Methods

Alu insertion profiling: Array-based methods to detect **Alu** insertions in the human genome

Maurizio Cardelli *, Francesca Marchegiani, Mauro Provinciali

Advanced Technology Center for Aging Research, Scientific Technological Area, INRCA-IRCCS, Via Birarelli 8, 60121 Ancona, Italy

A R T I C L E I N F O

Article history:
Received 19 January 2012
Accepted 23 March 2012
Available online 1 April 2012

Keywords:
Alu
Retroelements
Transposons
Microarray
Tiling array

A B S T R A C T

The analysis of the genetic variability associated to **Alu** sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two **Alu** insertion profiling (AIP) methods based on the hybridization of **Alu**-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active **Alu** subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) — 4% (AIP2) and 5% (AIP1) — 8% (AIP2) for the old J and S **Alu** lineages respectively, we obtained a sensitivity of 67% (AIP1) — 90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) — 8 (AIP2) were associated to known **Alu** polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic **Alu** elements, polymorphic in 10 additional individuals.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Alu sequences represent, with about one million copies, the most abundant retroelements in the human genome. These SINE (Short Interspersed Nuclear Elements) sequences, exclusively found in primate genomes, have been particularly active in the human lineage even after human–chimpanzee divergence, where they likely contributed to shape some of the human-specific characters such as brain size [1]. Until recently these genomic elements have been mainly considered just as molecular fossils, neutral residents of the human genome, part of the so-called “junk” or, in the best case, “selfish-DNA”. In recent years, however, the role of **Alu** elements in stress response and regulation of gene expression and proteome diversity has been supported by an increasing amount of evidences [2,3]; moreover, their role in RNA editing has been recently emphasized [4]. At the same time, these retroelements represent a powerful source of genetic diversity both at population and individual levels. In fact, it has been recognized that **Alu** sequences are an important source of genetic variability [5], with a possible effect on the phenotype even when inserted in introns, as in the well known cases of ACE and WNK1 genes [6,7]. Conversely, the risk that they represent as a potential source of mutation has been evidenced by many studies [8]. In particular, observations in disease cases and experiments on transposon model systems suggest a possible role of new, germline or somatic, **Alu** insertions in human diseases such as cancer [9,10]. The epigenomic alterations associated to **Alu** repeats in aging and cancer, and the fact that **Alu** and other retroelements are active and capable of inducing mutations not only in the germline but also in somatic cells, suggest that the role of **Alu** retroelements in these two conditions be studied [11,12]. Moreover, retroelement activation seems to be involved in inflammation, a mechanism with causal roles both in cancer and aging [13].

After the origin of the first **Alu** copies in the primate lineage, the **Alu** family has given rise to different subfamilies based upon diagnostic mutations shared by subfamily members, each of them originating from different **Alu** master genes active in different evolutionary periods [14]. The nomenclature **Alu** J, **Alu** S and **Alu** Y is used to indicate, respectively, old, intermediate and young **Alu** classes [14]. Each of these classes is composed of different lineages and subfamilies based on the presence of other diagnostic mutations shared by part of their members. It appears that in the human genome, while most **Alu** elements belong to one of the older subfamilies (class **Alu** J, class **Alu** S with the subfamilies Sx, Sq, Sp, Sc), the **Alu** members capable of producing new **Alu** insertions (at least in the germline) are restricted to a small subset of **Alu** Y members classified as part of the Ya (mainly the Ya5 subfamily) and **Alu** Yb (mainly the Yb8 subfamily) lineages and (more rarely) to other members of the **Alu** Y class [15].

Until recent years the study of **Alu**-associated genetic variability has been hampered by the lack of specific methodologies able to find, on a genomic scale and with good sensitivity, the “new” elements over a background of a million pre-existing copies; in fact, while some methodologies such as **Alu** PCR [16,17] and especially the allele-specific **Alu** PCR [18] were able to detect new **Alu** insertions without...
any a priori assumptions on their genomic localization, they were based on the electrophoretic separation of PCR products, limiting the number of the loci simultaneously analyzable and requiring time-consuming additional efforts for the characterization of the polymorphic bands. Consequently, polymorphisms or mutations due to new

Alu
detections were mainly discovered through whole genome sequencing projects conducted on a small number of samples, or as occasional observations based on methods (such as locus-specific PCR) which likely underestimated their frequency [19]. Recently, however, specific methodologies to detect transposable elements (TE)-associated mutations and polymorphisms have been presented and, as highlighted in a recent review [20] they “promise to revolutionize our ability to analyze human genomes for TE-based variation important to studies of human variability and human disease”. Among them, some of the most promising methods are those based on the hybridization of tiling arrays of a DNA probe enriched with transposon-flanking DNA fragments. Similar methods have been initially presented to detect polymorphisms associated to low-copy DNA transposons in the yeast genome [21,22] and have been defined as transposon insertion profiling (TIP)-chip [22]. Based on the same principle, we recently developed two

Alu insertion profiling methods to detect

Alu-associated genomic variability [23]. In the present paper, we describe the details of the two methods.

2. Results

2.1.

Alu insertion profiling method

To map the position of new

Alu insertions we adopted a method similar to the TIP-chip approach [22], using genomic DNA fragmentation and vectorette ligase-mediated PCR to produce a DNA probe (corresponding to a wide set of small genomic regions flanking individual

Alu elements) for the hybridization of a tiling array. The

Alu-specific primer used in both AIP methods for the vectorette PCR step was designed according to the consensus sequence of the

Alu Y class (in correspondence of diagnostic sites shared by the Ya lineage and most of the other lineages of the

Alu Y class), in order to reduce as much as possible the signals generated by the “old”

Alu families; the AIP2 method introduces, in addition, a primer extension step using a primer specific for some of the most active young subfamilies (Ya5, Ya8 and Ya4) in order to further increase the sensitivity of the method for the polymorphic and active Ya subfamilies. The high genomic density of

Alu repeats suggests the use of high density arrays such as Affymetrix Tiling Arrays of the “2.0R” set, with an average resolution of 35 bp. Each Affymetrix Tiling Array contains features mapping a certain number of chromosomes, and the whole “2.0R” set, composed of seven arrays, has to be hybridized if a whole-genome scanning is needed. In the present work, aimed to optimize the method, we used the first array of the series, corresponding to chromosomes 1 and 6.

2.2. “One sample analysis”: sensitivity of the methods for different

Alu subfamilies

The results of “one sample” analysis are reported in Table 1 and Fig.1. In Table 1, we compared the different sensitivity of the two methods for different

Alu subfamilies (we considered only the elements in fully analyzable genomic positions, i.e. those with 500 bp flanking regions composed for at least 60% of unique sequence). For both methods, using a given threshold, the sensitivity is much higher for young

Alu subfamilies of Y class and especially for

Alu Ya (and to a lesser extent for

Alu Yb) than for older subfamilies of

J and S classes. The AIP2 method shows a much higher sensitivity than AIP1 for

Alu Ya elements, while its sensitivity for the other subfamilies seems to be only slightly higher. Given that both methods are based on the array hybridization of DNA fragments corresponding to the 5’-flanking region of each

Alu element,

Alu elements completely flanked by long regions of low complexity sequence cannot be detected, because the tiling arrays do not contain features corresponding to low complexity sequences (they would yield non-specific results). However, in Fig.1 we show that AIP methods (and AIP2 in particular) are quite robust in this regard, allowing the detection of

Alu elements which have 100 bp or more of low complexity sequence at their 5’-flank (Fig.1 B) if a unique sequence (of at least 100 bp) is located not more distant than 500 bp.

2.3. “Two sample analysis”: direct identification of sample-to-sample differences

The paired analysis of the signals obtained on chromosomes 1 and 6 allowed the identification of putative polymorphic loci showing differences between the two samples A and B. On the whole, 25 signals which were significantly different between the two samples were detected by AIP1 method, while 49 were obtained by AIP2 method (13 of such signals were detected with both methods). The workflow of the “two sample” analysis and the obtained results are summarized in Fig. 2. We observed that about half of the significant intervals were associated (located within 500 bp upstream) to known

Alu insertions (14/25 with AIP1 and 22/49 with AIP2), about a third of which (5/14 and 8/22 for AIP1 and AIP2 respectively) already known as polymorphic, hence giving a confirmation of the specificity of (part) of the signals. Among the signals associated with known

Alu elements, 13/14 (AIP1) and 16/22 (AIP2) were associated with elements belonging to young

Alu subfamilies (in particular to

Ya,

Yb lineages), the remaining being associated with

Alu elements of old subfamilies (

Sg, Sc, Sx and

Jb). The 11 (AIP1) and 28 (AIP2) signals located far (more than 500 bp) from known

Alu insertions putatively corresponded to new

Alu insertions.

2.4. Characterization of new intragenic

Alu insertions on chromosomes 1 and 6

We checked and verified, by locus-specific PCR on A and B DNA samples and by DNA sequencing of the amplification products, part of the putative new

Alu insertions detected by the “two sample” analysis, and in particular (for their possible functional significance) the 11 signals (3 detected by AIP1 and 10 by AIP2, including 2 signals detected by both methods) corresponding to intragenic loci. Among these 11 loci, we were able to confirm by locus-specific PCR/
electrophoresis and DNA sequencing 4 polymorphic, previously unreported, Alu Y insertions: two of them (GenBank ID: JN391997 and JN391998) on chromosome 1 and detected with both methods, one on chromosome 6 (GenBank ID: JN391999) detected only by AIP1, and one (GenBank ID: JN392000) on chromosome 6 detected only by AIP2. It is useful to note that, albeit in one case (GenBank ID: JN391999) the identification of the polymorphic locus was helped by the homozygous condition of both DNA samples (B homozygous for AluY absence), the other 3 loci were identified as polymorphic despite the A and B DNA samples having one allele in common (the comparison was homozygous for “Alu absence” vs. heterozygous), demonstrating the efficacy of AIP methods for detecting mutations or polymorphisms in heterozygous condition.

The details of the new intragenic Alu insertions are reported in Table 2, and their sequence can be found in Supplementary File 2 and in GenBank (http://www.ncbi.nlm.nih.gov/genbank).

All the new Alu elements identified are inserted in a known gene (MLK4, WDR64, NKA1N2, PARK2), and are members of the Alu Y class; 3 of them, in particular, belong to the Ya lineage (2 Ya5 and one Ya4 members). After having analyzed, by locus-specific PCR, the genomic DNA samples of 10 additional individuals, the four new Alu insertions turned out to be common polymorphisms in this (Italian) population, and not individual mutations. However, given that none of these polymorphisms has been detected by the recent extensive search of new Alu polymorphisms accomplished by comparing eight human whole genome sequences from various ethnical groups [28], these polymorphisms are likely to be population-specific.

3. Discussion

We recently developed the Alu insertion profiling methods [23] based on the analysis of tiling microarrays. Although TIP-chip [22] and similar tiling-array-based methods [21] were initially applied to

![Fig. 1](https://example.com/fig1.png)

Fig. 1. The figure shows graphically two possible different compositions of the region located upstream to an Alu element, and the effect of the upstream sequence on the probability to detect the corresponding Alu element (evidenced in light gray). AluYa elements flanked at 5′ by at least 100 bp of unique sequence are represented in A, while Alu Ya elements flanked at 5′ by at least 100 bp of low complexity sequence and with 100 bp or more of unique sequence located within 500 bp are represented in B; the frequency with which the Alu Ya elements represented in A and B are detected by the two methods is reported. Alu elements considered for the reported data are the Alu Ya members longer than 200 bp (short Alu fragments are excluded) and fixed (known Alu polymorphisms are excluded); an Alu element was considered “detected” if a significant signal was located at its 5′ flanking region, within 500 bp of its 5′ end.

![Fig. 2](https://example.com/fig2.png)

Fig. 2. Workflow followed for the analysis of the data obtained with AIP1 and AIP2 methods, and for the confirmation of part of the detected polymorphic loci.
Table 2

Characterization of four new Alu polymorphic loci.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Frequency of the Alu "allele in 12 individualsb</th>
<th>Method used for the detection</th>
<th>Inserted Alu sequence</th>
<th>Genomic site</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLK4</td>
<td>8/24</td>
<td>Mixed-lineage kinase 4, Ser/Thr protein kinases</td>
<td>Genbank JN391997: AluYa4</td>
<td>Chromosome 4: 124,865,513–124,865,514; AIP1 Genbank JN391999: AluYa4 homozygous insertion of 346 bp in sample B</td>
</tr>
<tr>
<td>WDR64</td>
<td>4/24</td>
<td>Mixed-lineage kinase 4, Ser/Thr protein kinases</td>
<td>Genbank JN391998: AluYa5</td>
<td>Chromosome 6: 233,519,145–233,519,146; AIP1/AIP2 Genbank JN391997: AluYa4 heterozygous insertion of 322 bp in sample B</td>
</tr>
<tr>
<td>NKQ2</td>
<td>5/22</td>
<td>AIP1/AIP2</td>
<td>Genbank JN391998: AluYa5</td>
<td>Chromosome 1: 241,908,620–241,908,621; AIP1/AIP2 Genbank JN391998: AluYa4 heterozygous insertion of 314 bp in sample A</td>
</tr>
</tbody>
</table>

a The frequency of the "Alu insertion" allele in 12 individuals
b The frequency of the "Alu insertion" allele in 12 individuals

map low copy number transposons in yeast, it was hypothesized that they could be modified and adapted to map high copy number retroelements in more complex genomes. However, the development of such methodologies was not immediate. In particular, the detection of new members belonging to the Alu family, characterized (with more than one million elements) by the highest copy number and genome density among human interspersed repetitive elements, needed specific requirements. While Huang and co-authors [29], who designed an efficient TIP-chip method to map LINE-1 sequences, reported without description the successful application of a specific TIP-chip methodology for Alu mapping, the present article contains the first described protocols for an array-based detection of Alu elements. To avoid the overlap of different Alu-associated signals we chose to produce the probes using short Alu-flanking DNA fragments (generated by using restriction enzymes with high cut frequency), and to conduct the hybridization on Affymetrix tiling arrays characterized by very high feature density. In the primer design, we considered that while the evolutionary old Alu subfamilies constitute the majority of Alu elements, almost all of the active and polymorphic Alu elements belong to one of the less numerous, 'young' subfamilies of the Alu Y lineage [5]; and that among them, the Ya lineage (including Ya5, Ya8, Ya4) includes most of the known disease-causing de novo Alu insertions [15,30]. Consequently, we aimed to obtain a good sensitivity and specificity for the subfamilies of the Alu Y lineage and in particular (with AIP2) for the Alu Ya lineage. The results show that both methods, but especially AIP2, provide a high probability to detect Alu Ya lineage members when they are flanked by a genomic region well represented by array features; importantly, the subfamily detected with the second best sensitivity is the other frequently polymorphic and active "young" Alu subfamily Yb [5]. Conversely, the fact that the members of old Alu families are detected only in a fraction of cases contributes to the reduction of the number of "useless" signals (noise).

By the "two sample analysis" we found, as expected, a series of genomic sites already known to be polymorphic for Alu insertions, and other loci possibly associated with new Alu insertions. The choice to check andturn the Alu "insertion candidate" sites included in known genes was based on their possible functional significance. While each AIP method finally led to the detection of 3 confirmed new intragenic insertions, the use of both methods increased to 4 the total number of such insertions (two of them obtained by both methods). Importantly, the methods were revealed to be sufficiently sensitive to detect polymorphic sites even in case of homozygote vs. heterozygote comparison. The four newly discovered Alu insertions turned out to be common intragenic polymorphisms in known genes, and their clinical relevance should be verified, considering that intragenic Alu polymorphisms could have a functional role even when they are intronic [7]. In particular, the exonic MLK4 polymorphism (GenBank ID: JN391997) can be of interest in the study of colorectal colon cancer-associated genetic variability [31]; while the Alu insertion GenBank ID: JN392000, located in the intron 3 of PARK2 corresponding to a recombination hotspot prone to rearrangements involving Alu sequences [27], should be considered in the study of the genetic bases of juvenile Parkinson's disease [32].

Finally, we should be reminded that, albeit AIP1 and AIP2 are the first published protocols to detect Alu insertions based on microarray analysis, a method with the same aim but based on high-throughput sequencing has been recently presented by Witherspoon and co-authors [33]. As evidenced by a recent review [20], sequence-based and array-based methodologies have their own advantages and disadvantages when they are used to detect retroelement-associated genomic variability. In particular, sequence-based methods are capable of higher throughput than array-based methods when many samples are pooled and analyzed simultaneously to make efficient use of the next-generation sequencing platforms; on the other hand, they are likely
to have a higher per-sample cost than array-based methods when no more than a few samples are simultaneously analyzed. Moreover, array-based methods can easily allow the a priori restriction of the result analysis (or to use specifically designed custom arrays) to the genomic regions of interest such as specific chromosomes, exonic regions or class of genes, hence reducing the computational effort and/or the overall cost; in addition, the result analysis of tiling arrays can easily allow the selection of the best detection thresholds for the series of data, consequently favoring sensitivity or specificity even based on the aims of the study. Finally, it is necessary to remark that both approaches (array-based and sequence-based methods) have problems in the detection of Alu insertions flanked by repetitive elements, because genomic sites composed of repetitive elements are not represented on tiling arrays, and at the same time they yield unmappable results if sequenced. However, there are differences due to the different principles on which the methods are based: sequencing methods are based on the sequencing of very short Alu-flanking genomic fragments, and hence the obtained sequences are not useful to map an Alu element when the Alu element is immediately flanked by (even short) repetitive elements; on the other side, AIP methods are based on the (hybridization) analysis of some hundred base pairs in the Alu flanking region, and hence they can still detect with good sensitivity Alu sequences immediately flanked by repetitive sequences if a portion of repetitive sequence is present not far away (within 500 bp). Consequently, in studies in which the completeness of the results is requested, the use of array-based and sequence-based approaches can be the best choice, in order to minimize the number of undetectable Alu elements.

With one of the paradoxes which are not rare in the history of science, the most abundant human genomic sequences only marginally benefited, up to now, from the striking scientific progress of the "genomic era". In fact, despite the decades-old discoveries of their nature of active, mutagenic and potentially deleterious retroelements and their impressive role in genome evolution, a rather fundamental question has yet to be answered: how big is the impact of the genome-resident Alu elements in the germline and somatic genomic variation, in human health and disease? In particular, the study of the role of Alu retranspositional activity in genetic diseases, somatic mosaicism and cancer can be still considered in its early days. Most of such (apparently surprising) delay has been likely due to the scarcity of efficient analytical methodologies applicable in this field of study. We hope that the Alu profiling methods presented here, together with the recent developments in next-generation sequencing, will facilitate the work of the increasing number of scientists that are, or will be, engaged in the difficult task of highlighting the "dark side" of the genome.

4. Materials and methods

4.1. Genomic DNA extraction

Blood was obtained by venipuncture from 12 healthy unrelated subjects from central Italy after an informed consent was obtained; genomic DNA was extracted from buffy coat using QIAamp DNA Blood Mini Kit (Qiagen) and its quantity and quality verified using gel electrophoresis and nanodrop spectrophotometric measurement. Samples were diluted at 72 ng/μl. The two DNA samples used for the AIP analysis are hereafter indicated as A and B.

4.2. Alu insertion profiling methodology

Two AIP strategies have been tested, both based on the use of Affymetrix tiling microarrays and designed to preferentially target genomic sites associated to some of the young (active) Alu subfamilies. The two strategies differ in the method used to obtain the probes (labeled Alu-flanking DNA fragments) for microarray hybridization.

In the first method (AIP1) the specificity is based on the use of a primer ("Ya5R") which has perfect complementarity with the consensus sequence of most of the Alu subfamilies of the Y class, including Ya subfamilies (Ya5, Ya8, Ya1, Ya4), but not Yb subfamilies (Yb8 and Yb9); consensus sequences of older Alu families are not perfectly complementary to this primer and, in particular, the most abundant old Alu families do not offer a good annealing due to an insertion of two bases positioned near the 3' end of the annealing site (the former is true, in particular, for Sx, Jo, Jh families, while Sg and Sc consensus sequences differ only in one base from this primer). In AIP2 the Ya5R primer is also used, but we added a previous primer extension step which uses a different primer ("Ya rev", complementary to Ya5, Ya8, Ya4) to further enrich the probe with DNA sequences flanking the Alu Ya subfamily members. Fig. 3 illustrates the steps of the two methods.

4.2.1. Enzymatic digestions

Each aliquot of genomic DNA was digested in parallel with three restriction endonucleases. The enzymes were chosen to give a frequency of cut on the human genome of 1/250 to 1/500 bp; the production of short fragments for the probe preparation is necessary due to the high density of Alu sequences on the genome: Alu density is on average 10.8% [34], corresponding (considering a mean Alu length of 300 bp) to mean inter-Alu genomic sequences of about 2500 bp; but some genomic regions have an Alu density higher than 40% [35], corresponding to mean inter-Alu spacers as short as 450 bp. In detail, 2 μg of genomic DNA were digested in distinct reactions with Sfci (25 U of enzyme, reaction for 12 h at 25 °C followed by 1 h at 37°) AluI (25 U of enzyme, reaction for 16 h at 37 °C) and Ddel (25 U of enzyme, reaction for 16 h at 37 °C) enzymes in reaction volumes of 50 μl, followed by enzyme inactivation by holding for 20 min at 65 °C.

All enzymes were provided by New England Biolabs, and the reactions were conducted using the specific buffers (and bovine serum albumin solution for Sfci) indicated by the producer.

4.2.2. Ligation of vectorette linkers

The DNA fragments generated by restriction endonucleases were ligated, in separate reactions, to vectorette linker oligonucleotides [36]. Each linker was composed of a constant reverse strand (Linker_R_JB9408: CTC TCC CTT CTC GAA TCG TAA CCG TTC GTA CGA GAA TCG CTG TCC TCT CCT TC) pre-annealed with a forward strand which is different for each reaction and designed to match the ends generated by each enzyme (Linker_F_Sfci: TRY AGA AGG AGA GGA CCG TGT CTC TCG AAG GTG AAG ACG CCA GAG AAG GGA GAG; Linker_F_AluI: GAA GGA GAC GAG CGT TGT CAG AGG TAA GGA ACG GAG GAC AGA AGG GAG AG; Linker_F_Ddel: TNA GAA GGA GAG CAC TGT TGT CAG AGG TAA GGA ACG GAG GAC AGA AGG GAG AG).

Each ligation reaction was conducted in 25 μl reactions using 0.8 μg (20 μl) of digested DNA sample, 100 pmol of preannealed vectorette double strand linker, 400 U of T4 DNA ligase (New England Biolabs), 0.5 μl of T4 DNA Ligase reaction buffer (New England Biolabs), 1 mM final ATP concentration; ligation was conducted for 12 h at 16 °C, 2 h at 25 °C, 20 min at 65 °C. Ligation products were purified using MinElute Reaction Cleanup columns (Qiagen) to eliminate unlinked linker oligonucleotides and directly used for the step 3 (AIP 1 method), or treated (AIP2) with an additional enrichment step (2b).

4.2.3. Only for the AIP2

Purified ligated DNA samples were subjected to a primer extension step aimed to enrich the DNA fragments which flank Alu Y elements. Mix containing 1× PCR buffer, 1.5 mM Mg2+, 50 μM dATP, dTTP, dGTP, 40 μM dCTP, 10 μM dCTP biotin, 10 pmol of the primer Ya_rev (ACC GTA TTA GCC GGG A), template DNA 500 ng, Taq polymerase 1 U, H2O to 25 μl. Denaturation 95 °C, 12 min (Taq added...
in the last 2 min of denaturation; annealing 55 °C 20 min; extension 72 °C, 20 min. After subtraction of unincorporated biotin-dCTP through MinElute Reaction Cleanup Kit (Qiagen), primer extension products have been purified by magnetic separation using M-280 streptavidin Dynabeads.

4.2.4. Vectorette PCR

Reactions were conducted in 50 μl, using EuroTaq reaction buffer (Euroclone) 1×, vectorette primer (CTC TCC CTT CTC GAA TCG TAA) 20 pmol, primer Ya5R (TCT CGA TCT GCC CTG CTG) 20 pmol, dCTP 0.2 mM, dATP 0.2 mM, dGTP 0.2 mM, dUTP 0.04 mM, Mg2+ 2.5 mM, DNA sample from step 2 (AIP1) or from step 2b (AIP2) 160 ng, EuroTaq (Euroclone) 5 U. PCR cycles: 5 min 94 °C, (30 s 94 °C, 30°s 61 °C, 1 min 72 °C) 42 cycles, 7 min 72 °C. For each sample 3 TIP-chip PCR reactions were conducted, one for each digestion/ligation. The enrichment was checked using RT-PCR for a specific locus containing an Alu Ya5 element compared to two single copy genes.

4.2.5. Fragmentation and labeling

After each TIP-chip PCR, products were purified through MinElute Reaction Cleanup Kit (Qiagen). 3 μg of the three reactions for each genomic DNA sample were pooled and treated for fragmentation and labeling using the Gene Chip WT Double Stranded DNA Terminal Labeling kit (Affymetrix) following manufacturer’s instructions.

4.2.6. Hybridization and scanning

Labeled samples were hybridized to Tiling arrays 2.0R A (Affymetrix), using Affymetrix 640 hybridization oven, Affymetrix 450 fluidic station, hybridization buffers contained in the Gene chip Hybridization, Wash and Stain Kit (Affymetrix), and following manufacturer’s instructions. Arrays were scanned using an Affymetrix Gene Chip scanner 3000.

4.3. Tiling microarray analysis

The efficacy of the two used AIP methods was tested by analyzing genomic DNA samples from A and B DNA samples, using the “Affymetrix Tiling Array 2.0R A” for chromosomes 1 and 6. Affymetrix Tiling Analysis Software (TAS) was used for the analysis.

Two kind of analysis were performed: a single sample analysis in which results for A and B samples were analyzed separately, and a “two sample” analysis in which the A and B array signals were directly compared to find “different” signals. For the single sample analysis, after the analysis of signal intensity an interval analysis was performed to detect stretch of features (of at least 70 bp) above the detection threshold. Thresholds of 3.1 or 3.4 for signal intensity were used. Similarly, the “two sample analysis” was conducted in two steps consisting, respectively, of a two sided probe analysis in which for each feature of the array a p-value was obtained to test the hypothesis of different signal intensities between sample A and sample B, and an interval analysis aimed to identify a series of consecutive features (of at least 70 bp) yielding significantly different signals. A signal threshold of 32 for the p-value (on a $-10\log_{10}$ scale) was used. The obtained “bed” files containing the detected intervals on chromosome 1 and 6 were then analyzed using the Galaxy software [37] to analyze the position of significant intervals with respect to annotated genomic features (known genes, known Alu elements, known Alu polymorphisms). An example of AIP results (signal intensity for A and B samples and intervals of significantly different signals) visualized by Integrated Genome Browser [38] is

![Diagram of Alu profiling methods](image-url)
shown in Supplementary Fig. 3. The loci detected by “two sample analysis”, corresponding to significant intervals located far (more than 500 bp) from known Alu insertions, and located inside known genes, were verified by locus-specific-PCR and DNA sequencing. Oligonucleotide primers used for locus-specific PCR and sequencing service are reported in Supplementary File 1. Primers and sequencing service were provided by MWG (Eurofins MWG GmbH, Ebersberg).

Supplementary data to this article can be found online at doi:10.1016/j.ygeno.2012.03.005.

Acknowledgments

This work was supported by a project grant by the Fondazione per la Ricerca sul Cancro Fernanda e Gaudenzio Renzi, Largo Sarnano 12, Ancona, Italy.

References