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Optimal systems of nodes for Lagrange interpolation
on bounded intervals. A survey
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Abstract

In this brief survey special attention is paid to some recent procedures for constructing optimal interpolation processes,
i.e., with Lebesgue constant having logarithmic behaviour. A new result on Lagrange interpolation based on the zeros of
the associated Jacobi polynomials and on suitable additional nodes is given. c© 2001 Elsevier Science B.V. All rights
reserved.

1. Introduction

The Lagrange interpolating polynomials are useful in several branches of numerical analysis and
approximation theory. They are easily computable and can be useful tools to approximate functions
in di6erent metrics if the corresponding Lebesgue constants are optimal, i.e., have a logarithmic
behaviour in the uniform norm or are uniformly bounded in the case of integral norms.

Until the end of the 1970s very few interpolatory processes were known having the above-
mentioned properties. In the last decade the e6orts of several authors were successfully devoted
to the construction of large classes of interpolatory processes. Very recently, it was also proved that
in some suitable function spaces Lagrange interpolation is equivalent to best approximation.

In this short survey we limit ourselves to the case of uniform metric. We present the main results
and the recently used procedures for constructing optimal interpolation processes which are “really”
computable. Moreover, we prove that, if we add a suitable number of knots near the endpoints of
[− 1; 1] to the zeros of the associated Jacobi polynomials, we obtain an interpolation process with
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optimal Lebesgue constants. This result is stated in Theorem 3.3, the proof of which is given in
Section 4.

2. Trigonometric interpolation

We start with trigonometric interpolation for continuous 2�-periodic functions f (f∈C2�); since
this is a very simple and eFcient process and for these reasons it is a natural starting point for
algebraic interpolation.

Let

Sm(f; t) =
a0
2

+
m∑

k=1

[ak cos(kt) + bk sin(kt)] =
1
�

∫ 2�

0

sin((2m+ 1)(x − t)=2)
2 sin((x − t)=2)

f(x) dx; (1)

f ∈ C2�; ak =
1
�

∫ 2�

0
f(t) cos(kt) dt; bk =

1
�

∫ 2�

0
f(t) sin(kt) dt (2)

be the mth Fourier sum of f. If we approximate the coeFcients ak and bk by the quadrature sum∫ 2�

0
g(t) dt ≈ 2�

2m+ 1

2m∑
k=0

g(tk);

where tk=[2�=(2m+1)]k, we obtain the unique trigonometric polynomial L∗
m(f; t) ∈ Tm interpolating

the function f at the 2m+ 1 knots {tk}2mk=0. An expression for L∗
m(f; t) is

L∗
m(f; t) =

A0

2
+

m∑
k=1

[Ak cos(kt) + Bk sin(kt)];

where

Ak =
2

2m+ 1

2m∑
j=0

f(tj) cos(ktj); Bk =
2

2m+ 1

2m∑
j=0

f(tj) sin(ktj):

DeJne the mth Lebesgue constants of L∗
m and Sm by

‖L∗
m‖= sup

‖f‖=1
‖L∗

m(f)‖;

‖Sm‖= sup
‖f‖=1

‖Sm(f)‖;

where

‖g‖= sup
x∈[0;2�)

|g(x)|

is the sup-norm in [0; 2�). It is well known that (see for instance [20,24]).

‖Sm‖6‖L∗
m‖6(1 + �)‖Sm‖ (3)

and

‖Sm‖= 4
�2 logm+O(1):
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Now we need some notations. By C we denote a positive constant which can be di6erent in
di6erent formulas, and we shall write C �= C(a; b; : : :) if C is independent of the parameters a; b; : : : .
Moreover, if A and B are two expressions that depend on some variables, then we write

A ∼ B i6 |AB−1|6C; |A−1B|6C; C∈R
uniformly with respect to the variables in question.

As a consequence of (3), since Sm and L∗
m are projectors, error estimates are equivalent with

respect to the convergence order, i.e.,

‖f − Sm‖6CE∗
m(f)logm

and

‖f − L∗
m‖6CE∗

m(f)logm; (4)

where

E∗
m(f) = min

T∈Tm

‖f − T‖
is the best uniform approximation error and C is an absolute constant.

Obviously, the construction of L∗
m(f) is simpler than the construction of the mth Fourier partial

sum Sm(f). Moreover, L∗
m(f) can be successfully applied to numerical di6erentiation.

Indeed, if Ck
2� denotes the space of functions f such that f(k) ∈ C2�, the following theorem holds.

Theorem 2.1. For any function f ∈ Cr
2�; we have

‖f(k) − (L∗
m(f))

(k)‖6CE∗
m(f

(k))logm; 0¡k6r; (5)

where C is a positive constant independent of m and f.

The proof of this theorem will be given in Section 4.
The best uniform approximation error E∗

m(f) can be estimated by Jackson’s Theorem

E∗
m(f)6C!r

(
f;

1
m

)
; 16r¡m;

where !r(f; t) is the ordinary rth modulus of continuity. In particular, if ‖f(k)‖¡∞,

E∗
m(f)6C

‖f(k)‖
mk

:

The following numerical test conJrms the theoretical estimates given in (4) and (5).

Example.

f(x) = |sin(x)|3; ‖f(3)‖6C

m ‖f − L∗
m(f)‖∞ ‖f′ − (L∗

m(f))
′‖∞

50 1:86E − 5 1:19E − 4
100 2:39E − 6 3:02E − 5
250 1:55E − 7 4:85E − 6
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3. Algebraic interpolation

In order to consider algebraic interpolation, we recall some deJnitions and well-known results.
Let X= (qm)m=1;2; ::: be a sequence of polynomials such that, for any m¿1; qm has exactly degree

m (qm ∈ Pm) and m simple zeros xm;1¡xm;2¡ · · ·¡xm;m belonging to [− 1; 1]. If f is a continuous
function in [ − 1; 1] (f ∈ C0), we can associate with X the sequence of Lagrange polynomials
{Lm(X; f)} deJned by

Lm(X; f; x) =
m∑

k=1

lm;k(x)f(xm;k); lm;k(x) =
qm(x)

q′m(xm;k)(x − xm;k)
∈ Pm−1:

Let us introduce in C0 the sup-norm, i.e., ‖f‖ = max|x|61 |f(x)|, and deJne in the usual way the
Lebesgue constants as

‖Lm(X)‖= sup
‖f‖=1

‖Lm(X; f)‖; m= 1; 2; : : : :

This sequence characterizes the quality of the interpolation process, since for f ∈ C0,

‖f − Lm(X; f)‖6(1 + ‖Lm(X)‖)Em−1(f); (6)

where

Em−1(f) = min
P∈Pm−1

‖f − P‖

is the error of the best uniform approximation by algebraic polynomials.
In the numerical approximation of a function f it is often more useful to consider the following

estimate:

‖f − Lm(X; f + �)‖6(1 + ‖Lm(X)‖)Em−1(f) + �m‖Lm(X)‖; (7)

where � is a perturbation of the function f (due for instance to the evaluation of f(xm;k)) and
�m =max16k6m |�(xm;k)|.

So, when the number of the interpolation knots increases, the Jrst term on the right of (7) can
be “small” while the second can take very “large” values. This happens, for example, if we use the
interpolation points{

−1 +
2
m
k; k = 0; 1; : : : ; m; m= 2; 3; : : :

}
;

since in this case ‖Lm(X)‖∼ em=2.
To estimate Em(f), we can use the algebraic version of the Jackson Theorem, using the ’-modulus

of continuity [8]. That is,

Em(f)6C!r
’

(
f;

1
m

)
; 16r ¡m; C �= C(m;f);

where

!r
’(f; t) = sup

0¡h6t
‖�r

h’f)‖∞
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with

’(x) =
√
1− x2

and

�r
h’f(x) =

r∑
i=0

(−1)i
(
r
i

)
f
(
x +

rh
2
’(x)− ih’(x)

)
:

In particular, if ‖f(k)’k‖=max|x|61 |f(k)(x)|(√1− x2)k ¡∞, then

Em(f)6C
‖f(k)’k‖

mk
:

Faber and Bernstein independently proved that for any X, ‖Lm(X)‖¿ (2=�)logm. Hence, it is
interesting to Jnd sequences X with Lebesgue constants behaving like logm, since in this case, if
�m is “small”, (7) is numerically equivalent to (6).

In order to get a “good” X, we mention two important ingredients, deriving from trigonometric
interpolation. The Jrst is the so-called “arc cosine distribution” of the zeros xm; i = cos  m; i; i =
1; 2; : : : ; m of qm, i.e.,

| m; i −  m; i+1| ∼m−1; i = 0; 1; : : : ; m;  0 = �;  m+1 = 0: (8)

In fact, from a result in [39, p. 50], we get that, whenever, for some i and m¿m0, we have

| m; i −  m; i+1| ∼ 1
m1+!

; !¿0;

then

‖Lm(X)‖¿Cm!; C �= C(m):

The second ingredient is the uniform boundedness of the sequence X=(qm)m, i.e., supm ‖qm‖¡∞:
In fact it holds the following:

Proposition A. Let be X = (qm)m. If for any m the zeros of qm have an arc cosine distribution
and; moreover; supm ‖qm‖¡∞; then

‖Lm(X)‖¿C‖qm‖:

The previous proposition is an easy consequence of the Theorem 2:2 in [28] and a short proof is
given in the Section 4.

We observe that the uniform boundedness of (qm)m and the arc cosine distribution of its zeros are
two independent conditions as is shown by the sequence of Chebyshev polynomials of the second
kind {Um(x)} and {TmTm+1}m. Indeed, the zeros of Um satisfy (8) and ‖Um‖=m, while ‖TmTm+1‖=1,
but the zeros xi = cos  i of TmTm+1 satisfy

min
i

| i −  i+1| ∼ 1
m2

:
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From the above reasoning we conclude that “candidates” for “good” interpolation processes are
uniformly bounded sequences X with arc cosine distribution of their zeros.

The latter property is satisJed for many sequences of orthogonal polynomials in [ − 1; 1] but,
unfortunately, only few of them are uniformly bounded. For this reason, at the end of the 1980s,
we knew of only a few “good” interpolation processes.

On the other hand, the Lagrange interpolation polynomials are easily computable and, also for
this reason, they are useful in the approximation of functions and their derivatives, in numerical
integration and in projection method for the numerical treatment of functional equations. In view
of these considerations, in this last 10 years several papers appeared that construct larger classes of
optimal sequences X.

To introduce some results available in the literature, we Jrst state some notations and basic facts.
Setting v!;$(x) = (1 − x)!(1 + x)$; !; $¿ − 1, {pm(v!;$)}m denotes the sequence of orthonormal

Jacobi polynomials with positive leading coeFcients and Lm(v!;$; f) ∈ Pm−1 denotes the Lagrange
polynomial interpolating f at the zeros of pm(v!;$).

A classical result of SzegPo [40, Theorem 14:4, p. 335] assures that

‖Lm(v!;$)‖ ∼
{
logm if − 1¡!; $6− 1

2 ;

m&+1=2 &=max(!; $); otherwise:
(9)

According to estimate (9), and taking into account the estimate [32, (15), p. 673] (see also [40])

|pm(v!;$)|6C

(√
1− x +

1
m

)−!−(1=2) (√
1 + x +

1
m

)−$−(1=2)

;

|x|61; C �= C(m; x); (10)

the reader can note that the sequence {pm(v!;$)} is uniformly bounded in [−1; 1] for −1¡!; $6− 1
2 ;

and unbounded for !; $¿− 1
2 .

Moreover, in any segment [a; b]⊂ [ − 1; 1], there holds supm maxx∈[a;b] |pm(v!;$; x)|¡∞; and in
[a; b] the Lebesgue constants behave like logm [40, Theorem 14:4, p. 335].

If we want to use the zeros of pm(v!;$) with !; $¿− 1
2 , we may consider the following procedure,

which is known as “additional nodes method ”.
Denote by x1 ¡x2 ¡ · · ·¡xm the zeros of pm(v!;$) and deJne the nodes

yj =−1 +
1 + x1
1 + s

j; j = 1; 2; : : : ; s;

zi = xm +
1− xm
1 + r

i; i = 1; 2; : : : ; r

and the polynomials

Ys(x) =
s∏

j=1

(x − yj); Zr(x) =
r∏

i=1

(x − zi): (11)

In case y1 and zr can be replaced by −1 and 1, respectively.
If Lm;r; s(f) ∈ Pm+r+s−1 denotes the Lagrange polynomial interpolating f at the zeros of YsZrpm

(v!;$), we have the following theorem.
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Theorem 3.1. If the parameters !; $; r; s satisfy the relations

!
2
+

1
4
6r ¡

!
2
+

5
4
;

$
2
+

1
4
6s¡

$
2
+

5
4
;

then

‖Lm;r; s‖ ∼ logm:

The proof of this theorem, which can be found in [33] (see also [25]), is essentially based on the
following bounds:

|Ys(x)Zr(x)pm(v!;$; x)|6C(
√
1− x + m−1)−!−(1=2)+2r(

√
1 + x + m−1)−$−(1=2)+2s; |x|61

and
m∑

i=1; i �=d

v&;-(ti)
|x − ti|Qti6C(

√
1− x + m−1)2&(

√
1 + x + m−1)2-logm; Qti = ti+1 − ti;

which holds for any node system −1¡t1¡ · · ·¡tm¡1 with arc cosine distribution, and where
|td − x|=min16k6m |tk − x| and −1¡&; -60:
Theoretically, Theorem 3.1 assures that it is possible to use the zeros of the Jacobi polynomials

{pm(v!;$} also for !; $¿− 1
2 ; to get the optimal order logm:

Special case of this result {cos(�=m)k; k =0; 1; : : : ; m} (the practical abscissas [3]) (and {cos[2�=
(2m+ 1)]k; k = 0; 1; : : : ; m};) are well known.

Theorem 3.1, by (6), implies the estimate

‖f − Lm;r; s(f)‖6CEm−1(f)logm:

This estimate is the analogue of (4) for algebraic interpolation.
It is natural to ask if (5) can be extended to interpolation of smooth nonperiodic functions.

A positive answer to this question would allow us to approximate the derivative f′ of a function f
by using only the values of f in some preassigned points.

Now, for any arbitrary sequence X, we can obtain the estimates

‖[f − Lm(X; f)]′‖6Cm‖Lm(X)‖Em−2(f′);

‖[f − Lm(X; f)]′’‖6C‖Lm(X)‖Em−2(f′)’; (12)

where

Em−2(f′)’ = inf
P∈Pm−2

‖(f − P)′’‖; ’(x) =
√
1− x2

and C �= C(m;f): Estimates (12) will be proved in the Section 4. But the (12) cannot be considered
extensions of (5), even if ‖Lm(X)‖∼ logm.
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On the other hand, by using the additional nodes method, we can state the following theorem,
which, in some sense, extends (5) to the algebraic case.

Theorem 3.2. With the same notations as in Theorem 3:1; for any function f ∈ Cq; q¿0; one has

‖[f − Lm;r; s(f)]
(i)‖6C

Em−q(f(q))
mq−i

logm; i = 0; 1; : : : ; q; C �= C(m;f);

if the parameters !; $; r; s; q satisfy
1
2 (!+ q) + 1

46r ¡ 1
2 (!+ q) + 5

4 ;

1
2 ($ + q) + 1

46s¡ 1
2 ($ + q) + 5

4 :

The interested reader can Jnd the proof of Theorem 3.2 in [33] or [25].
A brief history of the additional nodes method may be in order. According to our knowledge, in

1958 EgervRary and TurRan [9] were the Jrst to use the points ±1. They proved that the sequence
of Hermite–FejRer polynomials based on the Legendre zeros plus ±1 was uniformly convergent (this
result is false if we drop the points ±1).

The Jrst use of the additional points in Lagrange–Hermite interpolation is due to Szasz [39] (1959),
while the use of the points ±1 appeared in some papers by Freud [13,14] and VRertesi [41,42]. In
1987, Szabados [35,36] was the Jrst who successfully used not only ±1, but other additional points
to minimize the norm of the derivatives of the Lagrange polynomials based on the Chebyshev zeros
of the Jrst kind. This problem was deeply investigated in some papers by Szabados and VRertesi [37],
and by HalaRsz [19]. In [33], and subsequently in [25], simultaneous interpolation processes based
on the zeros of Jacobi polynomials were constructed. This procedure was then extensively used by
several authors and in di6erent contexts, and nowadays goes under the name of “Additional Nodes
Method”. For an exhaustive bibliography, the interested reader can consult [38, p. 279; 6] and the
references therein.

We now prove a theorem on the existence of a new class of optimal interpolation processes.
If we associate with the Jacobi weight v!;$(x) = (1− x)!(1 + x)$ the new weight function

w!;$(x) =
v!;$(t)

�2v2!;2$(t) + H 2(v!;$; t)
;

where H (g) is the Jnite Hilbert transform of the function g, i.e.,

H (g; t) =
∫ 1

−1
− g(x)
x − t

dx = lim
0→0

∫
|x−t|¿0

g(x)
x − t

dx;

then w!;$ is not a classical weight and, at Jrst sight, does not seem easy to handle. However, the
corresponding orthogonal sequence {pm(w!;$)}m can be deduced from the corresponding system of
Jacobi polynomials. In fact, let

pm(v!;$; x) = &m(v!;$)xm + · · · ; &m(v!;$)¿0

and

xpm(v!;$; x) = am+1pm+1(v!;$; x) + bmpm(v!;$; x) + ampm−1(v!;$; x);
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where

p−1(v!;$; x) = 0; p0(v!;$; x) =
1√∫ 1

−1 v
!;$(x) dx

;

am =
&m−1(v!;$)
&m(v!;$)

; and bm =
∫ 1

−1
xp2

m(v
!;$; x)v!;$(x) dx

be the three-term recurrence relation for Jacobi polynomials. Then the sequence {pm(w!;$)} satisJes
the following relation:

xpm−1(w!;$; x) = am+1pm(w!;$; x) + bmpm−1(w!;$; x) + ampm−2(w!;$; x); m¿2;

where

p−1(w!;$; x) = 0; p0(w!;$; x) =
1

p2
0(v!;$)a1

:

From this link, the zeros of pm(w!;$); and the Christo6el numbers related to w!;$, can be computed
solving the eigenvalue problem of the corresponding Jacobi matrix.

For more details on these polynomials, which are called “associated polynomials”, the interested
reader may consult [1,2,4,18,22,31,34]. In addition, the zeros of pm(w!;$) interlace with the zeros of
pm+1(v!;$; x).

Now, if we consider the sequence

X = {Ys(x)Zr(x)pm(w!;$; x)}m=1;2; :::;

we can establish the following theorem.

Theorem 3.3. The zeros of pm(w!;$) have an arc cosine distribution. Moreover; if Lm;r; s(w!;$; f) de-
notes the Lagrange polynomial interpolating a given function f at the zeros of Ys(x)Zr(x)pm(w!;$; x);
we have

‖Lm;r; s(w!;$)‖∞ ∼ logm (13)

whenever the parameters !; $; r; s satisfy

|!|
2

+
1
4
6r ¡

|!|
2

+
5
4
;

|$|
2

+
1
4
6s¡

|$|
2

+
5
4
:

The proof of this theorem is given in Section 4.
We remark that, since |!|; |$| assume nonnegative values, the number of additional points r and

s is greater than or equal to 1. The case != $ = 0 was separately considered in [26] and is now a
special case of Theorem 3.3.

Now, we brieSy want to mention the so-called “extended interpolation”. The underlying idea is to
interpolate the function on the zeros of the sequence {qM} = {pm(v!;$)pn(v&;-)YsZr}, where Ys and
Zr are deJned as in (11) and the parameters !; $; &; -; r; s (and analogously m and n) are suitable
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related. Extended interpolation turns out to be useful for the numerical evaluation of the interpolation
error based on zeros of orthogonal polynomials. More explicitly, let Lm(w;f) be the polynomial
interpolating f at the zeros of pm(w) and, say, L2m(w; u;f) the extended interpolation polynomial
based on the zeros of pm(w)pm(u): In practice, the di6erence |Ln(w;f)−Lm(w;f)|; n¿m; is assumed
to be the error of Lm(w;f): So, if n = m + 1, following this procedure, to compare Lm(w;f) with
Lm+1(w;f), 2m + 1 evaluations of the function are needed. On the other hand, by using only 2m
evaluations of the function f, we can compare Lm(w;f) with L2m(w; u; f), which is more precise
when both previous polynomials have the same order of convergence to f:

With regard to the convergence of this process, from what we have said before, it is necessary that
the interpolation points have an arc cosine distribution and that supM ‖qM‖¡∞. It is not diFcult
to satisfy the last condition. In fact, from the pointwise estimate for the Jacobi polynomials, it is
possible to determine r and s (number of the additional nodes) in such a way that the sequence
{qM} is uniformly bounded with respect to m.

The choice of parameters !; $; &; -; r; s; m and n; such that the zeros of qM have an arc cosine
distribution, is still an open problem.

However, some important examples are known.
Consider the two sequences

{q2m+2}= {(1− x2)pm(v!;−!)pm(v−!;!)}
and

{q̃2m+3}= {(1− x2)pm(v!;$)pm+1(v−!;−$)}; 0¡!; $¡ 1; !+ $ = 1:

The zeros of q2m+2 and=or q̃2m+3 are used in some quadrature methods and in the numerical treatment
of singular integral equations (see for instance [27]).

If we denote by L2m+2f and L2m+3f the Lagrange polynomials based on the zeros of q2m+2 and
q̃2m+3, respectively, the following theorem was proved in [27]:

Theorem 3.4. The zeros of q2m+2 and q̃2m+3 have an arc cosine distribution and; moreover;

‖L2m+2‖∼ logm∼‖L2m+3‖:

The following sequences are additional signiJcant examples:

{Q2m+1}m = {pm+1(v!;$)pm(v!+1; $+1)YsZr};

{Q̃2m}m = {pm(v!+1; $)pm(v!;$+1)YsZr};
where Ys and Zr are deJned as in (11), by replacing in those deJnitions x1 and xm with the Jrst and
the last zero of Q2m+1, respectively (analogously for Q̃2m). If we denote by {L2m+1f}m and {L̃2mf}m
the sequences of the Lagrange polynomials related to these polynomial sequences, the following
result holds.

Theorem 3.5. The polynomials Q2m+1 and Q̃2m have simple zeros in [ − 1; 1]; both having an arc
cosine distribution. Moreover;

‖L2m+1‖∼ logm∼‖L̃2m‖
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holds if the parameters !; $; r; and s satisfy the relations

!+ 16r ¡!+ 2; $ + 16s¡$ + 2:

The Jrst part of Theorem 3.5 is a consequence of a more general result proved in [5], while the
second part can be found in [7].

We Jnally want to mention a result that recently appeared in [11]. In this paper the authors
consider the sequence {R2m+1}= {pmEm+1}m¿1, where pm is the mth Legendre polynomial and Em+1

is the (m+ 1)th Stieltjes polynomial deJned by∫ 1

−1
Em+1(x)pm(x)xk dx = 0; k = 0; 1; : : : ; m; m¿1:

The zeros of R2m+1 have been used by Kronrod to construct the well-known extended quadra-
ture formula, which was later extensively studied by several authors [10,12,15,16,29,30]. In [11]
the authors study the distribution of the zeros of R2m+1 and the sequence {L2m+1f} of Lagrange
polynomials based on these zeros.

The result is as follows:

Theorem 3.6. The zeros of R2m+1 have an arc cosine distribution and; moreover;

‖L2m+1‖ ∼ logm:

4. Proofs

Proof of Theorem 2.1. The theorem follows from the well-known relation (Smf)′ = Smf′, from the
Bernstein inequality ‖T ′

m‖6m‖Tm‖, which holds for any trigonometric polynomial of degree m; and
from the Favard inequality

E∗
m(f)6

C

m
E∗
m(f

′):

Indeed,

‖(f − L∗
m(f))

′‖6 ‖f′ − Smf′‖+ ‖(Smf − L∗
m(f))

′‖
6C[E∗

m(f
′)logm+ m‖Smf − L∗

m(f)‖]
6C[E∗

m(f
′)logm+ mE∗

m(f)logm]6CE∗
m(f

′)logm: (14)

The theorem now follows on induction over k.

Proof of Proposition A. In [28] the authors, using a slightly changed notation, proved the following.

Theorem B. Let u; w be weights and X = (qm)m: Assume that every interval I ⊂ [ − 1; 1] with∫
I w¿ 0 contains at least one root of qm; whenever m is su:ciently large (X w-regular). Then for
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every p; 0¡p6∞(∫ 1

−1
|qm(x)|pu(x) dx

)1=p
6M

(∫ 1

−1
|qm(x)|w(x) dx

)
× sup

‖g‖∞=1

(∫ 1

−1
|Lm(X; g; x)|pu(x) dx

)1=p

with a proper M¿ 0.

Here M=M(u; w;X; p) does not depend on m: Further, if 0¡q06p6∞ (q0 Jxed), then M¿0
will not depend on p.

Proposition A follows from Theorem B by setting u = w = 1 and p =∞: Since, for any m, the
zeros of qm have an arc cosine distribution, then X is 1-regular. Since supm ‖qm‖=: q¡∞; and
recalling that M for large value of p is independent of p, it follows

‖qm‖62M(1; 1;X)q‖Lm(X)‖:

Proof of (12). From a result of Gopengauz–Telyakovskii [17, Theorem p: 113] it follows that for
any function f ∈ C1([− 1; 1]), there exist an algebraic polynomial Gm of degree m¿9, such that

‖(f − Gm)(i)‖6 C

m1−i
!
(
f′;

1
m

)
; i = 0; 1: (15)

By using the previous inequality and the Markov polynomial inequality, for any X it follows

‖(f − Lm(X; f))′‖6 ‖f′ − G′
m‖+ ‖(Gm − Lm(X; f))′‖

6C[‖f′‖+ m2(‖f − Gm‖+ ‖f − Lm(X; f)‖)]: (16)

Now,

‖f − Gm‖6C

m
‖f′‖

and

‖f − Lm(X; f)‖6(1 + ‖Lm(X)‖)Em−1(f)6
C

m
‖Lm(X)‖‖f′‖:

Then

‖(f − Lm(X; f))′‖6Cm‖Lm(X)‖‖f′‖;
from which, replacing f with g= f − ∫ x

−1 Qm−2(t) dt, where ‖f′ − Qm−2‖= Em−2(f′), we get

‖(f − Lm(X; f))′‖= ‖(g− Lm(X; g))′‖6Cm‖Lm(X)‖Em−2(f′)

with C �= C(m;f), i.e. the Jrst of (12).
Moreover, for any polynomial Q ∈ Pm we have (see for instance [21, p. 662])

‖(f − Q)′’‖6Cm‖f − Q‖+ CEm(f′)’; ’(x) =
√
1− x2:

Then, using Favard inequality

Em(f)6
C

m
Em−1(f′)’;
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we have

‖(f − Lm(X; f))′’‖6Cm‖f − Lm(X; f)‖+ CEm−1(f′)’
6Cm‖Lm(X)‖Em−1(f) + CEm−1(f′)’
6C‖Lm(X)‖Em−2(f′)’: (17)

i.e. the second inequality of (12) follows.

To prove Theorem 3.3, we Jrst collect some preliminary results.
Denote by 8m(w!;$; t)=[

∑m−1
k=0 p2

k(w
!;$; t)]−1 the mth Christo6el function and by xm; i=cos  m; i; i=

1; : : : ; m; the zeros of pm(w!;$): The following lemma holds:

Lemma 4.1. For |t|61 and m su:ciently large; we have

1
C
�m(t)6

8m(w!;$; t)

W!;$
m (t)

6C�m(t); C �= C(m; t); (18)

where

W!;$
m (t) =

(
√
1− t + m−1)2|!|

√
1 + t + m−1)2|$|

(log&!e=(
√
1− t + m−1) + log&$e=(

√
1 + t + m−1))2

;

�m(t) =

√
1− t2

m
+

1
m2

;

&! =
{
1 for != 0;
0 for ! �= 0;

&$ =
{
1 for $ = 0;
0 for $ �= 0:

Moreover;

| m; i −  m; i+1| ∼ m−1: (19)

Proof. By Proposition 2:1 in [26] it follows that the weight w!;$ is equivalent to the weight

W!;$(t) =
v|!|; |$|(t)

(log&!e=(1− t) + log&$e=(1 + t))2
(20)

and therefore 8m(w!;$; t) ∼ 8m(W!;$; t). Now, W!;$ is a generalized Ditzian–Totik weight and, for
this weights, (18) is true [23]. Estimate (19) easily follows from (18), by using the same arguments
as in [26, p. 315].

A pointwise estimate of the polynomial pm(w!;$) can be found in [4, Theorem 22]. The same
estimate can be rewritten in the following form:

|pm(w!;$; t)|6C(
√
1− t + m−1)−|!|−(1=2)(

√
1 + t + m−1)−|$|−(1=2)

×
[
log&!

e√
1− t + m−1

+ log&$
e√

1 + t + m−1

]
; t ∈ [− 1; 1]; (21)

where C is a positive constant independent of m; t.
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To give a careful estimate of the kth fundamental Lagrange polynomial

lm;k(w!;$; t) =
pm(w!;$; t)

(t − xm;k)p′
m(w!;$; xm;k)

;

we need the following lemma, which is a variant of the Pollard transformation of the
Christo6el–Darboux kernel deJned as

Km(w!;$; x; t) =
m−1∑
j=0

pj(w!;$; x)pj(w!;$; t):

Lemma 4.2. The following formula holds:

Km(w!;$; x; t) = Am

{
pm(w!;$; x)q(t)− pm(w!;$; t)q(x)

x − t
− Cmpm(w!;$; x)pm(w!;$; t)

}
;

where

q(t) =
1
&0

∫ 1

−1

(1− x2)pm(v!+1; $+1; x)− (1− t2)pm(v!+1; $+1; t)
x − t

v!;$ dx;

Am =

(
1 +

&2m(v
!+1; $+1)

&2m+1(v!;$)

)−1
&m(v!+1; $+1)
&m+1(v!;$)

; Cm =
&m(v!+1; $+1)
&m+1(v!;$)

and

lim
m

Am = 1
2 ; lim

m
Cm = 1:

The proof of Lemma 4.2, mutatis mutandis, can be found in [26, p. 312]. Now, since

|lm;k(w!;$; t)|= 8m;k(w!;$)|Km(w!;$; t; xm;k)|
and by Lemma 4.2, it follows that

|Km(w!;$; t; xm;k)|6C
|pm(w!;$; t)q(xm;k)|

|t − xm;k | :

Since

|q(t)|6 1
&0

∣∣∣∣∣
∫ 1

−1

(1− x2)pm(v!+1; $+1; x)
x − t

v!;$ dx

∣∣∣∣∣+ (1− t2)|pm(v!+1; $+1; t)|
∣∣∣∣∣
∫ 1

−1

v!;$(x)
x − t

dx

∣∣∣∣∣ ;
by Criscuolo et al. [4, Theorem 2.1] and (10), it follows that

|q(xm;k)|6Cv1=4−(|!|=2);1=4−(|$|=2)(xm;k)
[
log&!

e
1− xm;k

+ log&$
e

1 + xm;k

]
: (22)

Then, by (21), (22), and Lemma 4.1, we have

|lm;k(w!;$; t)|6 v−(|!|=2)−1=4;−(|$|=2)−1=4(t)
v−(|!|=2)−1=4;−(|$|=2)−1=4(xm;k)

[log&!e=(1− t) + log&$e=(1 + t)]
[log&!e=(1− xm;k) + log&$e=(1 + xm;k)]

Qxm;k
|t − xm;k | ;

|t|61− C

m2
; Qxm;k = xm;k+1 − xm;k : (23)
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Proof of Theorem 3.3. Denote by xm;1¡xm;2¡ · · ·¡xm;m the zeros of pm(w!;$), deJne the nodes

yj =−1 +
1 + xm;1
1 + s

j; j = 1; 2; : : : ; s;

zi = xm +
1− xm;m
1 + r

i; i = 1; 2; : : : ; r

and the polynomials

Ys(t) =
s∏

j=1

(t − yj); Zr(t) =
r∏

i=1

(t − zi): (24)

By Lemma 4.2 the Lagrange polynomial Lm;r; s(w!;$; f) interpolating f at the zeros of Ys(t)
pm(w!;$; t)Zr(t) can be expressed in the following form:

Lm;r; s(w!;$; f; t) = Ys(t)pm(w!;$; t)L̃r

(
f

Yspm(w!;$)
; t
)
+

m∑
k=1

lm;k(w!;$; t)f(xm;k)
Ys(t)Zr(t)
Ys(xk)Zr(xk)

+Zr(t)pm(w!;$; t)L̃s

(
f

Zspm(w!;$)
; t
)
; (25)

where L̃s(g); L̃r(g) denote the Lagrange polynomials interpolating the function g at the zeros of Ys

and Zr; respectively.
For ! = $ = 0 the theorem was proved in [26]. We do not give the details of the proof in the

other cases, since we use very similar arguments.
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