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Electronic synapses

The spike-timing dependent plasticity (STDP) of biological synapses, which is known to be a function of
the formulated Hebbian learning rule of human cognition, learning and memory abilities, was emulated
with two-phase change memory (2-PCM) cells built with 39 nm technology. For this, we designed a
novel time-modulated voltage (TMV) scheme for changing the conductance of 2-PCM cells, that could
produce both long-term potentiation (LTP) and long-term depression (LTD) by applying variable
(decreasing/increasing) pulse voltages according to the sign and magnitude in time interval between
pre- and post-spikes. Since such schemes can be easily modified to have a variety of pulse shapes and
time intervals between pulses, it is expected to be a proper scheme for designing diverse synaptic
connection abilities. In addition, the small form factor and low energy consumption of 2-PCM make
them comparable to biological synapses, which makes phase change memory a promising candidate for
electronic synapses in large-scale neuromorphic system applications.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The term neuromorphic engineering, which was coined by
Carver Mead [1], has given rise to significant progress in the
uprising application fields of brain-inspired computing, smart
sensors, and associate memory, which is based on CMOS analog,
digital and/or combined circuits, called silicon neural networks
(SiNs). These networks mimic the information processing path-
ways of biological neurons such as signal reception, propagation,
transference to neighboring neurons, and storage [2-4].

Fig. 1(a) shows a schematic of biological neurons and the
synapses in-between, where it is known that signal receipt and
transmission are achieved by the generation of action potentials in
soma and its propagation along the axons of the neuron, respec-
tively (neuron spiking). Meanwhile, signal transfer and storage are
determined by the connection strength of the synapses between
neurons (synaptic plasticity). In particular, synaptic plasticity, or
the change in synapse connectivity, is widely believed to underlie
our learning processes and memory. Though there have been some
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reports [5-7] of mimicking synaptic plasticity using SiNs, they are
somewhat inappropriate for practical use in large scale neuro-
morphic applications, because of the large consumption of area
and power of complicated circuits.

Following the famous hypothesis of a Canadian psychologist [8]
on synaptic plasticity, it is expected that the connectivity in
between synapses will change plastically when two neighboring
neurons spike temporally together. A representative algorithm for
such a hypothesis is briefly depicted using three neurons in Fig. 1
(a), synaptic strengths may change depending on the relative
timing of pre- and post-synaptic spikes. The synaptic strength is
potentiated (or strengthened) if pre-spike A precedes post-spike B
(At>0) whereas it is depressed (or weakened) if pre-spike A
follows post-spike C (At < 0). Such a timing algorithm in synaptic
strength's modification or change is called spike-timing depen-
dent plasticity (STDP) [2]. In other words, the change in synapse
strength (AC) is positive (the synaptic connectivity is potentiated)
when At > 0, and it becomes higher at smaller At, which is called
long-term potentiation (LTP). Meanwhile, AC is negative (the
synaptic connectivity is depressed) when At<O0 and it becomes
more negative at smaller negative At, which is long-term depres-
sion (LTD), as seen in Fig. 1(b).

In this study, we introduce a novel scheme for emulating STDP
which is easily applicable to any nano-scale memory device when

0925-2312/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (a) The schematic of biological neurons and (b) the spike-timing dependent plasticity (STDP) showing long-term potentiation (LTP) and long-term depression (LTD)

according to the time-interval between the pre- and post-spikes.
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Fig. 2. (a) Schematic of two resistive memory cells, where V,.f and Vo are pulse voltages to reference and control cells, respectively. (b) Concept of time-modulated voltage
ranges in typical R-V analog curve with respect to the time interval between spikes of pre-synaptic and post-synaptic neurons (At). (c) The voltage timing diagram, where

blue and red texts respectively correspond to LTP and LTD cases.

if having analog resistance behavior with respect to external stimuli.
For an experimental verification of this scheme, we emulated STDPs
in two-phase change memory (2-PCM) cells made with 39 nm
technology by introducing a novel time-modulated voltage (TMV)
pulse scheme. Various STDP shapes can be easily obtained by varying
the shape of voltage pulses and the time interval between two cells,
which helps to design diverse synaptic connection abilities.

2. Concept for STDP emulation in two resistive memory cells

To emulate the STDP of one synapse, we can take into account
two resistive memory cells which are connected to pre-synaptic
and post-synaptic neurons through their respective bit lines, as
shown in Fig. 2(a). One is a reference cell with a fixed resistance and
the other is a control cell with variable resistances. After the reset
initialization for two cells to be high resistance, independent
voltage pulses called set pulses are applied, based on the intrinsic
R-V curve of Fig. 2(b), to reduce the resistance of the two cells. It
should be designed that the set voltage is fixed for the reference cell
(Vrer) to have always an intermediate resistance whereas the set
voltage to control cell (Vo) is modulated to have various resistance
levels so that the two cells have different resistance values with
respect to the time interval between the spikes of the pre-synaptic
and post-synaptic neurons (At). As depicted in Fig. 2(c), in the case
of At >0, Vont is set to be inversely proportional to At whereas in
the case of At<0, Vo is set to be proportional to At. Then, when
the reciprocal of the resistance difference of the two cells is
considered as the conductance change (AC) and it is plotted with
At, we can obtain an STDP shape.

3. Experiment

For a representative demonstration of the scheme suggested
above, we emulated STDP behaviors by making use of two PCM
cells, using state-of-the-art 39 nm technology. As shown in Fig. 3(a), a
PCM cell has a p—n diode switch epitaxially grown on an N+ Si word
line (WL), ring-type bottom electrode (BE), a damascene-type
Ge,SbyTes (GST) phase change material, line-type top electrode
(TE) and bit line (BL). Fig. 3(b) represents the circuit diagram of 2-
PCM cells with two-channel pulse generator which can generate two
independent pulses with a time interval as precise as 10 ns. In
addition, Fig. 3(c) and (d) depict the block diagram of a programming
algorithm, and the detailed pulse conditions and their expected
resistance change with respected to the sign of At.

First, both reference and control cells have high resistance values
of several MQ2 (Rjni¢), using an initial short pulse of 5V height with a
10 ns-rise, 80 ns-duration, and 10 ns-fall. Then, we make a reference
cell to induce a few hundred k€ (R.f) by applying the fixed voltage of
5V with a 100 ns-rise, 50 ns-duration, and 100 ns-fall widths at time
to. Next, we apply a time-modulated voltage (TMV) at time ty+ At for
a control cell to have various resistance values (Reopn) according to the
sign and magnitude of At. Here, we use a 5V - (5 V[Atyax) x At pulse
height as a TMV example under the same pulse widths and repeat to
write a control cell with an increase of At from 1 ms to 20 ms, as
described in Fig. 3(c).

4. Emulation of STDP in two-phase change memory cells

Fig. 4(a) shows resistance changes in reference and control
cells (Reer and Reone) With respect to At, which has resulted from the
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Fig. 3. (a) A cross sectional transmission electron microscope image of phase change memory cells made with 39 nm technology. (b) Circuit diagram of 2-PCM cells with
two-channel pulse generators. If Ve is applied to the reference cell at a specific time (tp) then Vo is applied to the control cell at ty+At. (c) Block diagram of the
programming algorithm. (d) Detailed pulse conditions for STDP emulation in 2-PCM cells and their expected resistance changes with respected to the sign of At.
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Fig. 4. (a) Resistance changes of the reference and control cells with respect to At. (b) Step-like LTP and LTD behaviors are realized in 2-PCM cells by the programming

algorithm of Fig. 3(c), where they are fitted by step-like functions.

programming algorithms presented in Fig. 3(c). Ry has a resistance of
100 k€2-500 k€ irrespective of At, which is due to the fixed pulse
condition. Some fluctuations in R are attributed to the stochastic
crystalline states, which are often observed when set write operations
are repeated in the phase change memory while targeting an
intermediate resistance level [9]. On the other hand, Ry is similar

to Ryer for small IAt, but is abruptly increased to 2 MC - 6 MC2 (in the
case of At > 0) or decreased to 5 k€2 - 20 k€2 (in the case of At < 0) at
large IAf, according to the time-modulated pulse schemes, as expe-
cted in Fig. 3(d). Since the difference (AR=Rcont - Rier) Of the two
cells can be extracted and its reciprocal can be regarded as AC in
2-PCM synapses, a high IAQ can be achieved at small IAt, whereas a
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low IAC 1 is achieved at high IAtl. Accordingly, STDP behaviors can
be observed when AC is plotted as a function of At, as shown in
Fig. 4(b).

We can fit such STDP behaviors into 2-PCM cells by a step-
function of Eq. (1), where a and c are scaling parameters, 7 is the
characteristic time when AC changes abruptly and b is a fitting
parameter. That is, AC is a+c when At approaches to zero whereas it
becomes ¢ when At is much larger than 7, as touched upon in Eq. (1).
In Fig. 4(b), a and c are 1.5 and 0.5, 7 is 12 ms, and b is 4.0 x 10~ for
LTP fitting while a and c are —1.6 and -0.5, 7 is -11 ms, and b is
-5.5 x 10~* for LTD fitting. It is thought that the step-like STDP in our
study has to do with the percolation behaviors in the crystallization
process of amorphous phase change material and it needs further
study. On the other hand, these step-like shapes are somewhat
deviated from biological standard shapes [as in Fig. 1(b)] but they
belong to the F2 category when an action potential of pre-synaptic
neurons has an asymmetric rectangular shape [5].

a+cifAt< <t
S+cifAt=1 1
cifAt> >1

a

ACzieAFT/b+1+c=

We examine how the pulse shape affects the LTP behaviors in 2-
PCM cells. The set pulses that induce the crystallization of initially
reset (amorphous) reference and control cells, have slow-quenched
set pulse forms with tunable rising/duration/falling widths. First,
when the duration width is varied from 75 ns to 25 ns [Fig. 5(a)],
both 7 and a+c reduce as the duration decreases [Fig. 5(b)]. Similar
tendencies are also found when the falling width changes from
1600 ns to 50 ns [Fig. 5(c) and (d)]. It is well known that the slow-
quenched set pulses are not enough to crystallize, especially when the
duration width is smaller than is required for the pre-reset amor-
phous region not to melt fully or when the falling time is too short to
crystallize the melted amorphous phase. Thus, at shorter duration or
falling width, the control cell tends to be less conductive, and both 7
and a+ c decreases. Accordingly, the modification in a slow-quenched
set pulse shape is effective at obtaining various 7 and a+c values in
our 2-PCM cells.

Meanwhile, it is believed that the signal transfer time per each
spiking-and-synaptic transfer event (ts,,) can be a basis to det-
ermine the overall signal processing speed in biological neuron
networks. It is composed of three sequential processes: (1) The
integration-and-fire time of synaptic potentials in a cell body or
soma (tsoma), (2) the electro-chemical transfer time at synapse
(tsynapse)» and (3) the propagation time of the generated action
potential along axon (tgxon), as shown in Fig. 6(a). Both tsome and
tsynapse Dave time scales of a few tens of milliseconds [10,11],
whereas t,y,, is as short as nanoseconds, or microseconds at most
because the propagation speed of the action potential is as fast as
~150 m/s along an axon with its length from micrometer to
millimeter [12]. Thus, ts,,; is mostly determined by tsm,, and
tsynapse- Here, we only consider tgy,qspe, Which can also be repre-
sented by 7, since it indicates how fast synaptic transfer (synaptic
connectivity) is achieved.

We can achieve good LTP curves to get 7 values as small as tens
of a few microseconds and hundreds of nanoseconds when the
incremental step in At is decreased to the microsecond and
nanosecond ranges, as plotted in Fig. 6(b). Thus the 2-PCM cells
in this study can have a very wide range of 7 values by precisely
controlling the time interval between the applied set pulses. This
means that the 2-PCM cells have faster synaptic transfer times
(tsynapse) by several orders of magnitude compared to biological
neurons or SiNs. Accordingly, the 2-PCM synapse in this study can
increase the signal transfer rate to speed up learning or mem-
ory abilities by reducing the time interval between pre-synaptic
and post-synaptic spiking potentials, which helps design diverse

synaptic connection abilities when combined with the afore-
mentioned variability in STDP shapes.

5. Discussion

Recently, single resistive memory devices with transition metal
oxides [13], Ge-Te-Sb phase change material [14-16], and organic
material [17] as electronic synapses have gathered attention,
because they can be operated with low power consumption. They
have a simple structure that can be easily integrated to have a high
density that is comparable to the number of neurons in our
neocortex (~10") by using nano fabrication techniques in the
semiconductor industry. Among them, the phase change memory
based on the phase transition between amorphous and crystalline
Ge-Te-Sb material is the most promising because it has very
similar functionalities to biological neurons [18] and it is matured
at the mass production level in the form of non-volatile memory of
phase-change random access memory (PRAM) and optical record-
ing media of CD-RW and DVD-RAM during last decades [19].

Kuzum et al. [14] demonstrated various STDP behaviors in one
phase change memory cell by applying positive voltage chain pulses in
the forwards direction and a single negative voltage pulse backwards,
but the pulses are somewhat complicated in the management of pulse
shape and directionality. Suri et al. [15] introduced two-phase change
memory cells that can play specific roles in flowing LTP and LTD
currents, but they require a large area for cell-selecting transistors and
extra current comparator circuits. Eryilmaz et al. [16] presented a
10 x 10 array of phase change synaptic devices that showed simple
pattern learning and recognition abilities, but they had to use one
metal-oxide-semiconductor (MOS) switch per synaptic device. Rela-
tively, the 2-PCM synaptic device in this work has the advantages of
using a simpler pulse pattern and smaller device size over the above-
mentioned reports because it makes use of single set pulses and
vertical-type diode switches with no area penalty for the device size.

The signal transmission in a biological neuron is mostly uni-
directional from pre-synaptic to post-synaptic neurons, where it
shows electric features at the axons in pre-synaptic neurons, it
turns into chemical characteristics at the synapse, and it returns
the electric mode at the dendrite in the post-synaptic neuron [4].
The changes in synaptic connectivity are correlated with the time
difference between the pre-synaptic and post-synaptic spikes of
the STDP algorithms [5]. The 2-PCM in this study follows such
unidirectional features and shows deterministic synaptic plasticity
of biological neurons as demonstrated in Figs. 3 and 4. It should
also be mentioned that this 2-PCM synaptic device needs extra
circuits: Time interval counters and synapse selector/generators to
measure the time differences between the pre- and post-spikes
and to modulate conductance, respectively, unlike a biological
synapse where the synaptic strength is varied in-vivo in the course
of electro-chemical processes in synapse cleft. The required energy
for one synaptic event is 200 pJ - 300 pJ in this 2-PCM synapse
with 39 nm technology, which is higher than that of biological
synapses (1 pJ - 10 p]). However, it can be at least reduced to tens
of pJ] when adopting a sub-10 nm technology phase change
memory device [20] and high-speed phase change materials with
eutectic Sb,Tes-based [21] or Sb-based [22]| compositions.

6. Conclusion

Low power consumption, small form factor, and high relia-
bility are prerequisites to emulate the spike-timing dependent
plasticity (STDP) for biological synapses in large-scale neuro-
morphic systems. For this, we have proposed a novel scheme for
emulating STDP in analog resistive memory devices and we
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Fig. 5. (a) LTP shapes and (b) changes in characteristic parameters with respect to pulse duration. (c) and (d) are those that correspond to the changes in pulse falling width.
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emulated its behavior in 2-PCM synaptic devices made with
39 nm phase change memory cells by applying time-modulated
voltage (TMV) pulses. It is observed that control of the duration
and falling times in slow-quenched set pulses are effective for
obtaining various LTP shapes. In addition, it is demonstrated that
the synaptic transfer time can be reduced to as little as hundreds
of nanoseconds that is much faster than biological or conven-
tional SiNs synapses. Thus, the 2-PCM synapse in this study is
very likely to have advantages for high-speed, high-capacity
neuromorphic applications, which enables mass-production-
level phase change memory to be a strong candidate for electro-
nic synapses.
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