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in dimensionless form is obtained, which is solved for the velocity profile using the Optimal
Homotopy Asymptotic Method (OHAM). The effect of Dilatant constant «, the Psendoplastic
constant S, and the pressure gradient on velocity distribution and shear stress is studied.
Shear stress is examined under the effect of the viscosity parameter ny. Moreover, the

gﬁl/‘r/\c/;;:;jg-constant fluid volume flow rate and average velocity is carefully studied with changing the domain
Wire coating (thickness) of the polymer and varying the parameter «, 8 and the pressure gradient.
Pressure type die © 2011 Elsevier Ltd. All rights reserved.

Optimal homotopy asymptotic method

1. Introduction

Wire coating is often used for the purpose of high and low voltage and protection against corrosion. The wire coating is
performed by dragging the wire in a molten polymer inside the coating unit. Due to the shear stress between the wire and
the molten polymer the wire is coated. The thickness of the coated wire is the same as the thickness of the die at the exit.
A typical wire coating unit consists of a pay off device, preheater, extruder device with a cross head die, cooling device, and
a take-up reel as shown in Fig. 1. The pay off device is a reel stand carrying a reel of uncoated wire. The preheater is used
to give a temperature to the wire, while the extruder device fitted with a cross-head contains a canonical die. The cooling
device is used for cooling the wire. The take-up reel is used for winding the coated wire on a rotating reel.

Wire coating is an important industrial process in which different types of polymer are used. The coating depends on the
geometry of the die, the viscosity of the fluid, the temperature of the wire and the polymer used for coating the wire.

Akhter and Hashmi [1,2] have studied wire coating using power law fluid and have investigated the effect of the change
in viscosity. Siddiqui et al. [3] studied wire coating extrusion in a pressure-type die in the flow of a third grade fluid. Fenner
and Williams [4] carried out an analysis of the flow in the tapering section of a pressure type die. Sajjid et al. [5] studied the
wire coating with Oldroyd 8-constant fluid without pressure gradient using the Homotopy Analyses Method (HAM), and
give the solution for the velocity field in the form of a series.

We investigate the Oldroyd 8-constant fluid flow under pressure and examine carefully the velocity distribution, shear
stress, volume flow rate, average velocity and the effect of velocity distribution while, changing the thickness of fluid under
the same geometry with the Optimal Homotopy Asymptotic Method (OHAM) and obtained satisfactory results. The effect
of Dilatant constant «, the Psendoplastic constant 8, and the pressure gradient on velocity distribution and shear stress is
studied. Shear stress is also examined by changing the viscosity parameter ny. Here, we use a new homotopy approach,
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Fig. 1. Typical wire coating process.

namely OHAM to solve the nonlinear differential equation. Marinca and Herisanu [6-8] proposed this homotopy technique
called the Optimal Homotopy Asymptotic Method (OHAM) and it proved to be a reliable approach to strongly nonlinear
problems. In a series of papers by Marinca and Herisanu [9-11] and Islam et al. [12,13] have shown that this method is a
more powerful tool than other perturbation tools for nonlinear problems.

2. Basic equation

Basic equations which govern the flow of an incompressible fluid neglecting the thermal effects are:

V.u=0, (1)
Du .
Poe = divT + pof, (2)

where u is the velocity vector of the fluid, T is the Cauchy stress tensor, p is the constant density, f is the body force per unit

mass and % is the material derivative.
The Rheological equation of state for an Oldroyd 8-constant model is given by

T=-PI+5, 3)

where P denotes the pressure, [ is the identity unit tensor and the extra stress tensor S is defined as
v o1 1 1
S+ 2 S+5 (= m) (A S+SA) + Juo(trS) A+ v (rSA) 1

v 1
= 1o (Al + A2 A+ O — ) AT + F02 (trA}) 1) . (4)

Here, the constants 7, A1, A, are respectively, zero shear viscosity, relaxation time and retardation time. The other five
constants g, (1, M2, U1, Uy are associated with non-linear terms.
The upper contra-variant convected derivative designed by V over S and A, is defined as follows

v

=5~ (Vo) s+5(vu) | (5)

v DA

A= 2= (V) 4, + 4, (Vo) (6)
T DS 9

where A, = (Vu) + (Vu)' and o= |:8t + (u- V):| S. (7)

It should be noted that the model (4) includes as special cases the following

(i) Ifno = A = Ay = o = u1 = Uy = v; = v = 0, we recover the Newtonian model.

(ii) If no = A1 = o = 1 = U2 = v = vy = 0and A, = Ay, the second grade fluid model is obtained.
(iii) If no = Ay = o = u2 = v = v = 0and A; = Aq, w1 = A then the upper convected Maxwell model is recovered.
(iv) If Ay = Ay and ng = Ay = wo = U1 = U2 = v = vy = 0, we reach the co-rotational Maxwell model.

(V) If Ay = A, Ay = Ag, 01 = Aq, 2 = Az, Mo = 1o and vy = v, = 0 then the Oldroyd 4-constant model is recovered.
(vi) If Ay = A1, A2 = Ao, 1 = Mg, w2 = A, and no = v = v, = 0, we arrive at the upper convected Jeffery (Oldroyd
B-model).

(vii)If Ay = A1, Ay = Az and g = o = U1 = U2 = V1 = U, = 0, we gain the co-rotational Jeffery model.
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Fig. 2. Schematic profile of wire coating in a pressure type die.

3. Problem formulation

Fig. 2 shows the internal geometry of the die considered here, together with the nomenclature. Here, the wire of radius
R,, is dragged with velocity U, in a pool of an incompressible Oldroyd 8-constant fluid inside an annular die of radius Ry
as shown in Fig. 2. The wire and die are concentric. The coordinate system is chosen at the center of the wire, in which r is
taken perpendicular to the direction of fluid flow, whereas z is taken in the direction of fluid flow.

Boundary conditions are:

Atr =Ry, w="U,,

andatr =Ry, w =0. (8)
Since the flow is axisymmetric and unidirectional, so the velocity field is defined as
u=1[0,0,w(], S=Sm. 9)

It is further assumed that the flow is steady, laminar and isothermal. The gravitational force is neglected.
On substituting these expressions (9) in Eqs. (4)-(7), we obtain non-zero components of extra stress S as:

dw >
S+ (U1 — Ml) Srz =1 (V2 — A1 — 1) ( o ) (10)
s xsdw+]<x + o) (S +s>dw+“°s WY g (2 (1)
1z 19rr dr 2 1— M1 7T Mo m 2z dr 2 v74 dr =To dT
dw dw\?
Siz+ (M — 1 +vy) ?Sn =no (A2 —p2+v) | - (12)
r dr
dw dw\?
Sop +v1—=Sz =nov2 | = | . (13)
dr dr
On solving (10)-(13), we obtain the explicit expressions for the stress component as:
dw\?
S = —(v1 — M1) 5rz + 1o (V2 — A1 — u1) ar (14)
dw dw\?
Sep = —U1——Siz + nov2 | —— (15)
dr dr
dw\?
Sy =—A1— 1+ Ul) Sr,z + 10 (A2 — 2 + v2) ar (16)
dw dw
[1+a ()] %
z =Mo" (17)
1+8(F)
where o = A1A; + po (142 — %Uz) — 1 (U2 — v2)

3

,3=)‘%+U«0<M1—2U1>_M1(M1_Ul)~
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The constant « is known as the dilatant constant, while the constant § is called the Psendoplastic constant.

Comments: (i) If the ratio % = 1, the shear stress in Eq. (17) reduces to that of a Newtonian fluid.

(ii) If the ratio % > 1, the shear stress in Eq. (17), with moderate values o

(iii) If the ratio £ 5 < 1, the shear stress in Eq. (17), with moderate values of . represents Psendoplastic fluids.
As indicated in Eq. (9), the velocity field u and the stress S are functions of only r, so the continuity equation (1) is satisfied
identically and the dynamic equation (2) reduces to

fee dw - represents dilatant fluids.

0 1 d
= = o= (1Sy) (18)
ar
ap
~Z -0 19
39 (19)
8p l
3 - (rsrz) (20)
z rd

From Eq. (19), we have p=p(r,2).

rdzw v dw r8 @+ B) dw 3 8 dw\? d?w +apr dw\* d?w
g e _gr( =) == =) 22
dr? dr “ dr dr? * dr dr?

3 dw 2d2w+ P dw ﬂ dw e ap (dw\* 0 21)
ar| — | — +«a —|—) =B r—(—) =0,
dr dr? dr dr o0z \ dr
The volume flow rate of the coating is
Q=rU, (RR—R) (22)
where R. is the radius of the coated wire. On the other hand at the cross-section, within the die, the volume flow rate is
Rp
Q= 2mrw(r)dr. (23)
Rw

The thickness of the coated wire can be obtained from Eqgs. (22) and (23).
The force on the total wire surface in the die is

F = 2R LS; | =gy - (24)
Let us introduce the following non-dimensional variables and parameters
r Uy Uy
r¥f = — w*:ﬂ, a*:azw’ IB _IBZ ) = P . (25)
Ry Uy RZ RZ, w (U /Ry)
Hence, Eqs. (8) and (21) after dropping the “x” and under the assumption that the pressure gradient in the axial direction is
constant i.e. d—p £2 takes the following form:
d2 w dw 24 @t B dw } ar dw d2w+ B dw\* d*w
_— o _ . i -~y =
dr2 dr dr ) dr? dr dr?
e () o (22 pro (2 ' arpe (L "o (26)
ar\ — ) — +aB|— ) —r1 — ) - — ) =0,
dr dr? dr dr dr

with the boundary conditions
R4
w(l) =1, w () =0 whered = R > 1. (27)
w
Finally, we solve Eq. (26) with the corresponding boundary conditions (27) by using OHAM.
4. Solution by optimal homotopy asymptotic method
4.1. Basic idea
According to OHAM Eq. (26) can be represented by
du
L)) +g) +N(@u@) =0, B (u, @> =0 (28)

where L is a linear operator, u(y) is an unknown function, g(y) is a known function, N is a nonlinear operator and B is a
boundary operator.
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According to OHAM we construct a Homotopy, ¢ (v, p) : R x [0, 1] — R which satisfies
(1 —=pILe¢Wy,p)) + W1 =HDIL@Y,p) +20) +N@W,p)],
ad , 29
B(w,p),‘l?m):() (29)
y

wherey € Randp € [0, 1] is an embedding parameter, H (p) is a nonzero auxiliary function forp # 0, H(0) = 0and ¢ (r, p)
is an unknown function. The auxiliary function H(p) depends either upon some constants [6-10] or upon some functions
depending on a physical parameter [11]. It was shown in the paper [11] that a more complex function H(p) leads to more
accurate results.

Obviously, whenp = 0andp = 1, ¢ (v, 0) = u,(y) and ¢ (y, 1) = u(y) respectively. Thus, as p varies from 0 to 1, the
solution ¢ (y, p) approaches from u, (y) to u(y), where u,(y) is obtained from Eq. (29) for p = 0:

L) +g0) =0, B (uo, % _ o) . (30)

We choose the auxiliary function H(p) in the form:

H(p) =pCi +p’Co+ - - (31)

where C;, C3, . .. are constants to be determined later.
To get an approximate solution, we expand ¢ (y, p, G;) in Taylor’s series about p in the following manner:

¢, p. ) =)+ Y (¥, Cr, G, .., G P (32)

k=1

Substituting Eqs. (31) and (32) into Eq. (29) and equating the coefficient of like powers of p, we obtain the following linear
equations.

The zeroth order problem is given by Eq. (30) and the first and second order problems are given by Eqgs. (33) and (34)
respectively:

d
L) +80) = CNo (,()). B (ul, d“yl) —0 (33)
d
L)) — L)) = GNo o)) + G (L ) + N (1 ). ()], B (uz, %;) —o0. (34)

The general governing equations for u(y) are given by:

L(ue)) = L (-1 () = GNo (Us(y))

k—1
+ > GIL Wi ) + Nei o), ur 0) 1), k=2,3,..,

i=1 (35)
du
B (uk, ") =0
dy
where Ny, (Uo(y), u1(y), ..., uxg_1(y)) is the coefficient of p™ in the expansion of N (¢ (y, p)) about the embedding parameter
p [6-10].
o0
N (@ (. p: C)) = No (us()) + Y Non (Uo, 111, Uz, ..., Upn) p (36)
m=1
It has been practical that the convergence of the series (32) depends upon the auxiliary constants Cq, G, .... If it is
convergentatp =1,
m
G, Cr, Gy Gn) =Ue®) + ) i (1, C1, Gy, G) (37)
i=1

Substitution of Eq. (37) into Eq. (28), results in the following expression for the residual:

R(y, C,GC, ..., Cm) = L(ﬁ(y, C,GC, ..., Crn)) —I—g(y) +N(fl(y, C1,GC, ..., Cm)) (38)

If R = 0, then & will be the exact solution. Generally it does not happen, especially in non-linear problems.
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There are many methods like the Method of Least Squares, Galerkin’s Method, the Ritz Method, and the Collocation

Method to find the optimal values of G;, i = 1, 2, 3, .... We apply the Method of Least Squares as:
b
J(Cl,cz,...,cm)=/ R (,C1, Gy, ..., C) dy (39)
a
a a a
7127]:...:7]:0 (40)
aCq aCy aCn
where a and b are properly chosen numbers to locate the desired G; (i = 1, 2, ..., m). With these constants known, the

approximate solution (of order m) is well-determined.

4.2. Solution of the problem

We construct a homotopy for Eq. (26) with the corresponding boundary conditions given in Eq. (27) according to
Eq. (29). Using the given values in the homotopy we obtain zeroth, and first order problem with the boundary conditions
given below:

0 d2 Wo dwo

i — —Q2r=20 41
P T (41)
subject to the boundary conditions

wo(1) =1, wo (§) =0 (42)

dr? dr dr? dr dr? dr

4 ﬂC dwo d2 Wo IB dw() d2 Wo 3arC dwg 2 dz Wo
r —o — oar —_—
"\ar ) ar? dr ) dr? "Uar dr?

d*w dw d*w dw d>w dw dwp \ >
Pl or—t 4 —— 7 0——0—C1(r 0+70>—(01+l3)C1(70>

dwo > 2 dwo 4 dwo 2
—afC | —— ) +B7CR2 | —— ) +2BrCi2| — | +Q2r(1+C) =0 (43)
dr dr dr
subject to boundary conditions
wi(1) =0, wy;(8) =0 (44)
dzwz de d2w1 dw1 d2w1 dw1 d2w0 dwg
.o - = —+ —)-=C rC
P Y T T 1( dr? dr) Z(rdrz d)+ 2

dwo 2 dwo 3 2 dwo 4 dwo >
+2.Q,3TC2 —_— —(O[+,B)C2 —_— +QIB Cz —_— —OZIBCZ —_—
dr dr dr dr

o dw dwo\? d dwo\> d
+a2pre, 0I5 gy (o) I L gopec, (M0 B
dr dr dr dr r

5 IBC dwg 4 d 1 3arC dwo dsz T /3 C dwo 2 dsz
—5a — ) — —3arG | — G | —
"Udr dr *ar dr? *ar dr?
w

dwo \* d? dwg dw; d? dwo \ > dw; d?
_a,er(J) o gorc, PRodwdwo o (ﬂ) duy d*wo

dr , dr? dr dr dr22 dr dr dr?
dwo\~ dw; d*w dwo \~ d®w dwo \~ d®w
—4aBC (dro) dir1 dr20 ~ 3arty <dr0> dr21 A ( dro) dr21
— aBrC (dw‘))4 Fu _ (45)
dr dr?
subject to boundary conditions
w, (1) =0, wy (8) = 0. (46)

Solving Egs. (41)-(46) with the corresponding boundary conditions, we obtain the zeroth, first and second order problem
solution as follows:

wo(r) = Ay +1* A + A Inr (47)

1
wi(r) = ﬁA14 + Ais + 17 A+ 1 A7 +1°A15 + AggInT (48)

1 1
wy(r) = 6 — k10 + —kn + K12 + k13 + g + s + %6 + 1807 + 1'%08 + K19 InT (49)
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Fig. 3. Comparison of velocity profile for different order problems using OHAM by taking « = 0.2, 8 = 0.4, and £2 = —0.5, C; = —0.002154869, C;, =
—0.0005341298.
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Fig. 4. Residual second order velocity profile by takinge = 0.2, 8 = 0.4, § = 3,and £2 = —0.5, C; = —0.002154869, C, = —0.0005341298.

where A1y, A1z, A3, Arg, Avs, Ass, A1z, Avg, Atg, K10, K11, K125 K13, K14, K15, K16, K17, K18 and K19 are constant containing
the auxiliary constants also are given in Appendix.
The second order approximation is

w(r) = wo(r) + wi(r) + wa(r). (50)

Substituting Eqgs. (47)-(49) in Eq. (50), we obtain that the second order approximate solution for the velocity field is given
by

1 1 1
w(r) = rTiK]o + ijn + rj(A14 + k12) + (A1t + Ara + k13) + 12 (A1z + At + K14)

+ 1 (A7 + k15) + 18(Arg + k16) + 817 + 1'% + InT (A3 + Aro) + k181 InT. (51)

5. Results and discussion

In the present paper, the solution for velocity field is derived by Optimal Homotopy Asymptotic Method. The solution
obtained is discussed under the effect of the Dilatant constant «, the Psendoplastic constant j, the pressure gradient and
the viscosity parameter 1. Fig. 3 shows that as we increase the order of the problem the accuracy increases and the solution
converges to the exact solution by choosing the appropriate auxiliary constants and increasing the order.

One can see from Fig. 4 that the accuracy of the solution obtained by the present method is very good. The residual R(r)
has a maximum magnitude of 0.0005, which proves the accuracy of the approximate solution. One can observe from Fig. 5
that the velocity decreases as the dilatant parameter « increases, which is a good agreement to the physical behavior of the
parameter « (shear thickening).
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Fig. 7. Velocity profile for different values of pressure gradient, taking « = 0.4,and 8 = 1.

Fig. 6 depicts that the velocity of the fluid increases as the value of the Psendoplastic constant § increases, which
tallies with the physical property of the parameter g (shear thinning). Fig. 7 gives the velocity profile for different values
of pressure gradient and one can observe that the velocity increases as the pressure gradient increases in magnitude.
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Figs. 8-10 shows the profile of shear stress for the Psendoplastic constant 8, the dilatant constant «, and the viscosity
coefficient 7, respectively.

Table 1 admits that the average velocity and the volume flow rate both increases as the parameter g increases. One can
observe from Table 2 that the volume flow rate and average velocity increases as the thickness of the extrudate polymer
increases. Table 3 shows that the average velocity and the volume flow rate both decreases as the parameter « increases.
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Table 1
Variation of volume flow rate and average velocity with change of parameter § for¢ = 0.2,§ = 3, and
pressure gradient = —0.5.
B Volume flow rate Average velocity
0 11.9378 0.47499
0.1 12.1721 0.48431
0.2 12.4141 0.49394
0.3 12.6639 0.50388
0.4 12.9213 0.51412
0.5 13.1866 0.52468
0.6 13.4595 0.53554
0.7 13.7402 0.54671
0.8 14.0286 0.55818
0.9 14.3248 0.56997
1 14.6287 0.58206
Table 2
Variation of volume flow rate and average velocity with change of the radius of wire § for § = 0.2, « = 0.5,
and £2 = —0.5.
8 Volume flow rate Average velocity
2 3.99037 0.413392
2.2 5.07004 0.420272
2.4 6.33704 0.42377
2.6 7.83165 0.432794
2.8 9.59663 0.446594
3 11.6765 0.464592
3.2 14.1165 0.486301
34 16.9616 0511274
3.6 20.2553 0.539086
3.8 24.0379 0.569307
4 28.3451 0.601501
Table 3
Variation of volume flow rate and average velocity with change of parameter « for § = 0.4, = 3 and
2 =-0.5.
o Volume flow rate Average velocity
0 13.4286 0.534306
0.2 12.6212 0.514124
0.4 12.4141 0.493942
0.6 11.9069 0.473760
0.8 11.3997 0.453578
1 10.8924 0.433396
12 10.3852 0.413214
14 9.87796 0.393032
16 9.37073 0.372850
1.8 8.86350 0.352668
2 8.35627 0.332485
Table 4
Variation of volume flow rate and average velocity with change of the pressure gradient §2 fora = 0.5, 8 =
0.2,and § = 3.
2 Volume flow rate Average velocity
0 8.66613 0.344814
—0.1 9.27270 0.368949
—0.2 9.88806 0.393434
-0.3 10.5012 0.417829
—0.4 11.1010 0.441696
—0.5 11.6765 0.464592
—-0.6 12.2162 0.486068
—0.7 12.7088 0.505666
—0.8 13.1424 0.522919
—-09 13.5050 0.537346
-1 13.7841 0.548451

Table 4 shows that the average velocity and the volume flow rate both increases as the parameter pressure gradient
increases.
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