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Equivalence of Saddle-Points and Optima for 
Non-concave Programmes 
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Columbia Business School, New York, New York 10027 

A basic result of optimisation theory is that a saddle-point of the Lagrangian is 
an optimum of the associated programming problem, independently of any concav- 
ity assumptions. It is also well known that under concavity assumptions the two are 
equivalent; i.e., an optimum is always a saddle-point. It is demonstrated that this 
basic equivalence of saddle-points and optima in fact holds for a much larger class 
of problems, which are not necessarily concave, but are equivalent to concave 
programmes up to a diffeomorphism. This class generalises the class of geometric 
programmes. ~0 1984 Academic Press. Inc. 

1. INTRODUCTION 

The analysis of the relationship between constrained optima and saddle- 
points has played a crucial role both in the economics and in the optimisa- 
tion literature. In economics, one uses this relationship both to characterise 
optima and to provide a basis for adjustment processes designed to reach 
them. (See, for example, Arrow and Hurwicz [2], Arrow, Hurwicz, and 
Uzawa [3], and Heal [18, Chap. 41.) In optimisation, the association between 
optima and saddle-points is also used both to provide a characterisation of 
optima and to provide the basis of gradient methods for locating them. 

It is well known that one part of this association, namely, the fact that a 
saddle-point is an optimum, does not depend on concavity (see, e.g., Uzawa 
[30]). However, the converse, i.e., the equivalence of an optimum to a 
saddle-point, is usually proven via a proof in which the separating hyper- 
plane theorem, and hence concavity, plays a vital role (see again Uzawa [30], 
or Intriligator [19]). 

There are a number of earlier works which in some way generalise this. 
For example, Arrow and Hurwicz [l, 21 show that under certain circum- 
stances the Lagrangian of a non-concave programme may be transformed in 
such a way that a local optimum is a local saddle-point, and Rockafellar 

398 
0196-8858/84 $7.50 
Copyright Q 1984 by Academic Press. Inc. 
All rights of reproduction in any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82809871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OPTIMA FOR NON-CONCAVE PROGRAMMES 399 

[27] gives more general results of this type. The analysis of this paper applies 
to a more restricted class of cases than these, but for that class gives much 
stronger results. In particular, I show below that in fact the equivalence 
between saddle-points and optima is not restricted to concave programming 
problems, but continues to hold for a much larger class which may be 
strongly non-concave. These are programmes which, under a suitable diffeo- 
morphism of the choice space, become concave programmes. They can 
therefore be described as topologically equivalent (in the sense of a diffeo- 
morphism) to concave programming problems, and I use the term c~ncaue 
transformable to describe them. For any such programme, a point is an 
optimum if and only if it is a saddle-point of the normal (untransformed, 
unaugmented) Lagrangian. Hence all of the duality results associated with 
concave programmes are available, a point of considerable economic signifi- 
cance. I also show that, as in concave programming problems, all critical 
points of these problems are global maxima. In addition, the maximum 
value of the objective function, as a function of the constraint, is shown to 
be a concave function for these problems. In economic terms, they thus 
display a form of diminishing returns, in spite of the fact that the various 
defining functions need not be concave. 

A particular class of programmes with this property has been identified in 
the literature as geometric or extended geometric programmes (see, for 
example, Duffin, Peterson, and Zener [15] or Peterson [25]). These are 
problems in which, typically, a polynomial is minimised subject to 
constraints involving products of the variables, and they have a natural 
change of variable which renders them concave programmes. Standard 
Kuhn-Tucker theory can then be shown to apply to these, so that the 
results of the present paper can be obtained. However, it should be noted 
that concave transformability is a much weaker condition than that of being 
a geometric programme, so that although geometric programmes provide a 
useful illustration of the class of concave-transformable programmes, they 
by no means exhaust this class. A particular example of a concave-trans- 
formable programme is given in Section 4. The idea of concave transforma- 
bility is also related to that of generalised convexity, and this connection is 
discussed in Section 5. 

At an intuitive level, it seems plausible that the property that any critical 
point is a global maximum is invariant under a diffeomorphism of the space, 
and indeed this part of the proof is relatively standard. What is more 
surprising is that the property of being a saddle-point of the Lagrangian is 
invariant in this way, as a saddle-point is a very geometric structure and so 
seems less robust. In terms of applications, this is clearly an important part 
of the result, because, as already mentioned, it makes a range of powerful 
duality results involving shadow prices available for a significant class of 
non-concave problems. 
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This idea of concave transformability, or of topological equivalence to a 
concave problem, is closely related to a concept discussed by Brown and 
Heal in [7]. That paper addresses the issue of whether, in a general 
equilibrium model with economies of scale in production and hence non- 
convex production sets, there exists a Pareto-efficient marginal cost pricing 
general equilibrium. It is shown that this may not be the case. Several 
sufficient conditions are given for the existence of an efficient equilibrium, 
one of which is that the economy be topologically equivalent to a convex 
economy. This concept of topological equivalence to a convex economy 
formalises the idea that, although there are increasing returns in production, 
in some basic sense this does not matter, as returns to scale increase less 
rapidly than marginal utility diminishes. It is therefore the topological 
rather than the geometric structure of the economy that is at stake when 
deriving conditions for Pareto efficiency. 

In both Brown and Heal [7] and the present paper, the mathematical 
point which underlies the basic results is that the structure of the critical 
points of a real-valued function defined on a manifold depends on the 
topological characteristics of that manifold, and so may be an invariant 
preserved by topological equivalence. It is of course this kind of considera- 
tion which forms the basis of Morse theory (see, for example, Milnor [22] 
and Morse [23]). 

There are a number of earlier works which are related to the present 
paper, either in that they are concerned with the saddle-point-optimum 
equivalence for non-concave problems or in that they bring topological 
techniques to bear on non-concave optimisation problems. In the first 
category are the works of Arrow and Hurwicz and Rockafellar, already 
cited, which show that under certain circumstances the Lagrangian of a 
non-concave programming problem may be transformed in such a way that 
a local optimum is a local saddle-point. Note that in comparison, the results 
in this paper are global, and do not require that the Lagrangian be 
transformed. 

Other papers which rely on topological techniques rather than on convex- 
ity in the study of optimisation problems are those of Chichilnisky and 
Kalman [12], Brown, Heal, and Westhoff [9], Fujiwara [16], Spingarn and 
Rockafellar [28], and Yun [31]. These papers apply techniques from dif- 
ferential topology to the characterisation of solutions to non-concave opti- 
misation problems, and to the study of their comparative static properties. 

The remainder of the paper is organised as follows. The next section 
presents the basic notation and definitions to be used. In Section 3 the main 
theorems are established. Section 4 contains an example of a non-concave 
but concave-transformable programme. Section 5 relates the idea of concave 
transformability to that of generalised convexity, Section 6 contains a 
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FIG. 1. Definition of the transformed problem. 

discussion, and Section 7 concludes with some conjectures about possible 
extensions of the present result. 

2. NOTATION AND DEFINITIONS 

We shall assume x, the choice variable, to be a vector in Euclidean 
m-space R”. Our concern is with the problem 

maxim&e f(x) subject to g,(x) 2 0, i= 1,2 ,..., n, (1) 

where f: R” -+ R’, f is C’ and g,: R” * R’, gi is C’, i = 1,. . ., n. It is 
assumed that problem (1) satisfies the constraint qualification 

Thereexistsxsuchthat g,(X) > O,i= l,...,n. (2) 

Now let T be a regular C’ diffeomorphism’ of R” to itself. Define the 
following functions, which will serve as objective and constraints in the 
transformed problem 

f(x’) =foT-l(x’) =f(T-‘(x’)) 

&(x’) = gioT-‘(x’) = gi(T-‘(x’)), i= 1,2 ,...,n. 

The commutative diagram shown in Fig. 1 illustrates these definitions. 
The next step is to define the transformed programming problem: 

Maximise f( x’) subject to &(x’) 2 0, i=l >***, n. (3) 

'A C" diffeomorphism is a continuous map which is injective, surjective, and has a continuous 
inverse, and is once continuously differentiable. A function is regular if any of its values is a 
regular value, i.e., if for all x in f-‘(v), y  in the range off, D!(x) is onto. 



402 GEOFFREY HEAL 

The functions defining this problem are the composition of those defining 
(1) with a diffeomorphism of the choice space. We can now define the basic 
concept of concave transformability: 

DEFINITION. The programming problem (1) is said to be concaue trans- 
formable if there exists a regular C’ diffeomorphism T: R” + R” such that 
the transformed problem (3) is a concave programming problem; i.e., j and 
g,, i = 1,2 ,..., n, are all concave functions. 

The geometric intuition underlying this analysis is given in Fig. 2 for the 
case where n = 1 and m = 2. The left-hand side shows the untransformed 
problem (1): although the feasible set is non-convex, there is a unique point 
of tangency between a contour of f and its boundary, and this is the global 
maximum. The transformation T sends the feasible set and the contours off 
into the standard convex configuration shown on the right: here the image 
under T of for example f - ‘(LX) becomes the inverse image of cr under a new 
function j, which clearly is f 0 T -l. The basic idea, then, is that if we have 
a “well-behaved” non-convex problem as on the left, it can be deformed 
into a convex problem. For this, the standard results are available, and can 
be pulled back to the non-convex problem. Figure 3 shows a non-convex 
problem which is not convex transformable. 

FIG. 2. Concave transformability in a simple case. 
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FIG. 3. A problem which is not concave transformable. 

3. RESULTS 

If (3) is a concave programming problem, then known results can be 
applied. The idea of the proofs below is that these results, applicable to the 
problem on R” defined by f and ii (i = 1,2,. . . , n), can then be “pulled 
back” via the inverse of T to the problem defined by f and g, (i = 
1,2,..., n). The maximum value function of a programming problem is 
defined as follows. Consider the problem 

Maximise f( x) subject to g,(x) 2 b,, i = l,...,n. 

Let b = (b;), i = 1,. . . , n, and 

V(b) = Maxf(x), x E {x/gi(x) 2 b,, i = l,..., n}. 
x 

This gives the maximum value of the objective function attainable for 
various values of the constraints bi. 
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We can now state and prove the main result. 

THEOREM 1. Let problem (1) be concaue transformable and satisfy the 
constraint qualification (2). Then 

(i) any critical point is a global maximum; 

(ii) x* is a solution to (1) if and only if there exists A* E R”, A* 2 0, 
such that (x*,X*) f orm a saddle-point of the Lagrangian 

L =f(x) + Cxjgi(x); 

(iii) the maximum value function V(b) of (1) is a concave function. 

Proof First note that any x’ in the domain of (f, &) is the unique 
image under T of a single x in the domain of (f, gi). Write 

Hence 

x’= T(x). (4 

f(x’) = f(T-‘(x’)) = f(T-‘(T(x)) = f(x) 

g,(x) = g,(T-‘(x’)) = gi(T-‘(T(x)) = g,(x). (5) 

Thus the p and ii assume at x’ the same value as f and g at x, if 
x’ = T(x). This follows immediately from the commutativity of Fig. 1. 

Next note that, as problem (1) satisfies the constraint qualification (2), by 
setting 

it is clear that 

R’ = T(X) 

g,(2) > 0, i=1,2 n, ,***, (6) 

and problem (3) also satisfies the constraint qualification. 
Now we show that if x’* solves the transformed problem (3) then 

T -l(x)*) = x* solves the original problem (1). By assumption, 

f(x’*) 2f(x’) Vx’E {XI/&(x’) 2 0, i = l,...,n}. 

BY (3, 

x’ E {x,/&(x’) 2 0, all i) 

if and only if 

T-‘(x’) = x E {x/g,(x) 2 0, all i}. 
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We now assert that x* = T -l(x’*) satisfies 

f(x*) 2f(x) Vx E {x/g,(x) 2 0, all i}. 

Suppose the contrary. Then there exists 2 satisfying 

f(n) ’ f(x*), %E (x/g,(x)2O,alli}. 

But by (5), 

f(T(f)) = j(R’) = f(3) 

j(x’*) =f(x*) 

so that j(Y) > f(x*) and Z’ is feasible for the transformed problem. This 
is a contradiction: hence x* = T -l(x’*) solves (1). 

We have proven that 

(x*’ solves (3)) 2 (T -‘(x*‘) = x* solves (1)). 

Now we establish the converse. Let x* solve (1). Then by (5) 

f(x*) 2 f(x) Vx s.t. T(x) = x’E {x’:&(x’)2O,i=l,..., n}. 

Again by (5) it follows that 

f(x*‘) 2 j(xl) Vx’ E {x’: &(x’) 2 0, i = l,..., n}. 

Hence we have that 

(x*‘solves (3)) * (x* solves (1)). (7) 

We next investigate the relationship between critical points of (3) and those 
of (1). At a critical point of (3), the derivative of the Lagrangian 

9= j(xl) f CA;&(x’) 

vanishes. Hence 

Df(x’) + ~X,D&(x’) = 0, (8) 

where D is the derivative operator. Now x’ = T(x) for some x, so that 
f^(x’) = f(T-‘(x’)) so that (8) is equivalent to 

D~(T-'(x')) +&i,Dg;(T-1(x')) = 0. 
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By the chain rule this is equivalent to 

Df(x) . DT-1(x’) + c’xjDgi(x) * DT-‘(x’) = 0. (9) 

But as T is regular DT -‘(xl) is a square matrix of full rank. Post-multiply- 
ing (9) by the inverse of DT -‘(xl) gives 

Df(x) + ChiDgi(x) = 0, (10) 

which is precisely the condition which characterises a critical point of 
problem (1). Hence we have, for x’ = T(x), 

(x’isacriticalpointof(3)) w  (xisacriticalpointof(1)). (11) 

Because (3) is a concave programming problem, we know also that 

(x’ is a critical point of (3)) = ( x’ is a global maximum of (3)). (12) 

Conditions (7), (ll), and (12) imply (i) of Theorem 1, namely, that any 
critical point of (1) is a global maximum. 

To prove part (ii), we note that because (3) is a concave programming 
problem satisfying the constraint qualification, there exists a h* E R”, A* 2 
0, such that x’* is a solution to (3) if and only if (x’*, X*) form a 
saddle-point of the Lagrangian, i.e., if and only if 

f( x’) + Ch~& (x’) I f( xl*) + cqg; (xl*) 

I I( x’*) + Ch,g; (xl*) 

for any x’ and any X E R”, h 2 0. By (5) we can rewrite this as 

f(x) + cxygi(x) I f(x*) + Ll:g;(x*) I f(x*) + CX,g;(x*) 

for any x and A E R”, X 2 0. Hence (x*, h*) form a saddle-point of the 
Lagrangian of the untransformed problem (1) so we have established that 
for this problem, an optimum is a saddle-point. The converse is well known 
(see Uzawa [30]). This proves (ii) of Theorem 1. 

To prove (iii), we consider next the set A’ in R”+’ 

y E R’ Y d(x’> 
A’ = for some x’, 

z E R” zi S gi(x’), all i 

As f and gj are concave functions, this is a convex set. (For n = 1, see Fig. 
4.) 
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FIG. 4. The set A’, which is convex for both concave and concave-transformable (non-con- 
cave) problems. 

Now define the following real-valued function on R”: 

For z E R”, u’(z) = maximum y : ( y, z) E A’. 

u’(z) is obviously identical to the maximum value function for the trans- 
formed problem, and by standard arguments is a concave function. Next 
consider the set equivalent to A’ for the untransformed problem (1): 

i 

y E R’ Y ~fb) 
A= for some x, 

z E R” zi I g,(x) all i 

Likewise define: 

For z E R”, u(z) = maximum y: (y, z) E A. 

By (5), A = A’. Hence U(Z), the maximum value function for the un- 
transformed problem, is also concave. 

This completes the proof of Theorem 1. 0 

It is worth noting that the fact that an optimum is a saddle-point could 
also have been proved by the usual approach of separating the set A from 
the set B c R”+l defined as 
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as both A and B can be shown to be convex sets for a concave-transform- 
able programme. 

4. AN EXAMPLE 

In this section we give an extremely simple example, merely to provide 
some intuitive grasp for the kind of problem that falls within the scope of 
the above theorem. The example is 

Now let 

maximise (c$( fixi - Y))“~ 

subject to A - 6x: - EX~ 2 0. 

z-,(x,) = ax: = XI1 

T,(x,) = px: - y = XI2 

so that the transformed problem is 

maximise ( x’~x’~)~‘~ 

subject to.4 - x’i$ - x’,: -E>O. 
B P- 

It is readily verified that the original problem is non-concave, whereas the 
transformed problem is concave. The solution to the transformed problem is 

Lagrange multiplier X* 

It can be readily verified that the implied values (XT, xz) of xi and x2 solve 
the untransformed problem, and that (x:, xz, X*) forms a saddle-point for 
the untransformed problem. 

5. RELATIONSHIP WITH GENERALISED CONVEXITY 

Various concepts of generalised convexity have been introduced in the 
programming literature, for example by Avriel [4], Zang [32], and Ben-Tal 
[5]. Here we review briefly the connection between concave transformability 
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H(x) 

AH(x) + 

H(Y) 

(l-A)H(y) 

FIG. 5. The concept of H-convexity. 

and generalised convexity. Following Ben-Tal [5], consider a set S c R”, 
and a function H: R” -+ R”, H l-to-l, onto, and possessing an inverse 
H-‘. (Note that continuity is not required of H and H-i.) Then for any 
x, y E S and any X E [0, 11, define MH((x, y), A), the H-weighted mean of 
x and y, as 

&(b, Y)J) = H-‘@fw + (1 - ww). 

We then say that S is H-conuex if for any x, y E S and X E [O,l], 
MH((x, y), A) E S. Figure 5 illustrates this idea. In relating this to the idea 
of concave transformability, the following remark is useful. 

Remark. S is H-convex if and only if H(S) is convex. 

Prooj Suppose S is H-convex. Then if x, y E S, H -‘(AH(x) + (1 - 
A)H(g)) E S. This implies that H(x), H(y) and AH(x) + (1 - h)H(y) 
are all in H(S), which is therefore convex. Now suppose H(S) is convex. 
Then H(x), H(y) E H(S) implies AH(x) + (1 - A)H(y) E H(S), which 
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in turn implies H -‘(M(x) + (1 - X)&g)) E S, which is H-convex. This 
completes the proof. 0 

The concept of H-convexity therefore amounts to being transformable 
into a convex set: if the requirements of continuity are imposed on H and 
H-l, then H-convexity amounts to being homeomorphic to a convex set, 
which in turn implies contractibility* (see Kuhn [21] and Chichilnisky [lo] 
for a discussion of results obtainable using contractibility instead of convex- 
ity). 

The property of concave transformability can now be interpreted in this 
framework. Let 

s= {x:g,(x)20,i=1,..., n}. 

S is thus the feasible set of problem (1). 
We can now establish: 

THEOREM 2. Problem (1) is concave transformable if and only if S is 
T-convex for a regular C’ difleomorphism T such that f 0 T -’ is concave. 

Proof. Suppose first that (1) is concave transformable. Then there exists 
T as specified such that f 0 T - ’ is concave, and gj 0 T - ’ are also concave. 
Hence {x’ : g, 0 T -‘(x’) 2 0, i = 1,. . . , n } is convex. But 

{x’:g;oT-‘(x’)>O,i=l,..., n} = T(S). 

Hence by the remark above S is T-convex for a regular C’ diffeomorphism 
such that f 0 T -’ is concave. 

Suppose next that S is T-convex, with T as specified and f 0 T -’ 
concave. Then 

{x’:gioT-‘(~‘)kO,i=l,...,n}=T(S) 

is convex, so that the functions gi 0 T -’ are concave. As f 0 T -’ is concave 
by assumption, (1) is concave transformable, proving the result. 

6. ECONOMIC APPLICATIONS 

We have demonstrated that the equivalence of an optimum and a 
saddle-point of the untransformed Lagrangian holds, not only for concave 
programmes, but for concave-transformable programmes, defined as pro- 

'A space S is contractible if there exists a continuous function F: S x [0, l] + S and a point 
s0 E S such that F(x,O) = s Vs E S, F(s, 1) = so Vs E S. 



OPTIMA FOR NON-CONCAVE PROGRAMMES 411 

grammes which become concave under a suitable diffeomorphism of the 
choice space. Section 4 gives an extremely simple example where the 
appropriate diffeomorphism is readily apparent and indeed is just a change 
of variables. It should be emphasised, however, that a diffeomorphism does 
not in general correspond to a change of variables or coordinates, except in 
a local sense, though coordinate changes are.of course diffeomorphisms. 

It is worth noting that non-convex problems which become convex with a 
change of variables have been studied in economics. Both Chipman [13] and 
Quinzii [26] study economies whose feasible sets are non-convex, but 
become convex in logarithms. 

As mentioned in the Introduction, there exist other results connecting 
optima and saddle-points for non-concave problems. The earliest are those 
of Arrow and Hurwicz [l]; subsequently there is the work of Rockafellar 
[27] and Fujiwara [16]. But in all of these cases, the equivalence of optima is 
with a saddle-point of a transformed or augmented Lagrangian: here it has 
been shown to hold for the standard Lagrangian of concave programming, 
without augmentation or transformation. In particular, it has been shown 
that if it is possible to transform the choice space diffeomorphically so that 
the problem becomes concave, then for that problem (without the use of the 
transformation) an optimum is equivalent to the saddle-point of the 
(ordinary, untransformed) Lagrangian. 

As the original saddle-point-optimum equivalence had substantial eco- 
nomic implications, particularly in the field of decentralisation (see, e.g., 
Arrow and Hurwicz [27] and Heal [18]), it is clearly of interest to investigate 
the analogous implications of the present work. Suppose the problem 

maximise f(x) subject to g,(x) 2 0, i=1,2 ,..., n, (1) 

to be concave transformable and to satisfy a constraint qualification. Then 
we know that if x* is the solution, and X* is the associated vector of 
Lagrange multipliers, x* maximises with respect to x: 

Hence the optimal solution is the solution of an unconstrained maximisa- 
tion problem, given an appropriate vector of shadow prices to value the 
constraints. We therefore have a category of non-concave optimisation 
problem in which ordinary or “linear” prices can be used to value the 
constraints and convert to an unconstrained problem. Transformation or 
augmentation of the Lagrangian corresponds of course to using “non-linear” 
prices, or to using dual functions rather than dual variables, and this is the 
usual approach outside of a concave environment; see, for example Brown 
and Heal [6,8] and Tind and Wolsey [29]. 
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Although conventional linear shadow prices can be used to value the 
constraints of a concave-transformable programme, it does not follow that 
the usual economic decentralisation results (see, e.g., Koopmans [20]) hold 
in a concave-transformable environment. These results say that the solution 
to the overall optimisation problem may be achieved as the sum of solutions 
to a number of independent optimisation problems, linked only by the use 
of the same prices. Such a result rests on the fact that the overall optimum 
can be characterised as the maximum of a linear function over a sum of sets. 
As set addition and maximisation of a linear function commute, this in turn 
equals the sum of its maxima over the individual sets, which gives rise to the 
possibility of decentralisation. This possibility does not in general occur in a 
concave-transformable problem, because the solution of this problem can- 
not be described as the maximum of a linear function over the feasible set. 
This would be the case only if the optimum lay on the boundary of the 
convex hull of the feasible set. Figure 6 illustrates these different cases. 

Although the results here seem to have no clear precedent in the optimisa- 
tion literature, they are clearly related to a result of Chichilnisky and Heal 
[ll]. This paper analyses the minimum dimensions of the message space 
needed to achieve efficiency in various resource allocation problems. For the 
standard convex environment, the minimum dimension of the message 
space is that of the commodity space. (An earlier derivation of this result is 
given by Mount and Reiter [24].) However, Chichilnisky and Heal show that 
there is a class of non-convex environments in which the minimum dimen- 
sion of the message space is also that of the commodity space. This seems to 

\ 
a \b 

FIG. 6. (a) and (b) illustrate concave-transformable problems. -, The boundary of 
feasible set; -, a contour of the maximand. In case (b) the solution is the maximum of a linear 
function over the feasible set: in case (a) it is not. 
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correspond to the class of environment analysed by Brown and Heal [7], 
and to the class of non-concave programme discussed here. 

7. POSSIBLE EXTENSIONS 

Finally, I turn to the possibility of extending the results given here. I have 
given above a condition, weaker than concavity, which is sufficient for the 
equivalence of saddle-points and optima. It seems that this condition, 
though significantly weaker than those already known, is not necessary and 
it would naturally be interesting to have a necessary and sufficient condition 
for the saddle-point-optima equivalence. Another aspect of Theorem 1 is 
that it gives sufficient conditions for any critical point of a constrained 
maximisation problem to be a global maximum. Again, a necessary and 
sufficient condition for this property would be of general interest. It seems 
in fact likely that such a condition can be established by arguments similar 
to those used in the development of Morse theory [22]. 

For problem (1) define the set 

Pa = {x:f(x) 2 a,g,(x) 2 0, i = l)...) n}. 

Then one might conjecture that under certain regularity conditions on the 
functions f and g,, and certain compactness conditions, a necessary and 
sufficient condition for any critical point of (1) to be a global maximum is 
that for each real number ~1, the set P, is contractible. The problems 
illustrated in Fig. 2 satisfy this property, whereas that in Fig. 3 does not. 

An alternative way of approaching this problem would be in terms of the 
properties of the set-valued mapping H, 

H: R’ + 2Rn, 
H: a + Pa. 

Zang et al. [33] show that functions all of whose critical-points are global 
minima can be characterised in terms of the continuity properties of this 
mapping. More recently, Dole&i [14] has applied the same approach to 
constrained maximisation problems. However, a topological approach via 
the topological characteristics of the sets Pa seems preferable, as it would 
lead to a connection with a substantial body of powerful results. 
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