 $(m-1,j) \rightarrow (m,j)$ and

$$(m, j-1) \rightarrow (m-1, j-1);$$

(3) Orient $(m,n) \rightarrow (m-1,n)$.

Note that d(F) = m + n - 2. Also, it can be checked (see Fig. 6 as an illustration) that each vertex is in a cycle of length not exceeding m + n - 2 in F.

Finally, we consider the case when $m \equiv 1 \pmod{2}$ and $n \equiv 0 \pmod{2}$ with $m \ge 5$ and $n \ge 6$. By symmetry and the result in Case E, we need only consider the following:

Case G: m = 5 and $n \equiv 0 \pmod{2}$ with $n \ge 6$. Let n = 2k and define $F \in \mathscr{D}(P_5 \times P_n)$ as follows (see Fig. 7):

(1) For i = 1, 2, 4, 5 and j = 1, 2, ..., k-1, orient $(i, j) \rightarrow (i, j+1)$ and $(3, j+1) \rightarrow (3, j)$; (2) For i = 1, 2, 4, 5 and j = k + 1, k + 2, ..., 2k - 1, orient $(i, j + 1) \rightarrow (i, j)$ and $(3, j) \rightarrow (3, j + 1)$;

(3) For $j \neq k, k + 1$, orient $(1, j) \leftarrow (2, j) \leftarrow (3, j) \rightarrow (4, j) \rightarrow (5, j);$

(4) For j = k, k + 1, orient $(1, j) \rightarrow (2, j) \rightarrow (3, j) \leftarrow (4, j) \leftarrow (5, j)$;

(5) Orient $(2,k) \rightarrow (2,k+1), (3,k) \leftarrow (3,k+1)$ and $(4,k) \rightarrow (4,k+1)$. The edges (1,k)(1,k+1) and (5,k)(5,k+1) may be arbitrarily oriented.

Note that d(F) = n + 3 and each vertex is in a cycle of length not exceeding n + 3 (see Fig. 7 as an illustration).

Fig. 7. Orientation of $P_5 \times P_8$.

The proof of Lemma 3 is now complete. \Box

Proof of Theorem 1. Let $G = P_{k_1} \times P_{k_2}$. By Lemma 3, the bipartite graph G admits an orientation F with $d(F) = k_1 + k_2 - 2$ such that each vertex in G is in a cycle of length at most $k_1 + k_2 - 2$ in F. By Lemma 2, the graph $\prod_{i=1}^{n} P_{k_i}$ admits an orientation F^* with

$$d(F^*) \leq (k_1 + k_2 - 2) - (n - 2) + \sum_{i=3}^n k_i$$

= $\sum_{i=1}^n k_i - n$
= $d\left(\prod_{i=1}^n P_{k_i}\right).$

The result thus follows. \Box

3. Cartesian product of paths and cycles

The main aim in this section is to prove the following results.

Theorem 2. (i) $\rho(C_{2n} \times \prod_{i=1}^{m} P_{k_i}) = 0$ for $m \ge 1$, $n \ge 2$ and $k_1 \ge 4$. (ii) $\rho(\prod_{i=1}^{m} P_{k_i} \times \prod_{i=1}^{r} C_{n_i}) = 0$ for $m \ge 2$, $r \ge 0$, $k_1 \ge 3$ and $k_2 \ge 6$ with $(k_1, k_2) \ne (3, 6)$. (iii) $\rho(C_{2n} \times \prod_{i=1}^{m} P_{k_i} \times \prod_{i=1}^{r} C_{n_i}) = 0$ for $m \ge 1$, $r \ge 0$, $n \ge 2$ and $k_1 \ge 4$.

Note that results (ii) and (iii) are overlapping with (ii) requiring stronger conditions on two paths whereas (iii) requiring a cycle to be even and the length of a path at least four.

In what follows, the vertices of $\prod_{i=1}^{r} C_{n_i}$ are labelled (x_1, x_2, \ldots, x_r) , where $1 \le x_i \le n_i$, $1 \le i \le r$ so that (a_1, a_2, \ldots, a_r) and (b_1, b_2, \ldots, b_r) are adjacent iff $|a_k - b_k| = 1 \pmod{n_k - 2}$

Fig. 8. Orientation of $C_6 \times P_5$.

for exactly one k, $1 \le k \le r$, and $a_i = b_i$ for all *i* with $i \ne k$. For a real x, we shall denote by [x] the greatest integer not exceeding x.

To prove Theorem 2(i), we need the following result.

Lemma 4. For $n \ge 2$ and $k \ge 4$, there exists $F \in \mathscr{D}(C_{2n} \times P_k)$ such that (i) $d(F) = d(C_{2n} \times P_k) = n + k - 1$ and

(ii) every vertex in $C_{2n} \times P_k$ is in a cycle of length at most n + k - 1 in F.

Proof. In [8], the following orientation F of $C_{2n} \times P_k$ was introduced (see Fig. 8):

(i) For $i \equiv 1 \pmod{2}$ and $1 \le i \le 2n - 1$, orient $(i, 1) \to \{(i + 1, 1), (i - 1, 1)\}$:

(ii) For $j \equiv 0 \pmod{2}$, $2 \leq j \leq k-1$, and $1 \leq i \leq 2n$, orient $(i,j) \rightarrow (i+1,j)$;

- (iii) For $j \equiv 1 \pmod{2}$, $3 \leq j \leq k-1$, and $1 \leq i \leq 2n$, orient $(i,j) \rightarrow (i-1,j)$;
- (iv) For $i \equiv 0 \pmod{2}$ and $2 \leq i \leq 2n$, orient $(i,k) \rightarrow \{(i+1,k), (i-1,k)\};$
- (v) For $i \equiv 0 \pmod{2}$, $2 \leq i \leq 2n$ and $1 \leq j \leq k-1$, orient $(i, j) \rightarrow (i, j+1)$;
- (vi) For $i \equiv 1 \pmod{2}$, $1 \leq i \leq 2n-1$ and $2 \leq j \leq k$, orient $(i, j) \rightarrow (i, j-1)$.

It was shown in [8] also that $d(F) = d(C_{2n} \times P_k) = n + k - 1$ for $k \ge 4$ and $n \ge 2$. It remains to prove (ii).

Consider the following cycles (see also Fig. 8):

- (A₁) For $j \equiv 0 \pmod{2}$ with $2 \le j \le k-3$ for odd k or $2 \le j \le k-2$ for even k, and $i \equiv 1 \pmod{2}$ with $1 \le i \le 2n-1$, (i,j)(i+1,j)(i+1,j+1)(i,j+1)(i,j);
- (A_2) For $i \equiv 1 \pmod{2}$, $1 \leq i \leq 2n-1$, (i,1)(i-1,1)(i-1,2)(i,2)(i,1); and
- (A₃) For $i \equiv 1 \pmod{2}$, $1 \le i \le 2n-1$, (i+1,k)(i,k)(i,k-1)(i+1,k-1)(i+1,k)if k is odd, or (i-1,k)(i,k)(i,k-1)(i-1,k-1)(i-1,k) if k is even. Clearly, all the above cycles are of length $4 (\le n+k-1)$ and they cover $V(C_{2n} \times P_k)$.

Proof of Theorem 2(i). Let $G = C_{2n} \times P_{k_1}$. By Lemma 4, the bipartite graph G admits an orientation F with $d(F) = n + k_1 - 1$ such that each vertex in G is in a cycle of length at most $n + k_1 - 1$ in F. By Lemma 2, the graph $H = C_{2n} \times \prod_{i=1}^{m} P_{k_i}$ admits an

orientation F^* with

$$d(F^*) \leq n + k_1 - 1 - (m - 1) + \sum_{i=2}^m k_i$$

= $n - m + \sum_{i=1}^m k_i$
= $d(H)$.

This proves Theorem 2(i). \Box

To prove Theorem 2(ii), we shall extend Thomassen's observation from P_2 to $\prod_{i=1}^{n} C_{k_i}$.

Lemma 5. If a bipartite graph G admits an orientation of diameter at most k, where $k \ge 3$, such that each vertex is in a cycle of length at most k, then the graph $G \times \prod_{i=1}^{n} C_{k_i}$ admits an orientation of diameter not exceeding $k + \sum_{i=1}^{n} [k_i/2]$ such that each vertex is in a cycle of length at most k.

Proof. Let V_1 and V_2 be the partite sets of G. Let $F \in \mathcal{D}(G)$ with $d(F) \leq k$ such that every vertex is in a cycle of length at most k in F.

Orient $G \times \prod_{i=1}^{n} C_{k_i}$ inductively as follows:

(i) In $G \times C_{k_1}$, for $1 \le i \le k_1$, orient

$$(x,i) \rightarrow (x,i+1)$$
 iff $x \in V_1$,

$$(x,i) \to (y,i)$$
 iff $xy \in E(F)$

(Note that the second coordinate of (x, i + 1) is taken modulo $k_{1.}$)

(ii) Suppose $G \times \prod_{i=1}^{r} C_{k_i}$, where $1 \le r \le n-1$, has been oriented. Orient $G \times \prod_{i=1}^{r+1} C_{k_i}$ so that the orientation of $G \times \prod_{i=1}^{r} C_{k_i} \times \{j\}$ is isomorphic to that of $G \times \prod_{i=1}^{r} C_{k_i}$ for each $j = 1, 2, ..., k_{r+1}$, and for $1 \le i \le k_{r+1}$, orient $(x, a_1, a_2, ..., a_r, i) \to (x, a_1, a_2, ..., a_r, i+1)$ iff $x \in V_1$ (note that the last coordinate is taken modulo k_{r+1}).

Let F^* be the resulting orientation of $G \times \prod_{i=1}^n C_{k_i}$. We shall now show that there is a path of length at most $k + \sum_{i=1}^n [k_i/2]$ from an arbitrary vertex u to any other vertex vin F^* . Let $u = (x, a_1, a_2, \ldots, a_n)$ and $v = (y, b_1, b_2, \ldots, b_n)$. We may assume that $x \in V_1$. As the cartesian product is commutative, we further assume that

$$0 \leq b_i - a_i \leq \left[\frac{k_i}{2}\right] \pmod{k_i} \quad \text{for } i = 1, 2, \dots, m$$

and

$$0 \leq a_i - b_i \leq \left[\frac{k_i}{2}\right] \pmod{k_i} \quad \text{for } i = m + 1, \dots, n.$$

(1) Let $w = (x, b_1, b_2, \dots, b_m, a_{m+1}, \dots, a_n)$. Clearly, there is a u - w path in F^* of length at most $\sum_{i=1}^{m} [k_i/2]$.

- (2) If $x \neq y$, let $w' = (x', b_1, b_2, ..., b_m, a_{m+1}, ..., a_n)$, where x' is adjacent from x in an x-y path of length at most k in F. Observe that $x' \in V_2$. If x = y, take a cycle of length at most k containing x in F.
- (3) Let $w^* = (x', b_1, b_2, ..., b_n)$. Clearly, there is a $w' w^*$ path of length at most $\sum_{i=m+1}^{n} [k_i/2]$ in F^* .
- (4) There is a w^*-v path of length at most k-1 in F^* .

Combining (1)-(4), we have

$$d(u,v) \leq \sum_{i=1}^{m} \left[\frac{k_i}{2}\right] + 1 + \sum_{i=m+1}^{n} \left[\frac{k_i}{2}\right] + k - 1$$

= $k + \sum_{i=1}^{n} \left[\frac{k_i}{2}\right].$

This shows that $d(F^*) \leq k + \sum_{i=1}^{n} [k_i/2]$. The second part of Lemma 5 is obvious as each vertex in F^* is contained in a cycle of length at most k in F. \Box

Proof of Theorem 2(ii). Let $G = \prod_{i=1}^{m} P_{k_i}$. By Theorem 1 and Lemma 2, the bipartite graph G admits an orientation F with $d(F) = \sum_{i=1}^{m} k_i - m$, and every vertex in G lies in a cycle of length not exceeding $k_1 + k_2 - 2$ ($\leq \sum_{i=1}^{m} k_i - m$) in F. Thus by Lemma 5, the graph $H = G \times \prod_{i=1}^{r} C_{n_i}$ admits an orientation F^* with

$$d(F^*) \leq \sum_{i=1}^m k_i - m + \sum_{i=1}^r \left[\frac{n_i}{2}\right]$$

= $d(H)$.

This proves Theorem 2(ii). \Box

Proof of Theorem 2(iii). Let $G = C_{2n} \times \prod_{i=1}^{m} P_{k_i}$. By Theorem 2(i) and Lemma 2, the bipartite graph G admits an orientation F with $d(F) = n + \sum_{i=1}^{m} k_i - m$, and every vertex in G lies in a cycle of length at most $4(\leq n + \sum_{i=1}^{m} k_i - m)$ in F (see the proof of Lemma 4(ii)). Thus by Lemma 5, the graph $H = G \times \prod_{i=1}^{r} C_{n_i}$ admits an orientation F^* with

$$d(F^*) \leq n + \sum_{i=1}^m k_i - m + \sum_{i=1}^r \left[\frac{n_i}{2}\right]$$

= $d(H)$.

This proves Theorem 2(iii). \Box

Acknowledgements

The authors would like to thank the referees for their helpful comments.

References

- [1] F. Boesch and R. Tindell, Robbin's theorem for mixed multigraphs, Amer. Math. Monthly 87 (1980) 716-719.
- [2] V. Chvátal and C. Thomassen, Distances in orientations of graphs, J. Combin. Theory Ser. B 24 (1978) 61–75.
- [3] G. Gutin, m-sources in complete multipartite digraphs, Vestsi Acad. Navuk BSSR, Ser. Fiz.-Mat. Navuk. 5 (1989) 101–106 (In Russian).
- [4] G. Gutin, Minimizing and maximizing the diameter in orientations of graphs, Graphs Combin. 10 (1994) 225-230.
- [5] K.M. Koh and B.P. Tan, The diameters of a graph and its orientations, Res. Rep. (1992).
- [6] K.M. Koh and B.P. Tan, The diameter of an orientation of a complete multipartite graph, Discrete Math. 149 (1996) 131–139.
- [7] K.M. Koh and B.P. Tan, The minimum diameter of orientations of complete multipartite graphs, Graphs Combin. 12 (1996) 333–339.
- [8] K.M. Koh and E.G. Tay, On optimal orientations of cartesian products of even cycles and paths, Networks, to appear.
- [9] K.M. Koh and E.G. Tay, Optimal orientations of products of graphs (I), in preparation.
- [10] K.M. Koh and E.G. Tay, Optimal orientations of products of graphs (II), in preparation.
- [11] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
- [12] J.E. McCanna, Orientations of the n-cube with minimum diameter, Discrete Math. 68 (1988) 309-310.
- [13] J. Plesnik, Remarks on diameters of orientations of graphs, Acta Math. Univ. Comenian. 46/47-1985 (1986) 225-236.
- [14] K.B. Reid, Every vertex a king, Discrete Math. 38 (1982) 93-98.
- [15] H.E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281-283.
- [16] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM J. Discrete Math. 1 (1988) 199–222.
- [17] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs II: Two east-west avenues or north-south streets, Networks 19 (1989) 221-233.
- [18] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs III: Three east-west avenues or north-south streets, Networks 22 (1992) 109-143.
- [19] F.S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs IV: Four east-west avenues or north-south streets, Discrete Appl. Math. 49 (1994) 331-356.
- [20] L. Soltés, Orientations of graphs minimizing the radius or the diameter, Math. Slovaca 36 (1986) 289-296.