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Abstract 

For a graph G, let 9(G) be the family of strong orientations of G, d(G) = min{d(D) / D t 9’ 
(G)} and p(G) = d(G) -d(G), where d(G) and d(D) are the diameters of G and D respectively. 
In this paper we show that p(G) = 0 if G is a Cartesian product of (I ) paths, and (2) paths and 
cycles, which satisfy some mild conditions. 

Keywords: Path; Cycle; Bipartite graph; Diameter; Strong orientation 

1. Introduction 

Let G (resp., D) be a graph (resp., digraph) with vertex set V(G) (resp., V(D)) 

and edge set E(G) (resp., E(D)). For u E V(G), the eccentricity e(u) of z: is defined 

as e(v) = max{d(c,x) 1.x E V(G)}, where d(u,x) denotes the distance from c to x. The 

notion e(v) in D is similarly defined. The diameter of G (resp., D), denoted by d(G) 

(resp., d(D)), is defined as d(G) = max{e(tl) 1 u E V(G)} (resp., d(D) = max{e(v) ( 1: E 

V(D)) ). 
An orientation of a graph G is a digraph obtained from G by assigning to each 

edge in G a direction. An orientation I) of’ G is strong if every two vertices in D are 

mutually reachable in D. An edge e in a connected graph G is a bridge if G - e is 

disconnected. Robbins’ celebrated one-way street theorem [15] states that a connected 

graph G has a strong orientation ifand only ifno edge of G is a bridge. As a possible 

way of extending Robbins’ theorem, Boesch and Tindell [l] introduced the notion p(G) 

given below. For a connected graph G containing no bridges, let 9(G) be the family 
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of strong orientations of G. Define 

d(G)= min{d(D)(DEg(G)} and p(G)=&(G)-d(G). 

The problem of evaluating p(G) for an arbitrary connected graph G is very difficult. 

As a matter of fact, Chvatal and Thomassen [2] showed that the problem of deciding 

whether a graph admits an orientation of diameter two is NP-hard. 

On the other hand, the parameter p(G) has been studied in various classes of graphs 

including complete graphs [ 1, 11, 141, complete bipartite graphs [ 1, 3, 201, complete 

k-partite (k>3) graphs [4, 6, 7, 131, and n-cubes [12, 201. Let G x H denote the carte- 

sian product of two graphs G and H (see Section 2 for the definition), and P,, C, 

and K,, respectively, the path, cycle and complete graph of order r. Roberts and 

Xu [ 16- 191, and independently Koh and Tan [5], evaluated the quantity p(P, x P, ). 

Very recently, Koh and Tay have further determined the quantities P(C& x Pk) [8], 

p(K, x Pk),p(K, x CIk+l) and p(K, x K,,) [9] and p(Cz, x K,) [lo]. In this paper, we 

shall evaluate p(Gi x Gz x . . . x G,), where m>2 and {Gi ( 1 <i<m} is a combina- 

tion of paths and cycles. 

2. Cartesian product of paths 

The Cartesian product of a family of graphs Gi, Gz, . . . , G,, denoted by Gi, GZ x ’ . . x 

G, or fly=,Gi, where n 2 2, is the graph G having V(G)= V(Gi) x V(G2) x .‘. x 

V(G,) and two vertices (ui,uz ,..., u,) and (ui,vz ,..,, u,) are adjacent if and only if 

there exists rE {1,2,..., rz} such that u,.u,~E(G,.) and ui=U; for all i=1,2,...,n with 

i #r. In this section, we shall evaluate p(G), where G is of the form fl:=iPkz with 

n82 and kib2 for each i=1,2,..., n. For convenience, the vertices in the graph 

are labelled (x1,x2,. . . , x,), where 1 < xi < ki for each i = 1,2,. . . , n, such that the ver- 

tices (a,,~ ,..., a,) and (bi,&, . . . ,b,) are adjacent iff la, - b,l = 1 for exactly one 

rE{1,2,..., n}, and ai = bi for all i with i #r. 

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp., 

cycle) in D. A path from u to u in D is simply called a u-v path. For X c V(D), the 

subdigraph of D induced by X is denoted by D[X]. For x, y E V(D) and A & V(D), we 

write ‘x + y’ if x is adjacent to y in D, and write ‘x -+ A’ (resp., ‘A ---f y’) if x + y 

for each y E A (resp., for each x E A). 

Our first main result is as follows: 

Theorem 1. p(fl~zlPkr) = 0, where n 2 2, kl 3 3, k2 3 6 with (kl, k2) # (3,6). 

Let 

& 
G,, = P2 x 9 x . . . x P2 

(i.e., the n-cube). In proving that p(G,) = 0 for n > 4, McCanna [12] made use of the 

following subtle observation due to C. Thomassen. 
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Lemma 1. If a bipartite graph C admits an orientation of diameter at most k, where 

k >, 3, such that every vertex is in a cycle of length at most k, then the graph G x P2 

admits an orientation of diameter at most k _t 1 such that every vertex is in a cycle 

qf‘length at most k. 

We shall now extend Thomassen’s observation from PZ to n:=,Pk,, and shall make 

use of the extension to prove some of our main results in this paper. 

Lemma 2. If a bipartite graph G admits an orientation of diameter at most k, where 

k 3 3, such that every vertex is in a cycle of length at most k, then the graph 

G x fl:=,Pk,, where n > 1, admits an orientation of diameter at most k - n f c:_,k, 

such that every vertex is in a cycle of length at most k. 

Proof. Let V, and V, be the partite sets of G. Let F E 9(G) with d(F) <k such that 

every vertex is in a cycle of length at most k in F. We shall now orient G x &Pk! 

inductively as follows: 

(i) In G x Pk,, for 1 < i < kl- 1, orient (x, i) +(x,i+l)iffxEF;andforl didkl. 

orient (x, i) + (y, i) iff xy E E(F). 

(ii) Suppose G x nLIPkz, where 1 d r < n- 1, has been oriented. Orient G x n:l-: Pk 

so that the orientation of G x fl:=, Pkz x {j} is isomorphic to that of G x niz, Pk, 

for each j= 1,2,. . .,k,+l, and for 1 d i < k,_l - 1, orient (x,al,az,. ,a,,i) - 

(x,al,a2 ,..., a,,i+ 1) iff xE V,. 

Let F* be the resulting orientation of G x n:=,Pk,. 

Claim. e(u) d k - n + CF=,k, for each certex u in F*. 

Let u = (x, al, az,. . . , a,) and assume that x E 6, say. Take an arbitrary vertex 2’ = 

(y, b,, b2,. . . , b,) in F*. As the Cartesian product is commutative, we may assume that 

a; < bi for 1 < i < m and ai > bi for m + 1 d i < n, where m < n. 

(1) Let w=(x,bl,bz ,..., b,,a m+l,. . , a,). Observe that there is a U-W path of length 

at most CyX,kj - m in F*. 

(2) If x # y, let w’ =(x’, bl, bz,. , b,,,,a,,,+l,. . ,a,), where x’ is adjacent from x in 

an x-y path of length at most k in F. Then w + w’ in F*. (Note that x’ E Vz.) If x = y, 

take a cycle of length at most k containing x in F. 

(3) There is a path of length at most EYE,+, ki-(n-m) from w’ to (x’, bl,bz,. ,b,) 

in F*. 

(4) There is a path of length at most k - 1 from (x’, 61, bz,. . ,b,) to v in F*. 

Combining (l)-(4), d(u,v) d Cy!lki - m + 1 + Cl=,+, ki - (n - m) + k - 1 =k - 

n + Cr=,ki. This proves the claim. 

Thus d(F*) d k - n + C:=,k,. The second part of Lemma 2 is obvious as each 

vertex in F* is contained in a cycle of length at most k in F. Cl 

We need also the following result. 
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(1.1, _ (1.12) 

I I l-l-l-n-i-l-l-l-l 
1-l-l-l-l-1-l-l-l-l-l-l ----- c-c--- 

(3.1) (3.12) 

Fig. 1. Orientation of P3 x P12. 

Lemma 3. For m 3 3, n 3 6 with (m,n) # (3,6), there exists FE &B(Pnz x P,) such 

that 

(i) d(F)=d(P, x P,)=m +n - 2 and 

(ii) every vertex in P, x P, is in a cycle of length at most m + n - 2 in F. 

Note.(l)d(P,xP,)=m+n-2forallm,n>l. 

(2) It was shown in [5] that d(P3 x Pe) = 8(= m + n - 1). 

Proof of Lemma 3. Part (i) (except some isolated cases) was first obtained by Roberts 

and Xu [ 16- 191. Here, we shall use the orientations of P,,, x P, introduced by Koh and 

Tan [5] to prove part (ii). Following [5], we have seven cases to consider. 

Case A: m = 3 and n E 0 (mod 2) with n > 8. Define F E LS(Pm x P,,) as follows (see 

Fig. 1): 

(1) For i= 1,3 and j= 1,2,...,n - 1, orient (i,j+ 1) + (i,j); 

(2) For j= 1,2,. . .,a - 1, orient (2,j) --f (2,j + 1); 

(3) For j= 1,2,3, orient {(l,j),(3,j)} -+ (2,j); 

(4) Orient (2,4) + {(1,4),(3,4)}; 
(5) Orient (2,n) + {(l,n), (3,n)) and (2, n - 1) -+ {(l,n - 1),(3,n - 1)); 

(6) Forj=5,6 ,..., n-2, orient (3,j) + (2,j) ---f (1,j) ifj-0(mod2); and (1,j) + 

(2,j) + (3,j) if j E 1 (mod 2). 

Note that d(F) = m + n - 2. Now, consider the following cycles (see also Fig. 1): 

(Al) (1,1)(2,1)(2,2)(2,3)(2>4)(1>4)(1>3)(1>2)(1> 1X 

(A2) (3,1)(2,1)(2,2)(2>3)(2,4)(3,4)(3,3)(3,2)(3,1)> 

(A31 (3,5)(3,4)(3,3)(2>3)(2,4)(2,5)(3,5), 

G44) (l,n)(l,n - l)(l,n - 2)(l,n - 3)(2,n - 3)(2,n - 2)(2,n - lKLn)(l,n), 

(AS) (&fl)(&n - 1)(&n -2)(&n - 2)(2,n - l)P,nM,n). 

It can be checked that each of the above cycles is of length at most m + n - 2, and 

that the cycles cover vertices (3,5), (1, n-3),(2,n-3) and (i,j), where i=1,2,3 and 

j = 1,2,3,4, n - 2, n - 1, II. On the other hand, each of the remaining vertices lies in 

a cycle of length 4 in F. 

Case B: m = 3 and n= 7. Define FE B(P3 x 4) as shown in Fig. 2. It can be 

checked that d(F) = 8 = m + n - 2 and that (ii) is satisfied as shown in Fig. 2. 

Case C: m = 3 and n = 1 (mod 2) with n 3 9. Define F E S(P, x P,) as follows (see 

Fig. 3): 
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Fig. 2. Orientatwn of P3 x PT. 

(1.1) (1.131 
--- 

l I I l-l-l-l-l-l-l-n-l --- 
t I I l-l-l-l-l-l-l-l-l-l --- ~--~-~~-c- 

(3.1) (3.13) 

Fig. 3. Orientation of Px x P13 

(1.1) 

l-l-l-l 
-A- 

(1.8) 

-- I I 1-1 -- 
I 1 1-1-1-1 I I ---v--- 
I I I I I I I I 
1-1-1-1-1-1-1-1 e-A-- -- 
I I I I I I I I (65-------- 6s) 

Fig. 4. Orientation of Pe x Px 

( 1) F[P, x P,_ 11 is identical with the orientation in Case A; 

(2) Orient (2,n)+{(l,n),(3,n)}; 
(3) Orient (I,n)-(l,n - 1),(2,n - 1)-‘(2,n), and (3,n)+(3,n - I). 

Note that d(F) = m + n - 2. Now, consider the following cycles (see also Fig. 3): 

(CI) (~~~)(2,1)(2>2)(2,3)(2,4)(1,4)(1,3)(1,2)(1, I)> 

(Cz) (3>1)(2,1)(2,2)(2,3)(2,4)(2,5)(3,5)(3,4)(3,3)(3,2)(3, I), 
(C3) (l,n)(l,n- l)(l,n-2)(1,n-3)(l,n-4)(2,n-4)(2,n - 3)(2,n - 2)(2,n ~ 1 ) 

(2,fl)(l,nh 
(c,) (3,n)(3,n - 1)(3,n - 2)(3,n - 3)(2,n - 3)(2,n - 2)(2,n - 1)(2,n)(3,n). 

Each of these cycles is of length at most m + II - 2 and they cover vertices (3,5 ). 

(l,n-4),(2,n-4) and (i,j), where i=1,2,3 andj=1,2,3,4,n-3,n-2,n-l,n. On 

the other hand, each of the remaining vertices lies in a cycle of length 4 in F. 

Case D: m =n E 0 (mod2) with m 3 4 and n 3 6. Define F E 2(Pm x P,) as follows 

(see Fig. 4): 
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Fig. 5. Orientation of Pg X P9 

(1) For i=1,2 ,..., rn andj=1,2 ,..., n- 1, orient 

(i,j)-+(i,j+l) if i=O(mod2), 

(i,j + 1) + (i,j) if i 3 1 (mod 2); 

(2) For i=1,2,..., m- 1 and j=2,3 ,..., n- 1, orient 

(i,j) -+ (i+ l,j) if j=O(mod2), 

(i + 1, j) + (i, j) if j = 1 (mod 2); 

(3)Orient(1,1)+(2,1)and(i,1)+{(i-1,1),(i+1,1)} foreachi=3,5,...,m-1; 

(4) Orient (i,n) + {(i - l,n), (i + l,n)} for each i = 2,4,. . ,m - 2; and 

(5) Orient (m,n)+(m - 1,n). 

Note that d(F) = m + n - 2. Now, consider the following cycles: 

(01) For i= I,3 ,..., m - 1, 

(i,l)(i+ l,l)(i+ 1,2)(i+ 1,3)(&3)(&2)(&l); 

(LIZ) For i=1,3 ,..., m- 1, 

(i,n)(i,n - I)(i,n - 2)(i + 1,n - 2)(i + 1,n - l)(i + l,n)(i,n). 

Each of these cycles is of length not exceeding m + n - 2, and the cycles cover 

vertices (i, j), where i = 1,2,, . . , m and j=1,2,3,n - 2,n - 1,n. On the other hand, 

each of the remaining vertices lies in a cycle of length 4 in F. 

Case E: m E 0(mod2) and n E 1 (mod2) with m > 4 and n b 7. Define FE 

9(Pm x P,) as follows (see Fig. 5): 

(1) F[P, x P,,_ I] is identical with the orientation in Case D; 

(2) For i= 1,3,..., m-l, orient (i,n-l)+(i,n) and(i+l,n)+(i+l,n-I); 

(3) For i=3,5 ,..., m- 1, orient (i,n)-+{(i- l,n),(i+ 1,n)); 

(4) Orient (l,n)+(2,n). 
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(1.L) _ (1.9) 

I I 1-l-l-l-l-l-l --AU_--- 

I 1 I I I I I I I -------- 

I I I I I I I I I --- ----- 
I_l_l I I I I I I -c_ -w-b 
I I I I I I I I I -------- 
ID1 lnl ILII tlmt -w--e --- 

(7.1) (7.9) 

Fig. 6. Orientation of P7 x PC) 

Note that d(F) = m + n - 2. Also, it can be shown (see Fig. 5 as an illustration) 

that each vertex is in a cycle of length not exceeding m + n - 2 in F. 

Case F: m =n 5 1 (mod2) with m 3 5 and n > 7. Define FE 9(Pm x P,) as follows 

(see Fig. 6): 

( 1) F[P,_, x P,] is identical with the 

(2) For each j=2,4 ,..., n - 1, orient 

(m,j) + {(m,j - l), (m,j + 1 )I, 

(m - l,.i) + (m,j) and 

(m,j- l)-(m- l,j- 1); 

(3) Orient (m,n)+(m - 1,n). 

orientation in Case E; 

Note that d(F) = m + n - 2. Also, it can be checked (see Fig. 6 as an illustration) 

that each vertex is in a cycle of length not exceeding m + n - 2 in F. 

Finally, we consider the case when m s 1 (mod 2) and n = 0 (mod 2) with m 3 5 and 

n 3 6. By symmetry and the result in Case E, we need only consider the following: 

CaseG: m=5andn-O(mod2)withn~6.Letn=2kanddefineFE9(PgxP,) 

as follows (see Fig. 7): 

(l)Fori=1,2,4,5andj=1,2 ,..., k-l,orient(i,j)+(i,j+l)and(3,,~+1)+(3,j); 

(2) For i=l,2,4,5 and j=k + 1,k + 2 ,..., 2k - 1, orient (i,j + l)-(i,,j) and 

(3,j) + (3,j + 1); 

(3) For j#k,k+ 1, orient (l,j)+(Z,j)-(3,j)-(4,j)+(5,j); 

(4) For j = k, k + 1, orient (1, j) + (2, j) ---f (3, j) +- (4, j) + (5, j); 

(5) Orient (2,k)-+(2,k + 1),(3,k)+(3,k + 1) and (4,k)+(4,k + 1). The edges 

( 1, k)( 1, k + 1) and (5, k)(5, k + 1) may be arbitrarily oriented. 

Note that d(F) = n + 3 and each vertex is in a cycle of length not exceeding n + 3 

(see Fig. 7 as an illustration). 
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(1.1) 
,_,_,_,-, _,_,‘i” 

t-t-t-n-t-t-t 

I-I-I-t-t-n-l 

1-ri-t-t-l-i-l 
-c---w---- 

W) (5.8) 

Fig. 7. Orientation of P5 x Pg 

The proof of Lemma 3 is now complete. q 

Proof of Theorem 1. Let G = Pk, x &. By Lemma 3, the bipartite graph G admits an 

orientation F with d(F) = kl + k2 - 2 such that each vertex in G is in a cycle of length 

at most kl + k2 - 2 in F. By Lemma 2, the graph ny=, Pkz admits an orientation F* 

with 

d(F*) <(k,+kz-2)-(n-2)+ek, 
i=3 

=g ki - n 
i=l 

The result thus follows. 0 

3. Cartesian product of paths and cycles 

The main aim in this section is to prove the following results. 

Theorem 2. (i) p(Czn x fl~iPkz)=Ofk m > 1, n 3 2 and ki 3 4. 

(ii) p(nz,pkP x lJ~=,Cn,)=Of orm>2, ~20, kl33andk2~6with(kl,k2)# 

(3,6). 
(iii) P(& x ny=rpk, x &Cn,)=O for m 3 1, Y > 0, n 3 2 and kl 3 4. 

Note that results (ii) and (iii) are overlapping with (ii) requiring stronger conditions 

on two paths whereas (iii) requiring a cycle to be even and the length of a path at 

least four. 

In what follows, the vertices of l-&i C,,, are labelled (x1,x2,. . . ,xr), where 1 6 xi d ni, 

l~i~rsothat(a~,a~,...,a~)and(b~,b~,...,b,)areadjacentiff lak-bkl=I(modnk-2) 
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(6.1) 

(2,5) 

(1.1) (I,21 (1,5) 

Fig. 8. Orientation of Cb x Pj 

for exactly one k, 1 < k < r, and ai = bi for all i with i # k. For a real X, we shall 

denote by [x] the greatest integer not exceeding x. 

To prove Theorem 2(i), we need the following result. 

Lemma 4. For n > 2 and k 2 4, there exists F E 9+(Czn x Pk) such thut 

(i) d(F)=d(Cz, x Pk)=n+k - 1 and 

(ii) every vertex in Cz,, x Pk is in a cycle ef length czt most n + k - I in F 

Proof. In [8], the following orientation F of Cl, x 9 was introduced (see Fig. 8): 

(i)Fori~1(mod2)andl~i~2n-l,orient(i,1)~{(i+l,l),(i-1,I)}; 

(ii) For j=O(mod2), 2 <j <k - 1, and 1 d i 6 2n, orient (i,j)+(i+ 1.j); 

(iii) For j 5 1 (mod2), 3 < j d k - 1, and 1 d i d 2n, orient (i,j) + (i - l,j); 

(iv) For iEO(mod2) and2<i<2n, orient (i,k)+{(i+ l,k),(i- l,k)}; 

(v) For iEO(mod2), 2 <i < 2n and 1 d j d k - 1, orient (i,j)-+(i,j+ 1); 

(vi) For i = 1 (mod 2), 1 < i < 2n - 1 and 2 < j d k, orient (i, j) + (i,j - 1). 

It was shown in [8] also that d(F) = d(Cln x 9) = n + k - 1 for k 3 4 and 

n >, 2. It remains to prove (ii). 

Consider the following cycles (see also Fig. 8): 

(A,) Forj_O(mod2)with2,<j~k-~3foroddkor2~j~k-2forevenk,and 

iEl(mod2) with 1 < i<2n- 1, (i,j)(i+ l,j)(i+ l,j+ 1)(&j+ l)(i,j); 

(A2) For in 1 (mod2), 1 d i d 2n - 1, (i, l)(i - I, l)(i - 1,2)(i,2)(i, 1); and 

(A3) For is 1 (mod2), 1 < i < 2n - 1, (i $- l,k)(i,k)(i,k - l)(i + 1,k - I)(i+ 1.k) 

if k is odd, or (i - l,k)(i,k)(i,k - l)(i - 1,k - l)(i - 1,k) if k is even. 

Clearly, all the above cycles are of length 4 ( 6 n+k- 1) and they cover V(C2, xfi 1. 

Proof of Theorem 2(i). Let G = C,, x Pk,. By Lemma 4, the bipartite graph G admits 

an orientation F with d(F) = n + k, - I such that each vertex in G is in a cycle of 

length at most n + kl - 1 in F. By Lemma 2, the graph H = Cz,, x ny=, Pk, admits an 
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orientation F* with 

d(F*) < n+kl - 1 -(m- I)+ek, 
i=2 

= n-Vl+~k, 

i=l 

= d(H). 

This proves Theorem 2(i). 0 

To prove Theorem 2(ii), we shall extend Thomassen’s observation from PZ to 

n;=, ck,. 

Lemma 5. If a bipartite graph G admits an orientation of diameter at most k, where 

k > 3, such that each vertex is in a cycle of length at most k, then the graph 
G x ny=, c, admits an orientation of diameter not exceeding k + ~~=,[ki/2] such 
that each vertex is in a cycle of length at most k. 

Proof. Let 6 and I5 be the partite sets of G. 

every vertex is in a cycle of length at most k 

Orient G x nF=, C, inductively as follows: 

(i) In G x Ck,, for 1 < i d kl, orient 

(x,i) -+ (x,i+ 1) iff xE fi, 

(x,i) + (y,i) iff xyeE(F). 

Let F E 9(G) with d(F) d k such that 

in F. 

(Note that the second coordinate of (x, i + I ) is taken modulo kl .) 

(ii) Suppose G X l-I;=, ck,, where 1 d r < n - 1, has been oriented. Orient G x 

nz:: CkL so that the orientation of G x flL=, G, x {j} is isomorphic to that of 

G x nF=, G, for each j = 1,2,. . , k,.+l, and for 1 d i < k,+l, orient (x, al, a2,. . . ,a,, i) 

--t (x,al,a2, . . . , a,., i + 1) iff x E V, (note that the last coordinate is taken modulo k,+l ). 

Let F* be the resulting orientation of G x ny=, C,. We shall now show that there is 

a path of length at most k + Cy=, [ki/2] from an arbitrary vertex u to any other vertex v 

in F*. Let u=(x,ai,az ,..., a,) and u=(y,bl,bz ,..., b,). We may assume that XE 6. 

As the Cartesian product is commutative, we further assume that 

0 < bi-ai < z (modki) for i= 1,2,...,m 
[ 1 

and 

O<ai-bid z (modki) fori=m+l,...,n. 
[I 

(1) Let w=(x,bl,bz ,..., b,,a,+l,..., a,,). Clearly, there is a U--W path in F* of length 

at most CE,[ki/2]. 
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(2) Ifx#y, let w’=(~‘,bt,b~ ,..., b,,am+l ,..., a,), where x’ is adjacent from x in an 

x-y path of length at most k in F. Observe that x’ E V2. If x = y, take a cycle of 

length at most k containing x in F. 

(3) Let w* =(x’, bl, b2,. . ., b,). Clearly, there is a w’--w* path of length at most 

Cf=,+l[kJ2] in F*. 

(4) There is a w*-v path of length at most k - 1 in F*. 

Combining (l)-(4), we have 

This shows that d(F*) 6 k + C&l[kj/2]. The second part of Lemma 5 is obvious 

as each vertex in F* is contained in a cycle of length at most k in F. 0 

Proof of Theorem 2(ii). Let G = nbr &. By Theorem 1 and Lemma 2, the bipartite 

graph G admits an orientation F with 40 = C;, k - m, and every vertex in G 

lies in a cycle of length not exceeding kl + k2 - 2 ( < CE, ki - WI) in F. Thus by 

Lemma 5, the graph H = G x nL=, C,, admits an orientation F* with 

d(F*) d ‘&-m+$] 

i=l 

= d(H). 

This proves Theorem 2(ii). 0 

Proof of Theorem 2(iii). Let G = C,, x ny=, Pk,. By Theorem 2(i) and Lemma 2, the 

bipartite graph G admits an orientation F with d(F) = ti+Cy=, ki --m, and every vertex 

in G lies in a cycle of length at most 4( < n + Cz, k, - m) in F (see the proof of 

Lemma 4(n)). Thus by Lemma 5, the graph H = G x ni=, C,< admits an orientation 

F* with 

d(F*) < n+ek,-m+&] 

I=1 I=1 

= d(H). 

This proves Theorem 2(iii). 0 
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