
466

⁄
0022-0000/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.

Journal of Computer and System Sciences 64, 466–495 (2002)
doi:10.1006/jcss.2001.1806

Inherent Complexity of Recursive Queries

Stavros Cosmadakis

Computer Engineering and Informatics Department, University of Patras, Patras 26500, Greece
E-mail: scosmada@cti.gr

Received January 2000; revised August 13, 2001

We give lower bounds on the complexity of certain Datalog queries. Our
notion of complexity applies to compile-time optimization techniques for
Datalog; thus, our results indicate limitations of these techniques. The main
new tool is linear first-order formulas, whose depth (respectively, number of
variables) matches the sequential (respectively, parallel) complexity of Datalog
programs. We define a combinatorial game (a variant of Ehrenfeucht–Fraïssé
games) that can be used to prove nonexpressibility by linear formulas. We thus
obtain lower bounds for the sequential and parallel complexity of Datalog
queries. We prove syntactically tight versions of our results, by exploiting uni-
formity and invariance properties of Datalog queries. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Datalog is a language of negation-free, function-free Horn clauses; it extends the
positive existential fragment of relational algebra (the conjunctive queries) by
incorporating recursion. Datalog provides a simplified model of the data sub-
language of logic programming [Ull89]. Its computational and expressive power
have been the object of considerable research activity.

The recursive facilities of Datalog can be used to express queries such as transi-
tive closure, which cannot be expressed in algebraic query languages based on first-
order logic [AU79]. Attempts to calibrate the expressive power of Datalog by
comparing it with other languages include [AG94], which shows that a first-order
query is expressible in Datalog iff it is equivalent to an existential query. Specific
queries not expressible in Datalog are given in [LM89, KV95] (which give mono-
tonic NP-complete queries) and in [ACY95] (which gives monotonic queries in
polynomial time).

In this paper we use tools developed for nonexpressibility, to prove lower bounds
on the complexity of Datalog queries. Our motivation comes from compile-time
optimization techniques for Datalog, such as magic sets [BMSU86, BR91], count-
ing [BMSU86, SZ88], and the parallelization methods of [AP93, UvG88]. These
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techniques transform a program to an equivalent one, which is subsequently
evaluated in a standard bottom-up way. Previous work has indicated limitations of
such optimizations, by giving lower bounds on various syntactic parameters of a
Datalog program [AC89, BKBR90, A97]. Our lower bounds on complexity give
more precise information on the scope of these compile-time techniques.

We consider two complexity measures for Datalog programs (Section 2). The
derivation tree size is used in [AP93, UvG88]; it captures the parallel complexity of
the program. The derivation dag size1 captures the sequential space complexity of

1 Not considered before, so far as we know.

the program. We give lower bounds for the derivation tree size and the derivation
dag size of certain Datalog queries in Sections 4 and 5.

The Datalog queries we consider are variants of the following standard problems:
Path system accessibility: this is a prototypical P-complete query [GJ79]. Our

lower bounds imply similar lower bounds for several P-complete Datalog queries
[AP93, UvG88].
Same generation: it asks about paths of equal length, in a given directed graph.

Variants of this query are among the simplest amenable to magic sets or counting
methods [BMSU86].
K node-disjoint paths: K is some fixed integer [KV95]. This problem can be

solved in time independent of K using flow techniques. Our lower bounds show
that, in contrast, the complexity of Datalog programs for the same problem has to
grow exponentially with K.

We use a combinatorial game which captures expressibility by first-order for-
mulas [Eh61, Fr54]; we adapt it to the new class of linear formulas, motivated by
derivation trees and derivation dags of Datalog programs (Section 3). We use in
addition the ‘‘pumping’’ techniques developed in [ACY95, AC89], which can
exploit the uniformity of the sequences of formulas obtained from Datalog
programs.

In Section 6 we give some open problems suggested by our work.

2. PRELIMINARIES

2.1. First-Order Queries

A database is a relational structure D=(D, r1, ..., rN), where each ri is a relation
over the domain D (or a constant from D).

A query is a function with a database as argument, returning a relation of fixed
arity w. A Boolean query is a query which returns true or false.

The core of algebraic query languages for relational databases is first-order logic
over a signature (R1, ..., RN), where each Ri is a relation symbol (or constant
symbol) denoting the relation (or constant) ri [Ull89, AHV95]. The output of the
query defined by a formula f with free variables x1, ..., xw consists of the tuples
Oa1, ..., awP such that f is satisfied (in the database D) by assigning the value ai of
D to the variable xi.
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Definition 1. The transitive closure query Path on a database (D, arc) returns
the set of tuples Oa, bP such that: the directed graph represented by the binary
relation arc has a path from a to b.

Theorem 2. The query Path is not expressible in first-order logic [AU79].

Theorem 2 considers expressibility over finite structures. Instead of a compact-
ness argument (which suffices to prove the result if expressibility is taken over all
structures) [AU79] uses quantifier elimination; the technique is developed in full
generality in [Gai82]. Theorem 2 can also be shown by the method of Ehrenfeucht–
Fraïssé games [Eh61, Fr54].

Definition 3. In a (p, m)-Ehrenfeucht–Fraïssé game, Players I and II alternate
placing pebbles on the elements of two structures D and DŒ. Each Player has a set
of p pebbles labeled 1, ..., p. If Player I pebbles an element of D (respectively DŒ)
with the pebble labeled i, Player II has to pebble an element of DŒ (respectively D)
with the pebble labeled i. Player I is the first to start.

The game is played for m rounds. Player II wins the game if, after each one of his
moves, the substructure of D induced by the pebbled elements is isomorphic to the
corresponding substructure of DŒ; where the isomorphism maps the element
pebbled by the ith pebble of Player I, to the element pebbled by the ith pebble of
Player II.

Theorem 4. Player II has a winning strategy for the (p, m)-Ehrenfeucht–Fraïssé
game on structures D, DŒ, iff the structures satisfy the same first-order sentences with
p variables and quantifier depth2 m.

2 The quantifier depth of a formula is the maximum number of quantifiers on a path for the root to a
leaf, in a tree representation of the formula.

Theorem 2 can be shown (using the above result) by finding, for each (p, m),
finite structures Dp, m, D −

p, m, such that the query Path returns different results on
Dp, m, D −

p, m; and such that Player II can win the (p, m)-game on Dp, m, D −

p, m.

2.2. Datalog Queries

Datalog is a logic programming language, without function symbols and nega-
tion [Ull89]. We refer the reader to [Ull89] for the basic definitions; we illustrate
them with a simple example.

The query Path can be expressed by the Datalog program:

PATH(x, y)P ARC(x, y)

PATH(x, y)P ARC(x, z), PATH(z, y).
(1)

Here the symbol ARC is an EDB-predicate, denoting the database relation arc. The
symbol PATH is an IDB-predicate, denoting a relation which is defined by the rules
of the program. The relational atomic formulas in a rule of the program are the
literals of the rule. We assume that the rules of a Datalog program contain no
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equalities; if they occur, they can be eliminated by appropriate substitutions of
variables for their equals.

The relation PATH can be computed by initializing to empty, and repeatedly
applying the rules of the program to add tuples to PATH, until no new tuples can
be added. The first rule is initialization: if Oe, eŒP is a tuple of arc, the tuple Oe, eŒP is
added to PATH. The second rule is recursive: if Oe, eŒP is a tuple of arc and OeŒ, eœP
is a tuple of PATH, the tuple Oe, eœP is added to PATH. It can be seen that a tuple
Oa, bP will be added to PATH iff the database (considered as a directed graph)
contains a path from the element a to the element b.

The complexity of a Datalog program can be captured by the notion of derivation
tree [UvG88].

For a given database D, a derivation tree has nodes labeled by closed relational
atomic formulas (without variables). The vocabulary of these formulas consists of
the EDB- and IDB-predicates of the program, and of a set of constant symbols
{e | e is a value in the domain of D}.3

3 We are abusing notation here, for the sake of brevity.

An instantiation of a rule substitutes constant symbols (values in the database
domain) for the variables of the rule. This substitution produces, for each literal a

of the rule, a closed relational atomic formula, which we call the instantiation of a.

Definition 5. For a given Datalog program and database D, a derivation tree
is a rooted tree with nodes labeled as follows.

(i) Each leaf is labeled by an atomic formula R(e1, ..., ew), where R is an
EDB-predicate and Oe1, ..., ewP is a tuple in the database relation denoted by R.

(ii) Each internal node is labeled by an atomic formula P(e1, ..., ew), where P
is an IDB-predicate. The labels of each internal node u and its children come from
some instantiation of some rule r of the program. Specifically, the instantiation of
the literal in the left-hand side of r is the label of u; and the instantiation of each
literal a in the right-hand side of r is the label of a child ca of u corresponding to a.
The edges of the derivation tree are directed, from each child ca of u to its parent;
the edge (ca, u) is labeled with the rule r and the literal a.

Proposition 6. For a given Datalog program, a database D and a IDB-predicate
P, a tuple Oe1, ..., ewP is in the recursively defined relation P iff there exists a deriva-
tion tree with root labeled P(e1, ..., ew).

Thus, a tuple Oa, bP is in the recursively defined relation PATH iff there exists a
derivation tree with root labeled PATH(a, b). Note further that, if the domain of
the database contains n elements, there exists such a derivation tree with depth
O(n), and size O(n). A comparison may be made with the equivalent Datalog
program below, which computes the same relation PATH.

PATH(x, y)P ARC(x, y)

PATH(x, y)P PATH(x, z), PATH(z, y)
(2)
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It can be seen that, for program 2, there exists a derivation tree with depth
O(log n); and size O(n).

If the depth of derivation trees for a given Datalog program is (at most) d(n) (for
databases of size n), the program can be evaluated with polynomially many proces-
sors—by executing all possible applications of rules in parallel—in parallel time
O(d(n) log n) [UvG88]. Optimization methods presented in [AP93, UvG88]
transform (at compile time) a Datalog program with derivation tree size s(n), to an
equivalent program with derivation tree depth O(log s(n)); and thus with parallel
time complexity O(log s(n) log n).

In Sections 4 and 5 we give lower bounds for the derivation tree size of certain
Datalog queries. Our results delimit the scope of compile time techniques as in
[AP93, UvG88].

The sequential complexity of a Datalog program can be measured by the number
of intermediate tuples (of the recursively defined relations) which must be produced,
before a given tuple appears in the result. Compile time techniques such as magic
sets and counting [BMSU86, BR91, SZ88] transform a Datalog program to an
equivalent program which produces fewer intermediate tuples.

For a given result tuple, intermediate tuples appear as labels of the internal nodes
of a derivation tree. In a derivation tree several nodes may have the same label. To
obtain a more accurate representation we consider a derivation dag, which is a
graph obtained from a derivation tree by identifying nodes with the same label.

Definition 7. A derivation tree is minimal if, whenever a node u is an ancestor
of a node v, the nodes u, v have different labels.

It is not hard to transform a given derivation tree to a smaller one which is
minimal [UvG88].

Definition 8. A derivation dag is obtained from a minimal derivation tree y as
follows.

We identify nodes of y with the same label. The graph d obtained is a dag (by
minimality of y), with sources the leaves of y, and a unique sink which is the root of
y. The directed edges of y become arcs of d.

If the arcs coming into a node of d correspond to several instantiations of rules of
the program, only the arcs corresponding to one instantiation (of some rule) are
kept.

Note that a derivation dag can be exponentially smaller than the original deriva-
tion tree.

In Sections 4 and 5 we give lower bounds for the number of intermediate tuples
of certain Datalog queries. In some cases, the bounds are obtained from lower
bounds for the derivation dag size. Our results delimit the scope of compile time
techniques as in [BMSU86, BR91, SZ88].

To cover programs obtained from counting methods, we assume that a separate
domain Int of integers is available. Specifically, a database is a structure
D=(D, Int, r1, ..., rN, 0, lx.x+1), where each ri is a relation over the domain D
(or a constant from D). The additional symbols ZERO (an integer constant) and
INCREMENT (an integer function of one argument) can be used in Datalog
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programs. We call programs as above—produced by counting methods—Extended-
Datalog programs. The EDB-predicates of an Extended-Datalog program denote
relations over the domain D, as in standard Datalog. The IDB-predicates of an
Extended-Datalog program denote relations over D 2 Int.

2.3. Formulas and Games for Datalog

A query defined by a Datalog program can by expressed by an infinite sequence
of existential positive first-order formulas.4 We say that a query Q is expressed by a

4 Existential formulas without negation.

sequence of formulas with v(n) variables and q(n) quantifier depth, if, for every
database D of size n and every tuple Oa1, ..., awP of elements of D:

Oa1, ..., awP ¥ Q(D) if there is a formula f in the sequence, such that f is
satisfied in D by the values ai.

Oa1, ..., awP ¥ Q(D) only if there is a formula f in the sequence with at
most v(n) variables and at most q(n) quantifier depth, such that f is
satisfied in D by the values ai.

A sequence of formulas expressing PATH can be obtained—from the example
program 1—by iterating the operator

G(f) — f(x, y)KARC(x, y)

K,z.(ARC(x, z)Nf(z, y))

using as starting point the formula false (defining the empty relation). The formula
obtained after n iterations expresses the relation PATH on databases of size n.

To express a Datalog query on databases of size n we need d(n) iterations of the
operator G obtained from the program—where d(n) is the derivation tree depth of
the program.

The following nontrivial refinement of the above observation is shown in [KV95,
LM89]:

Theorem 9. A query defined by a Datalog program can be expressed by a
sequence of existential positive formulas with a constant5 number of variables; and

5 Depending on the program, but not depending on the size of the database.

quantifier depth bounded by the derivation tree depth of the program.

Expressibility by existential positive formulas can be captured by existential posi-
tive Ehrenfeucht–Fraïssé games [KV95, LM89]; they modify ordinary Ehrenfeucht–
Fraïssé games as follows:

(i) Player I always plays on the same structure D, and Player II responds on
DŒ.

(ii) Player II wins the game if, after each one of his moves, the substructure
of DŒ induced by his pebbles is a homomorphic image of the substructure of D

induced by the pebbles of Player I; where the homomorphism maps the element
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pebbled by the ith pebble of Player I, to the element pebbled by the ith pebble of
Player II.

We recall the definition of a homomorphism between relational structures. Let
D=(D, r1, ..., rN), DŒ=(DŒ, r

−

1, ..., r
−

N) be structures with the same signature.

A function h from the domain D to the domain DŒ is a homomorphism
from D to DŒ, if for each tuple Oa1, ..., awiP of ri, Oh(a1), ..., h(awi )P is a
tuple of r −i.

Theorem 4 has the following analogue [KV95, LM89]:

Theorem 10. Player II has a winning strategy for the (p, m)-existential positive
Ehrenfeucht–Fraïssé game on structures D, DŒ iff: every existential positive first-order
sentence with p variables and quantifier depth m which is true in D, is also true in DŒ.

Datalog( ] ) is an extension of Datalog which allows literals of the form t ] tŒ
in bodies of rules, where t, tŒ are variables or constants. A result analogous to
Theorem 9 holds for Datalog( ] ) and existential positive formulas which allow in
addition negations of equalities [KV95].

Expressibility by existential positive formulas with ] can be captured by exis-
tential positive Ehrenfeucht–Fraïssé games with ] [KV95]; they modify ordinary
Ehrenfeucht–Fraïssé games as follows:

(i) Player I always plays on the same structure D, and Player II responds
on DŒ.

(ii) Player II wins the game if, after each one of his moves, the substructure
of DŒ induced by his pebbles is a homomorphic image of the substructure of D

induced by the pebbles of Player I; where the homomorphism maps the element
pebbled by the ith pebble of Player I, to the element pebbled by the ith pebble of
Player II; and the homomorphism is one-to-one.

A result analogous to Theorem 10 holds for existential positive Ehrenfeucht–
Fraïssé games with ] and existential positive sentences with ] [KV95].

All of the above results can be adapted straightforwardly to Extended-Datalog.

3. LINEAR FORMULAS AND LINEAR GAMES

In this section we define the linear first-order formulas, which specialize the exis-
tential positive formulas. The syntactic parameters of linear formulas (depth,
number of variables) match more closely the complexity measures we are interested
in (derivation dag size and derivation tree size of Datalog programs). We define a
special kind of Ehrenfeucht–Fraïssé games, whose parameters (number of moves
and number of pebbles) match the syntactic parameters of linear formulas.

Let x̄ be a (possibly empty) sequence of variables, x1 · · · xs. We denote by ,x̄ the
sequence of existential quantifications ,x1 · · ·,xs.

Definition 11. Let bk, k=1, ..., m, be a sequence of quantifier-free formulas
without negation; also, bk is allowed to be the formula true. Denote by W the
maximum of the number of variables of the bk’s.
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Let fk, k=1, ..., m be a sequence of formulas as follows:

f1 — b1

fk — bk N,x̄k .fk−1,

where x̄k is a (possibly empty) sequence of variables, for k=2, ..., m.
We call fm a linear formula of depth m and widthW.
If bk, k=1, ..., m, is a sequence of quantifier free formulas without negations of

relations, but with negations of equalities, we call fm a linear formula with ] , of
depth m and widthW.

Note that the depth and the width of a linear formula depend on the specific
choice of the sequence bk.

It turns out that Datalog queries can be defined by linear formulas of constant
width. The following results bound the depth and number of variables of linear
formulas, in terms of the derivation dag size and the derivation tree size of the
program.

Theorem 12. A query Q defined by a Datalog program (with ] ) with deriva-
tion dag size S(n) can be expressed by a sequence of linear formulas (with ] ) with
depth S(n)+1, and width depending only on the program.

Proof. Let D be a database of size n, and let Oa1, ..., awP be a tuple in Q(D). Let
d be a derivation dag with sink g labeled P(a1, ..., aw), where P is the output IDB-
predicate of the program. The dag d has m nodes, where m [ S(n).

We construct from d a linear formula f. For each constant e occurring in (a label
of) the derivation lag, the formula uses a variable xe. The free variables of f are
xa1 , ..., xaw .

The formula will be satisfied in D iff: there exists a derivation dag D such that d is
a homomorphic image of D.6 The depth of f will be m+1.

6 I.e., d is obtained from D—up to isomorphism—by equating some values.

We number the nodes of d according to some topological sort. For k=1, ..., m,
let fk be the kth node in the numbering, and let (fk1 , f

k), ..., (fks , f
k) be the arcs

coming into fk. Note that each fki comes before fk in the topological sort. Recall
that each of the arcs coming into fk is labelled by a rule r of the program; and that
the labels of the nodes fk1 , ..., f

k
s , f

k are atomic formulas, obtained by substituting
constants into the literals of r, according to some instantiation I.

Let bk be a quantifier-free formula constructed as follows: we start by forming a
conjunction of all the literals occurring in the rule r. We then substitute, for each
variable z, the variable xe, where e is the value assigned to z by the instantiation I.
Observe that bk has no disjunctions or equalities. Note also that the maximum
number of variables of bk is the same as the number of variables of the rule r;
therefore, it depends only on the program.

We put

f1 — b1

fk — bk Nfk−1 for k=2, ..., m
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The desired formula is ,x̄.fm, where x̄ contains all the variables of fm except
xa1 , ..., xaw . L

Remark 13. In the case of a Boolean query, the proof of the above result pro-
duces a sequence of sentences of the form ,v1 · · ·,vp .f—where f is a linear formula
(with ] ) with variables v1, ..., vp.

Lemma 14. Let f, fŒ be linear formulas (with ] ) of width W. Let V, VŒ be the
set of variables occurring in f, fŒ respectively, and assume that the free variables of fŒ

are not bound in f.
The formula fNfŒ is equivalent to a linear formula (with ] ) of width W, with
variables V 2 VŒ.

Proof. Let f be fm as in Definition 11, where for k=1, ..., m, fk —

bk N,x̄k .fk−1.
Replace the subformula b1 of f with the formula b1 NfŒ. The result is the desired

linear formula. L

We denote a formula with free variables x1, ..., xw by f(x1, ..., xw), or f(x̄).

Theorem 15. A query Q defined by a Datalog program (with ] ) with deriva-
tion tree size s(n) can be expressed by a sequence of linear formulas (with ] ) with
O(log s(n)) variables, and width depending only on the program.

Proof. Let D be a database of size n, and let Oa1, ..., awP be a tuple in Q(D). Let
y be a derivation tree with root u labeled P(a1, ..., aw), where P is the output IDB-
predicate of the program. The tree y has at most s(n) nodes.

We construct from y a linear formula f. For each constant e occurring in (a label
of) the derivation tree, the formula uses a variable xe. The free variables of f are
xa1 , ..., xaw .

The formula is satisfied in D iff: there exists a derivation tree T such that y is a
homomorphic image of T.7

7 That is, y is obtained from T—up to isomorphism—by equating some values.

Let c1, ..., cs be the children of the root u of y. Recall that each of the arcs
coming into u (from one of its children) is labelled by a rule r of the program; and
that the labels of the nodes c1, ..., cs, u are atomic formulas, obtained by substitut-
ing constants into the literals of r, according to some instantiation I.

We construct the formula f by induction on the depth of the derivation tree. For
each subtree yi of y with root ci, we construct a formula fi(x̄i). The sets of variables
x̄i, i=1, ..., s are pairwise disjoint. Also, the variables in x̄1 through x̄i−1 are not
bound in fi.

Let b be a quantifier-free formula constructed as follows: we start by forming a
conjunction of all the literals occurring in the rule r. We then substitute, for each
variable z, the variable xe, where e is the value assigned to z by the instantiation I.
Observe that b has no disjunctions or equalities. Note also that the maximum
number of variables of b is the same as the number of variables of the rule r;
therefore, it depends only on the program.
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We put

f — ,x̄ .[bNfs N ( · · · (fNf1) · · · )],

where x̄ contains all the variables of the x̄i’s except xa1 , ..., xaw .
By Lemma 14, the formula f is equivalent to a linear formula with the same

variables.
The variables of f1 are re-used in each fi, with the proviso that the variables in
x̄1 through x̄i−1 are not bound in fi.

Suppose that M variables are available. Let TM be a derivation tree, of least size,
with the following property: the formula obtained as above from TM has to use all
ofM variables.

Note that TM may not exist for some M. For example, if every rule of the
Datalog program has at most one subgoal (i.e., the program is linear [UvG88,
Ull89]) the derivation tree TM only exists for bounded M. If TM does not exist, we
take its size to be infinite.

We claim that there is a constant K, depending only on the program, such that
the following hold forM>K:

(i) the root u of TM has at least two children;

(ii) let c1, ..., cs be the children of u, and let Ti be the subtree of TM rooted at
ci; then Ti is TMi for someMi >M−K;

(iii) every path of TM from the root to a leaf has length at leastM/K.

The claim can be shown by a simple simultaneous induction on the depth of TM;
we use the minimality of TM, as well as the construction of a formula from TM. If
for someM no TM exists, we take the claim to be vacuously true.

It follows that the size of TM is at least exponential in M. Thus, the formula
obtained from a derivation tree of size s(n) has O(log s(n)) variables. L

Theorem 12 and Theorem 15 can be adapted straightforwardly to Extended-
Datalog.

We now show that expressibility by linear formulas can be captured by a modifi-
cation to the existential positive Ehrenfeucht–Fraïssé game.

Definition 16. The (p, m, W)-linear Ehrenfeucht–Fraïssé game is played
between Players I and II, on two structures D and DŒ. Each Player has a set of p
pebbles, labeled 1, ..., p. At each point in the game some of Player I’s pebbles (res-
pectively Player II’s) are on elements of D (respectively DŒ).

Just before the game starts there are no pebbles on either structure.
A round of the game consists of a move of Player I, and a corresponding move of

Player II.
A move of Player I consists of picking up some of his pebbles and placing them

on elements of D. These pebbles may already have been placed on D at previous
moves—in that case they are moved to new positions. Subsequently, Player I
chooses a set of at mostW of his pebbles; he designates this set as the window of the
round.

INHERENT COMPLEXITY OF RECURSIVE QUERIES 475



A move of Player II, corresponding to a given move of Player I, consists of
placing some of Player II’s pebbles to elements of DŒ. Specifically, Player II places
on DŒ the pebbles with the same labels as the pebbles Player I placed on D.

Player I starts the game by playing a sequence of m moves. Player II then
responds by playing a sequence of m moves, in one-to-one correspondence with the
moves of Player I. Thus, a sequence of m rounds is formed.

Player II wins if, after each one of his moves: there is a homomorphism from the
substructure of D induced by those pebbles of Player I that were designated as the
window of that round, to the substructure of DŒ induced by Player II’s pebbles;
moreover, this homomorphism has to map the element pebbled by the ith pebble of
Player I, to the element pebbled by the ith pebble of Player II.

The (p, m, W)-linear Ehrenfeucht–Fraïssé game with ] is defined in the same
way: we additionally require that the above homomorphism is one-to-one.

Theorem 17. (i) Player II has a winning strategy for the (p, m, W)-linear
Ehrenfeucht–Fraïssé game on structures D, DŒ iff: every sentence ,v1 · · ·,vp .f—where
f is a linear formula with variables v1, ..., vp, depth m and widthW—that is true in D,
is also true in DŒ.

(ii) Player II has a winning strategy for the (p, m, W)-linear Ehrenfeucht–
Fraïssé game with ] on structures D, DŒ iff: every sentence ,v1 · · ·,vp .f—where f is
a linear formula with ] with variables v1, ..., vp, depth m and width W—that is true
in D, is also true in DŒ.

Proof. If:
From a sequence of m moves of Player I, we construct a sequence of formulas fk,
k=1, ..., m as in Definition 11. The formula fk describes the windows of rounds 1
through k.

We use variables v1, ..., vp; the variable vi corresponds to the pebble labeled i.
In the kth move Player I places some pebbles on elements of D. He then desig-

nates pebbles i1, ..., iW as the window of the kth round; at that point, these pebbles
are on D, on the elements a1, ..., aW respectively.

For (i), let bk be a quantifier-free formula with variables vi1 , ..., viW , which is the
conjunction of the atomic formulas (relations and equalities) which hold in D by
assigning to vi1 , ..., viW the value a1, ..., aW respectively.

For (ii), let bk be a quantifier-free formula with variables vi1 , ..., viW , which is the
conjunction of the atomic formulas (relations and equalities) and of the negations of
equalities which hold in D by assigning to vi1 , ..., viW the value a1, ..., aW respec-
tively.

We put

fk — bk N,x̄k .fk−1

where x̄k are the variables corresponding to the pebbles Player I placed on D in the
kth move, that were already on D. In particular, f1 — b1.

Consider the sentence ,v1 · · ·,vp .fm. This sentence is true in D—this can be seen
by assigning to each occurrence of vi1 , ..., viW in bk the value a1, ..., aW respectively.
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Thus the sentence ,v1 · · ·,vp .fm is true in DŒ. We now construct a sequence of m
moves of Player II.

Recall that fk — bk N,x̄k .fk−1. We examine each variable vi, i=1, ..., p.
If the variable vi occurs in the sequence x̄k, let kŒ be the least index such that
kŒ \ k and vi occurs in bkŒ; let e −i be the element of DŒ that was assigned to the
occurences of vi in bkŒ (to satisfy the sentence ,v1 · · ·,vp .fm).

If the variable vi occurs in bk (and does not occur in the sequence x̄k), let e −i be
the element of DŒ that was assigned to the occurences of vi in bk (to satisfy the
sentence ,v1 · · ·,vp .fm).

In his kth move Player II picks up every pebble labeled i for which the element e −i
has been defined above; and places it on the element e −i of DŒ.

A simple induction on k shows that Player II wins the game.
Only if:
Let ,v1 · · ·,vp .fm be a sentence (for (ii), with ] ) that is true in D. As in Defini-

tion 11, we have

fk — bk N,x̄k .fk−1

for k=1, ..., m, where bk has at mostW variables.
We construct a sequence of m moves of Player I as follows: in his kth move,

Player I examines each variable vi, i=1, ..., p.
If the variable vi occurs in the sequence x̄k, let kŒ be the least index such that
kŒ \ k and vi occurs in bkŒ; let ei be the element of D that was assigned to the
occurences of vi in bkŒ (to satisfy the sentence ,v1 · · ·,vp .fm).

If the variable vi occurs in bk (and does not occur in the sequence x̄k), let ei be
the element of D that was assigned to the occurences of vi in bk (to satisfy the
sentence ,v1 · · ·,vp .fm).

In his kth move Player I picks up every pebble labeled i for which the element ei
has been defined above; and places it on the element ei of D. He then designates
pebbles i1, ..., iW as the window of the kth round, where vi1 , ..., viW are the variables
occurring in bk.

Player II wins the game (for (ii), the game with ] ) by playing a sequence of m
corresponding moves.

After the kth move of Player II, the pebble labeled i is lying on the element e −i of
DŒ. A simple induction on k shows that: fk becomes true in DŒ, by assigning to each
occurrence of vi1 , ..., viW in bk the value e −i1 , ..., e

−

iW respectively.
Thus, the sentence ,v1 · · ·,vp .fm is true in DŒ. L

We also have the following weak version of the (p, m, W)-linear Ehrenfeucht–
Fraïssé game with ] :

Players I and II play on a structure D. Player I starts the game by
playing a sequence of m moves on D. Player II responds by picking a
structure DŒ; and playing a sequence of m corresponding moves on DŒ.
The winning condition is the same as in the ordinary game with ] .
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Arguing as in the Proof of Theorem 17, we show:

If Player II has a winning strategy for the weak version of the
(p, m, W)-linear Ehrenfeucht–Fraïssé game with ] on structure D

then: for every sentence ,v1 · · ·,vp .f—where f is a linear formula with
] with variables v1, ..., vp, depth m and width W—that is true in D,
there is a structure DŒ such that the sentence is also true in DŒ.

(To prove this, we construct from the sentence ,v1 · · ·,vp .f a sequence
of moves of Player I; we consider the structure DŒ picked by Player II,
and the sequence of corresponding moves of Player II on DŒ.)

Theorem 17 can be adapted straightforwardly to Extended-Datalog.

4. LOWER BOUNDS FOR DATALOG QUERIES

4.1. Lower Bounds for Derivation Dag Size

The following class of Datalog programs has been singled out in the study of
optimization methods [Ull89, UvG88].

Definition 18. (i) A Datalog program is piecewise linear if the body of every
rule contains at most one IDB-predicate which is mutually recursive with the IDB-
predicate in the head of the rule.

(ii) A Datalog program is linear if the body of every rule contains at most
one IDB-predicate.

The derivation trees of piecewise linear Datalog programs are ‘‘skinny.’’ It can be
shown that their size is related polynomially to their depth. Consequently, piecewise
linear Datalog programs can be evaluated by efficient parallel algorithms [UvG88].
It has been shown that certain Datalog queries that can be evaluated by efficient
parallel algorithms, cannot be defined by linear Datalog programs [AC89].

For linear Datalog programs the size of derivation trees is related linearly to the
depth; and coincides with the size of derivation dags.

In [KV95] it is shown that the following query can be expressed by a piecewise
linear Datalog( ] ) program.

Definition 19. Let K be a fixed integer. The K disjoint paths query K-Paths
on a database (D, arc) returns the set of tuples Oa, bP such that: the directed graph
represented by the binary relation arc has K node-disjoint paths from a to b.

The piecewise linear Datalog program which expresses K-Paths has derivation
dag size O(nK).

We will show the following lower bound:

Theorem 20. Every piecewise linear Datalog( ] ) program that expresses
K-Paths has derivation dag size W(nK).

We use the following observation:8

8 Noted by F. Afrati.
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Theorem 21. Every piecewise linear Datalog program can be effectively trans-
formed into an equivalent linear program.

We illustrate the proof of Theorem 21 by an example. We use the following
prototypical P-complete [GJ79] query.

Definition 22. The path system accessibility query Access on a database
(D, reach, source) is expressed by the following Datalog program:

ACCESS(x)P SOURCE(x)

ACCESS(x)P REACH(x, y, z),

ACCESS(y), ACCESS(z)

(3)

Access cannot be defined by a piecewise linear Datalog program—see the
remarks in the last section of [AC89]. The following piecewise linear variants of
Access provide hard cases of Theorem 21.

Definition 23. For k \ 0, the query Accessk on a database (D, reach, source) is
expressed by the following Datalog program:

ACCESSk(x)P SOURCE(x)

ACCESSk(x)P REACH(x, y, z),

ACCESSk(y), ACCESSk−1(z)

ACCESS0(x)P SOURCE(x)

ACCESS0(x)P REACH(x, y, z),

ACCESS0(y), SOURCE(z)

(4)

We show below a linear Datalog program which defines Access1. The program
uses an IDB-predicate Q1(x, xŒ) which simulates the conjunction of ACCESS1(x),
ACCESS0(xŒ):

ACCESS1(x)P SOURCE(x)

ACCESS1(x)P REACH(x, y, z), Q1(y, z)

Q1(x, xŒ)P ACCESS1(x), SOURCE(xŒ)

Q1(x, xŒ)P REACH(xŒ, y, z),

Q1(x, y), SOURCE(z)

(5)

The first rule for Q1(x, xŒ) handles the initialization rule for ACCESS0(xŒ). The
second rule for Q1(x, xŒ) handles the recursive rule for ACCESS0(xŒ). Observe that
the variable x appears in both sides of the second rule—because of the postpone-
ment of ACCESS1(x). Such variables are called persistent [A97, AF99].

By iterating the above construction we obtain a linear program defining Accessk.
The linear program for Access2 will use an IDB-predicate Q2(x, xŒ, xœ) simulating
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the conjunction of ACCESS2(x), Q1(xŒ, xœ). The linear program thus obtained for
Accessk will contain a rule with k variables appearing in both sides.

Theorem 20 follows from Theorem 21 and the following result:

Theorem 24. Every linear Datalog( ] ) program that expresses K-Paths has
derivation dag size W(nK).

Proof. We consider a Boolean version of K-Paths. The query K-Pathsbool on a
database (D, arc, a, b)—where a, b are constant symbols—returns true iff: the
directed graph represented by the binary relation arc has K node-disjoint paths
from a to b. It suffices to show that every linear Datalog( ] ) program that expres-
ses K-Pathsbool has derivation dag size W(nK).

Suppose P is a linear Datalog( ] ) program that expresses K-Pathsbool, with
derivation dag size S(n). By Theorem 12, K-Pathsbool can be expressed by a
sequence of sentences of the form ,v1 · · ·,vp .fm—where f is a linear formula with
] with variables v1, ..., vp, depth S(n)+1, and width depending only on P.
Moreover we have, as in the Proof of Theorem 12,

fk — bk Nfk−1

for k=1, ..., m. Recall that bk does not contain equalities.

By the linearity of the Datalog( ] ) program, every variable of bk which
occurs in fk−1, occurs in bk−1.

We will show that, if the depth of fm is at most cnK—where c is an appropriately
chosen constant depending only on P—we can construct a structure DŒ such that:
the sentence ,v1 · · ·,vp .fm is true in DŒ, but the query K-Pathsbool returns false on
DŒ. It follows that S(n) is W(nK).

Consider a structure D of size n, consisting of K node-disjoint paths of equal
length between two nodes a, b. The query K-Pathsbool returns true on D, so there is
a sentence ,v1 · · ·,vp .fm as above, which is true on D; and implies K-Pathsbool.

Let W be the (constant) width of fm; assume that m [ cnK, where c is a constant
to be chosen. We will show that Player II wins the weak version of the
(p, m, W)-linear Ehrenfeucht–Fraïssé game with ] on the above structure D,
assuming that Player I plays a sequence of moves corresponding—as in the Proof of
Theorem 17—to the formula fm. Note the following:

(a) Since the fk’s do not have existential quantifiers, Player I plays each
pebble exactly once. Also, when a pebble is played, it is included in the window of
that round.

(b) For k=1, ..., m, every variable of bk which occurs in fk−1, occurs in bk−1.
It follows that: any pebble in the window of the kth round, which was played in a
previous round (i.e., corresponding to a variable occurring in fk−1), is also in the
window of the (k−1)st round.

We will use the above properties to show that Player II can win by picking a
structure DŒ such that: the query K-Pathsbool returns false on DŒ. Since Player II
wins, the sentence ,v1 · · ·,vp .fm is true in DŒ.
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Let the nodes of the ith path of D be e ij, where i=1, ..., K, j=1, ..., nK (we have
e i1=a, e

i
n
K
=b). A cut of D is a set of K nodes containing exactly one node of each

path of D (it cannot contain the endpoints a and b).
We count the cuts that are entirely contained in a window designated by Player I:

since each window consists of at most W nodes, the number of cuts contained in
one window is at most WK; so the total number of cuts contained in any of the m
windows is at most mWK, i.e., at most cnKWK. The number of cuts of D is (nK)

K;
thus, if c < (KW)−K there is some cut of D which is not entirely contained in any
window designated by Player I.

Let e1j1 , ..., e
K
jK be such a cut. Player II picks a structure DŒ constructed from D by

removing the nodes of the above cut; inserting K−1 new nodes z1, ..., zK−1; and
inserting the arcs (e iji −1, z

iŒ), (z iŒ, e iji+1), for i=1, ..., K, iŒ=1, ..., K−1. Clearly DŒ

does not have K node-disjoint paths from a to b—so the query K-Pathsbool returns
false on DŒ.

The winning strategy of Player II is as follows. If Player I plays on a node of D
outside the cut, Player II responds on the same node of DŒ. If Player I plays on
some node eIjI in the cut, Player II will respond on a node zIŒ which he chooses as
follows:

(i) The node eIjI is already pebbled, by some pebble that is included in the
window. Player II responds on the node zIŒ pebbled by his corresponding pebble.

(ii) No pebble included in the window has been placed yet on the node eIjI .
The window of the round contains eIjI—by the above property (a)—and does not
exhaust the cut. Thus, just before eIjI is played, the window intersects the cut at a
subset C of cardinality at most K−2. Consider the set of pebbles of Player I lying
on C at that point; the corresponding pebbles of Player II are lying on the z iŒ’s; in
particular on a subset CŒ of the z iŒ’s of cardinality at most K−2. Player II chooses
arbitrarily a node zIŒ not in CŒ, and responds on zIŒ.

The strategy of Player II maintains a one-to-one homomorphism of each window
designated by Player I. To see this we argue by induction on the number of rounds.
Suppose at round k some of the pebbles played in previous rounds are designated in
the window of round k. By the above property (b), the pebbles were designated in
the window of round k−1; so by the inductive hypothesis the one-to-one homo-
morphism has been maintained on them. The choice of Player II maintains the one-
to-one homomorphism between each new pebble in the window and the pebbles
already played. Thus the one-to-one homomorphism is maintained on the entire
window. L

The above results can be adapted straightforwardly to Extended-Datalog.

4.2. Lower Bounds for Derivation Tree Size

Recall that upper bounds on the derivation tree size imply upper bounds on par-
allel complexity. In particular, a Datalog program with polynomial derivation tree
size can be evaluated in NC [UvG88]. Since P-complete queries are not expected
to be in NC, one should also expect that they do not have polynomial derivation
tree size.

INHERENT COMPLEXITY OF RECURSIVE QUERIES 481



We consider the prototypical P-complete query Access. It is expressed by the
following Datalog program (on a database (D, reach, source)).

ACCESS(x)P SOURCE(x)

ACCESS(x)P REACH(x, y, z),

ACCESS(y), ACCESS(z)

(6)

We will show the following lower bound:

Theorem 25. Every Datalog program that expresses Access has derivation tree
size 2W(`n).

It is well-known that Datalog does not express all queries in NC (a simple
example is parity). Thus the above result does not separate P from NC.

We first describe a technical tool. The reader familiar with the literature on
conjunctive queries and Datalog will notice an analogy with canonical instances
and expansions.

Definition 26. Let f be a linear formula. As in Definition 11, f — fm, where

f1 — b1

fk — bk N,x̄k .fk−1 for k=2, ..., m.

We assume that bk, k=1, ..., m, is a quantifier-free formula without disjunctions and
equalities (and without negation).

The hypergraph of f, Hf, is a structure over the same signature—(R1, ..., RN)—
as f.

The domain of Hf is 1k=1, ..., m Vk, where each Vk is called a row of Hf.

For each variable x which occurs free in fk, the row Vk contains a cor-
responding element ekx; moreover, if x also occurs free in fk−1 we iden-
tify ekx with ek−1x .

For each atomic formula R(x1, ..., xW) in bk, the structure Hf contains a
tuple r(ekx1 , ..., e

k
xw ).

Observe that the size of each row of Hf is bounded by the number of variables
of f.

Remark 27. If a variable x occurs free in fk, let k1 be the smallest index, after k,
such that: x is bound in the quantifier prefix ,x̄k1 . Let k2 be the largest index, before
k, such that: x does not occur free in ,x̄k2 .fk2 −1.

The variable x occurs free in every fi for i=k2, ..., k1−1; moreover, these are all
the free occurences of x with the same meaning as the one in fk. We have

ek2x=·· ·=e
k
x=·· ·=e

k1 −1
x .

Also, if i < k2 or i \ k1 we have e ix ] e
k
x.
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Definition 28. Let D=(D, r1, ..., rN) be a structure. A path of D is a sequence
of elements of D such that: if e, eŒ are consecutive in the sequence, they both occur
in some tuple of some relation ri.

Alternatively, this could have been defined as a path in the Gaifman graph
[Gai82] of D.

Lemma 29. Let Hf be the hypergraph of a linear formula f, as in Definition 26.
SupposeHf has a path connecting the elements a, b, where a ¥ Vk1 , b ¥ Vk2 .
Then, for each k between k1 and k2, the path intersects the row Vk.

Proof. Observe the following:
If an element e of Hf belongs to Vl1 and Vl2 then it also belongs to Vl, for each l

between l1 and l2 (see Remark 27).
If both elements e, eŒ occur in a tuple of Hf, then they both belong to some Vk

(by Definition 26).
We can insert in the path appropriate repetitions of elements, so that in the

resulting path: if e, eŒ are consecutive, then for some k

e, eŒ ¥ Vk, or

e ¥ Vk−1, eŒ ¥ Vk, or

eŒ ¥ Vk−1, e ¥ Vk.

The lemma follows. L

Lemma 30. Let Hf be the hypergraph of a linear formula f, as in Definition 26.
For j=1, ..., n, let Ej be a path ofHf. Let Sj={k | the row Vk ofHf intersects Ej}.
Either (i) there is some integer k0 which belongs to every Sj or (ii) there are integers
j1, j2 such that Sj1 , Sj2 are disjoint.

Proof. Let Uj, Lj be the largest and the smallest element of Sj, respectively. By
Lemma 29, the set Sj consists of the integers between Lj and Uj.

We show that, for any l, the conclusion of the Lemma holds for the sets
{S1, ..., Sl}. We argue by induction on l; the base case is obvious.

Assume the conclusion of the Lemma for the sets {S1, ..., Sl}. If (ii) holds, then
clearly (ii) holds for the sets {S1, ..., Sl, Sl+1}.

If (i) holds for the sets {S1, ..., Sl}, let S=4j=1, ..., l Sj. If Sl+1 intersects S, clearly
(i) holds for the sets {S1, ..., Sl, Sl+1}.

If Sl+1 does not intersect S, let U, L be the largest and the smallest element of S,
respectively. We have Ul+1 < L or Ll+1 > U. Now there exist integers j1 and j2—
between 1 and l—such that Uj1=U, Lj2=L. Thus, either Ul+1 < Lj2 , which means
that Sl+1, Sj2 are disjoint; or Ll+1 > Uj1 , which means that Sl+1, Sj, are disjoint. L

Let f(x1, ..., xw) be a formula with free variables x1, ..., xw. We denote by
f(a1, ..., aw) the result (truth value) of assigning the value ai to the variable xi of f.

Lemma 31. Let f be a linear formula with free variables x1, ..., xw; let exi be the
element ofHf corresponding to the free occurrence of xi in f.
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(i) Let D be a database and let a1, ..., aw be vales of D. Then f(a1, ..., aw)
holds in D iff: there is a homomorphism h fromHf to D such that h(exi )=ai.

(ii) f(ex1 , ..., exw ) holds inHf.

Proof. (i) Straightforward.

(ii) Apply (i); consider the identity homomorphism from Hf to Hf. L

Recall that the linear formulas constructed in the Proof of Theorem 15 do not
contain disjunctions or equalities. Theorem 25 follows from Theorem 15 and the
following result:

Theorem 32. Every sequence of linear formulas without disjunctions and equali-
ties that expresses Access has W(`n) variables.

Proof. We consider the following database Dn=(Dn, reachn, sourcen), for arbi-
trary n:

Dn={(i, j) | i=0, ..., n, j=0, ..., n}−{(0, 0)}.

sourcen={(i, 0) | i=1, ..., n} 2 {(0, j) | j=1, ..., n}.

reachn={O(i, j), (i−1, j), (i, j−1)P | i=1, ..., n, j=1, ..., n}.

If the Datalog program 6 is evaluated on Dn, the resulting relation ACCESS is
{(i, j) | i=1, ..., n, j=1, ..., n}.

Let f(x) be a formula of the sequence (with a free variable x) with M variables,
such that: (i) f((n, n)) holds in Dn; and (ii) for any database D, if f(a) holds in D

then a ¥ Access(D). We will show that M \ n; the Theorem follows, since Dn has
(n+1)2−1 elements.

We consider the structure Hf=(H, reach, source); we will show that there is a
row of Hf with at least n elements.

Let e be the element of Hf corresponding to the free occurrence of x in f. By
Lemma 31(i), there is a homomorphism h from Hf to Dn such that h(e)=(n, n).

By Lemma 31(ii), f(e) holds in Hf. Thus, e ¥ Access(Hf).
Since e ¥ Access(Hf), we have either e ¥ source, or Oe, e1, e2P ¥ reach—where
e1, e2 ¥ Access(Hf); since h(e)=(n, n) and (n, n) ¨ sourcen, we cannot have
e ¥ source. Now since Oe, e1, e2P ¥ reach it must be Oh(e), h(e1), h(e2)P ¥ reachn;
therefore h(e1)=(n−1, n), h(e2)=(n, n−1).

We can keep repeating this argument—with e1 and e2 in the place of e, and so on.
It follows that Hf has a substructure isomorphic to Dn. To avoid additional nota-
tion, we assume (with no loss of generality) that Dn is a substructure of Hf.

Consider the set Ej={(i, j) | i=0, ..., n} of elements of Dn, where j=1, ..., n.
The elements of Ej form a path of Hf.

Let Sj={k | the row Vk of Hf intersects Ej}; by Lemma 30, either (i) there is
some integer k0 which belongs to every Sj, or (ii) there are integers j1, j2 such that
Sj1 , Sj2 are disjoint.

If (i) holds, the row Vk0 intersects every path Ej; thus Vk0 has at least n elements,
since the Ej’s are mutually disjoint.
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If (ii) holds, there are integers j1, j2, k0 such that no element of Sj1 is larger than
k0; and no element of Sj2 is smaller than k0. Also, j1 < j2.

Consider the set Fi={(i, j) | j=j1, ..., j2} of elements of Dn, where i=1, ..., n.
The elements of Fi form a path of Hf. Now let (i, j1) ¥ Vk1 , (i, j2) ¥ Vk2 . Since
(i, j1) ¥ Ej1 , we have k1 ¥ Sj1 ; similarly, k2 ¥ Sj2 . By the choice of j1, j2, k0, we have
k1 [ k0 [ k2. It follows by Lemma 29 that the path Fi intersects the row Vk0 . Since
the Fi’s are mutually disjoint, Vk0 has at least n elements. L

Remark 33. There are several Datalog queries that have been shown to be
P-complete [UvG88, AP93]. The reductions are from simple variants of Access.
Moreover, they are first-order reductions in the sense of [Imm87], and in particular
the formulas they use are quantifier-free. It follows that lower bounds similar to
Theorem 25 can be shown for the P-complete Datalog queries of [UvG88, AP93].
We leave the details to the interested reader.

The Datalog program 6 has derivation trees of size 2O(n); by Theorem 15, Access
can by expressed by a sequence of linear formulas with O(n) variables. These upper
bounds are not matched by the lower bounds in Theorem 25 and Theorem 32.

We will show tighter lower bounds for databases with few paths.

Definition 34. A database D is tree-like if the total number of paths of D is at
most polynomial (in the size of D).

Theorem 35. The Datalog program 6 has polynomial-size derivation trees on tree-
like databases.

Proof. Let D be a database of size n, and let a ¥ Access(D). Since the IDB-pre-
dicate ACCESS is unary, the recursively defined relation ACCESS has at most n
elements. Thus, there exists a derivation dag d with root u labeled ACCESS(a), and
with at most n nodes.

Let f be a node of d; let F be a path of d, from f to the root u. It is easy to see
that: the elements in the labels of the path F form a path of D (because of the form
of the rules of program 6). Since D is tree-like, it has at most a polynomial number
of distinct paths. Also, the predicate in each label of the path F is ACCESS—with
the possible exception of the label of f, where the predicate can also be SOURCE.

Thus, there is a polynomial-size set Xf of sequences of labels such that: each dis-
tinct sequence of labels of a path from f to u appears once in Xf; and these are the
only sequences in Xf.

We now construct a polynomial-size derivation tree y with root labeled
ACCESS(a).

The nodes of y are the pairs Of, sP, where f is a node of d and s ¥Xf. The label
of Of, sP in y is the same as the label of f in d.

Let (f1, f), (f2, f) be the arcs of d coming into the node f; let g1, g2 be the
labels of f1, f2 respectively. For each node Of, sP of y, we put arcs

(Of1, g1sP, Of, sP) and (Of2, g2sP, Of, sP)
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in y; where gis is the sequence of labels obtained by inserting gi in the front of the
sequence s.

It is easy to check that y is a derivation tree with the desired properties. L

It is not clear how to characterize the class of tree-like databases in terms of
structural properties. For example, it is easy to see that it is incomparable with the
class of bounded tree-width (or bounded path-width) graphs. Similarly, the above
result does not hold for graphs of bounded path-width (consider a graph obtained
by collating a large number of small cliques, so that each clique shares one node
with the next clique in the sequence).

By the above result and Theorem 15, Access can be expressed on tree-like data-
bases by a sequence of linear formulas with O(log n) variables.

We show the following lower bounds:

Theorem 36. (i) Every sequence of linear formulas without disjunctions and
equalities that expresses Access on tree-like databases has W(log n) variables.

(ii) Every Datalog program that expresses Access on tree-like databases has
derivation tree size nW(1).

Proof. Recall that the linear formulas constructed in the Proof of Theorem 15
do not contain disjunctions or equalities. Thus, (ii) follows from (i) and Theorem 15.

Given a database D=(D, reach, source), let T be an undirected graph con-
structed as follows: the set of nodes of T is D; for each tuple Oe, e1, e2P in reach,
T contains edges {e, e1} and {e, e2}. In the rest of this Proof, the statement ‘‘D is a
tree’’ will mean ‘‘the graph T is a tree.’’

To prove (i): we consider a tree-like database Dn=(Dn, reachn, sourcen), for
arbitrary n. The database Dn is a rooted tree; its root is the element an.

D0 consists of a single element a0; source0={a0}, reach0=”.

Di+1 contains three disjoint copies of Di. For l=1, 2, 3, the lth copy is a
tree Di, l (isomorphic to Di) with root a il. In addition, Di+1 contains two
nodes a i+1, b; and reachi+1 contains the tuples Oa i+1, b, a i1P, Ob, a i2, a

i
3P.

Clearly, an ¥ Access(Dn).
Let f(x) be a formula of the sequence (with a free variable x) with M variables,

such that: (i) f(an) holds in Dn; and (ii) for any database D, if f(a) holds in D then
a ¥ Access(D). We will show that M \ n; the result follows, since Dn has 2×3n−1
elements.

We consider the structure Hf=(H, reach, source); we will show that there is a
row of Hf with at least n elements.

Arguing as in the Proof of Theorem 32, we show that Hf has a substructure
isomorphic to Dn. To avoid additional notation, we assume (with no loss of gener-
ality) that Dn is a substructure of Hf.

Claim. Suppose Di is a substructure ofHf, where i \ 0. Then there is a row ofHf
which contains at least i elements of Di.
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Proof of Claim. We argue by induction on i; the base case is obvious.
Di+1 is a rooted tree with root a i+1. It contains three disjoint copies of Di; the lth

copy is a subtree Di, l of Di+1, with root a il.
Let l=1, 2, 3. Apply the inductive hypothesis to the subtree Di, l rooted at a il, to

obtain a row Vkl of Hf containing at least i elements of Di, l.
If any two of the indices k1, k2, k3 coincide, there is a single row of Hf which

contains at least 2i elements of Di+1 (since the subtrees Di, l are disjoint).
If k1, k2, k3 are all different, assume (with no loss of generality) that k1 < k2 < k3.
Let Vk0 be a row containing the element a i+1. If k0 [ k2, consider a path of Di+1

from the root a i+1 to an element of Di, 3 contained in Vk3 . Note that this path con-
tains no elements of Di, 2. By Lemma 29, the path intersects the row Vk2 . So Vk2
contains at east one element of Di+1 which is not in Di, 2, i.e., Vk2 contains at least
i+1 elements of Di+1.

If k0 \ k2, we argue similarly, considering a path of Di+1 from the root a i+1 to an
element of Di, 1 contained in Vk1 .

It follows from the Claim that there is a row of Hf with at least n elements. L

The results in this Subsection can be extended straightforwardly to Datalog( ] );
and furthermore to Datalog( ] , ¬ ), which in addition allows negation on EDB-
predicates.

5. LOWER BOUNDS FOR CHAIN QUERIES

In this Section we give lower bounds for the size of the recursively defined rela-
tions and the derivation tree size, for certain Datalog queries which ask about the
existence of paths in directed graphs.

Definition 37. Let L be a language over the alphabet 1, ..., s. The chain query
QL on a database (D, arc1, ..., arcs) returns the set of tuples Oa, bP such that: the
labeled directed graph represented by the binary relations arc1, ..., arcs has a path
from a to b, with sequence of labels corresponding to a word in L (the label arci
corresponds to the letter i).

Definition 38. A database (D, arc1, ..., arcs) is acyclic if the labeled directed
graph represented by the binary relations arc1, ..., arcs is acyclic.

The following is implicit in [KV95].

Proposition 39. (i) Every chain query can be expressed on acyclic databases by
a sequence of linear formulas with depth O(n).

(ii) Every chain query can be expressed by a sequence of linear formulas with a
constant number of variables.

By the above observations, we cannot use Theorem 12 to show nontrivial lower
bounds for the derivation dag size of chain queries,9 on acyclic databases; nor can

9 Linear lower bounds can be shown easily, by constructing databases where every element must be
examined by the program.

we use Theorem 15 to show nontrivial lower bounds for the derivation tree size of
chain queries.
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We will prove such lower bounds, by exploiting the uniformity of the sequences
of linear formulas (in Theorems 12 and 15) which express a Datalog query.

We denote the empty word by E; the concatenation of the words w1, w2 by w1w2;
the n-fold concatenation w · · ·wz

n times
by wn (in is the word of n i’s); and the length of the

word w by |w|.
We will show that, for arbitrary K, there exists a chain query definable in

Datalog such that the size of the recursively defined relations is W(nK), even on
acyclic databases.

Definition 40. The four same paths query 4-SamePaths on a database (D, arc1)
returns the set of tuples Oa1, a

−

1, a2, a
−

2, a3, a
−

3, a4, a
−

4P such that: there are four paths
of equal length in the relation arc1 connecting, respectively, a1 to a −1, a2 to a −2, a3 to
a −3, and a4 to a −4.

The query 4-SamePaths is expressed by the following Datalog program:

4-SAMEPATHS(x, xŒ, y, yŒ, z, zŒ, w, wŒ)

P x=xŒ, y=yŒ, z=zŒ, w=wŒ

4-SAMEPATHS(x, xŒ, y, yŒ, z, zŒ, w, wŒ)

P ARC1(x, t), ARC1(y, u), ARC1(z, v), ARC1(w, g),

4-SAMEPATHS(t, xŒ, u, yŒ, v, zŒ, g, wŒ)

(7)

Definition 41. (i) Let K be a fixed integer. The K equal paths query
K-EqualPaths on a database (D, arc1, arc2) returns the set of tuples
Oa1, a

−

1, ..., aK, a
−

KP such that: there are K paths of equal length connecting, respec-
tively, a1 to a −1, ..., aK to a −K; the arcs of the ith path are labeled by arc1 for i odd,
and by arc2 for i even.

(ii) Let K be a fixed even integer. The K equalities query K-Equals on a
database (D, arc1, arc2) is the chain query QLK obtained from the following
language LK:

1n2n · · · 1n2nz
K
2 times

¥ LK.

The query K-EqualPaths can be expressed in Datalog; the defining program is
similar to program 7.

The query K-Equals is expressed by the following Datalog program.

K-EQUALS(x, y)PK-EQUALPATHS(x, z1, z1, z2, ..., zK−1, y) (8)

Note that, since the Datalog program 8 is linear, a minimal derivation tree for
the program is also a derivation dag.

Proposition 42. (i) The Datalog program 8 has derivation trees of size O(nK).

(ii) The Datalog program 8 has derivation trees of sizeO(n) on acyclic databases.
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Proof. (i) It suffices to show that the Datalog program for K-EqualPaths has
derivation trees of size O(nK).

Consider the program 7; the size of a derivation tree is bounded by the maximum
possible number of tuples Ot, u, v, gP, i.e., it is O(n4). The general case is similar.

(ii) Let D be an acyclic database with n elements, and a, b elements of D

such that a, b ¥K-Equals(D). There is a path (of D) from a to b, labeled by a
word w ¥ LK. It is easy to see that there is a derivation tree with root labeled
K-EQUALS(a, b); and with size O(|w|). Since D is acyclic, |w| [ n. L

By the above observations, the size of the recursively defined relations for
program 8 is O(nK).

We will show the following lower bound:

Theorem 43. For every Datalog program that expresses K-Equals on acyclic
databases, the size of the recursively defined relations is W(nK).

Proof. From a given Datalog program P that expresses K-Equals on acyclic
databases we construct an acyclic database D1=(D1, arc1, 1, arc2, 1). The database
D1 is a simple path connecting the elements a, b. The construction uses an integer C

depending on the program P.

D1 consists of K (mutually disjoint, simple) subpaths of length C. For
i=1, ..., K the ith subpath, E i1, connects the elements zi−1, zi (where
z0 — a, zK — b). The arcs of the subpath E i1 are labeled by arc1 for i odd,
and by arc2 for i even.

Clearly, Oa, bP ¥K-Equals(D1).
We consider a sequence of linear formulas constructed from the program P, as in

the Proof of Theorem 12; recall that these formulas do not contain disjunctions or
equalities. Let f(x, y) be a formula of the sequence (with free variables x, y) such
that: (i) f(a, b) holds in D1; and (ii) for any database D, if f(a, b) holds in D then
Oa, bP ¥K-Equals(D).

We consider the structure Hf=(H, arc1, arc2).
Arguing as in the Proof of Theorem 32, we show that Hf has at least one sub-

structure isomorphic to D1. To avoid additional notation, we assume (with no loss
of generality) that D1 is a substructure of Hf.

Lemma. There is some substructure of Hf isomorphic to D1 such that: there is a
row ofHf intersecting every path E

i
1 of D1.

Proof of Lemma. Assume it is false; we will derive a contradiction.
Consider an arbitrary copy of D1 in Hf. The statement of the Lemma is violated.

By Lemmas 29 and 30, there is a row Vk0 which ‘‘separates’’ two of the paths in the
statement—say, without loss of generality, the path E11 is separated from the path
E21. More precisely, this means that if the row Vk of Hf intersects the path E11, we
have k < k0; and if Vk intersects the path E21, we have k0 [ k.

By a straightforward application of the ‘‘pumping’’ technique of [AC89,
ACY95] (see [ACY95], Lemma 4.8) to the part of Hf consisting of the rows Vk
with k < k0, we can show the following. If C is sufficiently large with respect to the
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program, there is some formula fŒ of the sequence, such that HfŒ has the following
property: HfŒ contains a path from a to b, which is obtained by repeating—an arbi-
trary number of times—certain subpaths (see [ACY95], Definition 4.7) of the path
from a to b contained in Hf. Specifically, by the choice of k0, the subpaths we
repeat include some subpaths of the path E11 from a to z1; and include no subpath
of the path E21 from z1 to z2. It is not hard to see (since the repetition can be done
an arbitrary number of times) that HfŒ can be chosen so that the labels of the path
from a to b in HfŒ do not correspond to a word in LK.

By repeating this argument for each copy of D1 in Hf, we obtain a structure Hk,
where k(x, y) is some formula of the sequence; and if ex, ey are the elements corre-
sponding to the free occurences of x, y in k: there is no path from ex to ey in Hk
with labels corresponding to a word in LK. However, k(ex, ey) holds in Hk
(Lemma 31), so Oex, eyP ¥K-Equals(Hk); this is a contradiction.

Recall that the formula f is constructed from a derivation dag d of P (Proof of
Theorem 12), and the arcs of Hf associated with a row (Definition 26) correspond
to the body of some rule of P. Suppose D1 is a substructure of Hf as in the
Lemma. Then there is a row of Hf intersecting every path E i1 of D1. It is easy to see
that there is a label of (some node of) d containing an element m i1 of the path E i1 of
D1—where i=1, ..., K. Thus, there is a tuple of the recursively defined relations
containing every element m i1 of D1.

We now construct an acyclic database Dn=(Dn, arc1, n, arc2, n), for arbitrary n.
The database Dn consists of a set of paths connecting the elements a, b; and con-
tains a copy of D1. The construction uses the integer C (depending on the program P).

Dn consists of Kn (mutually disjoint, simple) paths of length C. For
i=1, ..., K, the paths E ij, j=1, ..., n, connect the elements zi−1, zi
(where z0 — a, zK — b). The arcs of the paths E ij are labeled by arc1 for i
odd, and by arc2 for i even.

Clearly, Oa, bP ¥K-Equals(Dn).
We will show that there are W(nK) tuples of the recursively defined relations;

Theorem 43 follows, since Dn has KCn elements.
Consider the element m i1 of D1. For j=1, ..., n, let m ij be: the element of E ij lying

at the same distance from zi−1 as m i1.
Fix a sequence j1, ..., jK, where ji=1, ..., n. There is an automorphism of Dn

which maps m i1 to m iji . It follows that there is a tuple of the recursively defined rela-
tions containing the elements m iji of Dn, where i=1, ..., n.

Since there are nK sequences j1, ..., jK and the arity of the IDB-predicates of P is
bounded, there are W(nK) tuples of the recursively defined relations. L

We will now show that there exists a chain query definable in Datalog such that
the size of derivation trees is nW(1), even on acyclic databases.

Definition 44. The chain version of path system accessibility C-Access on a data-
base (D, arc1, arc2) is the chain query QLC obtained from the following language LC:

E ¥ LC

If w1, w2 ¥ LC then 1n2w121n21n2w221n ¥ LC.
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The query C-Access is expressed by the following Datalog program.

C-ACCESS(x, y)P x=y

C-ACCESS(x, y)P 4-EQUALPATHS(x, x2, z2, z1, w1, w2, y2, y),

ARC2(z1, w1),

ARC2(x2, xŒ), ARC2(zŒ, z2),

C-ACCESS(xŒ, zŒ),

ARC2(w2, wŒ), ARC2(yŒ, y2),

C-ACCESS(wŒ, yŒ)

(9)

Proposition 45. The Datalog program 9 has derivation trees of size O(n) on
acyclic databases.

Proof. Let D be an acyclic database with n elements, and a, b elements of D

such that a, b ¥ C-Access(D). There is a path (of D) from a to b, labeled by a word
w ¥ LC. It is easy to see that there is a derivation tree with root labeled
C-ACCESS(a, b); and with size O(|w|). Since D is acyclic, |w| [ n. L

We show the following lower bound:

Theorem 46. Every Datalog program that expresses C-Access on acyclic data-
bases has derivation tree size nW(1).

Proof. From a given Datalog program P that expresses C-Access on acyclic
databases we construct an acyclic database Dn=(Dn, arc1, n, arc2, n), for arbitrary n.
The database Dn is a simple path connecting the elements an, bn. The construction
uses an integer C depending on the program P; C does not depend on n.

D0 consists of a single element a0; arc1, 0=arc2, 0=”. We set b0 — a0.

Di+1 consists of three disjoint copies of Di; for l=1, 2, 3, the lth copy is
a path connecting the elements a il, b

i
l. In addition, Di+1 contains the

nodes a i+1, b i+1; the nodes q, qŒ, c1, c
−

1, c2, c
−

2; and additional nodes to
form the following (mutually disjoint) paths:

Four paths of length C, with arcs labeled arc1, connecting
a i+1 to c1; c

−

1 to q; qŒ to c2; and c −2 to b i+1 respectively.

A path of length 2, with arcs labeled arc2, connecting c1
to a i1.

A path of length 3, with arcs labeled arc2, connecting b i1
to a i2.

A path of length 2, with arcs labeled arc2, connecting b i2
to c −1.

The following arcs labeled arc2: Oq, qŒP, Oc2, a
i
3P, Ob

i
3, c

−

2P.
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From the definition of LC: if w1, w2, w3 ¥ LC, we have 2w1222w22 ¥ LC; and there-
fore

1C22w1222w2221C21C2w321C ¥ LC.

It follows by induction on n that Oan, bnP ¥ C-Access(Dn).
We consider a sequence of linear formulas constructed from the program P, as in

the Proof of Theorem 15; recall that these formulas do not contain disjunctions or
equalities. Let f(x, y) be a formula of the sequence (with free variables x, y) with
M variables, such that: (i) f(an, bn) holds in Dn; and (ii) for any database D, if
f(a, b) holds in D then Oa, bP ¥ C-Access(D). We will show that M \ n; the result
follows—from Theorem 15—since Dn is a simple path of length (2C+5)(3n−1).

We consider the structure Hf=(H, arc1, arc2); we will show that there is a row
of Hf with at least n elements.

Arguing as in the Proof of Theorem 32, we show that Hf has at least one sub-
structure isomorphic to Dn. To avoid additional notation, we assume (with no loss
of generality) that Dn is a substructure of Hf.

Lemma. There is some substructure of Hf isomorphic to Dn such that: for each i,
there is a row ofHf which intersects the paths of Di+1 from a i+1 to c1; from c

−

1 to q;
from qŒ to c2; and from c

−

2 to b
i+1.

Proof of Lemma. Assume it is false; we will derive a contradiction.
Consider an arbitrary copy of Dn in Hf. There is some i such that the statement

of the Lemma is violated. By Lemmas 29 and 30, there is a row Vk0 which ‘‘sepa-
rates’’ two of the paths in the statement—say, without loss of generality, the path
from a i+1 to c1 is separated from the path from c −2 to b i+1. More precisely, this
means that if the row Vk of Hf intersects the path from a i+1 to c1, we have k < k0;
and if Vk intersects the path from c −2 to b i+1, we have k0 [ k.

By a straightforward application of the ‘‘pumping’’ technique of [AC89,
ACY95] (see [ACY95], Lemma 4.8) to the part of Hf consisting of the rows Vk
with k < k0, we can show the following. If C is sufficiently large with respect to the
program, there is some formula fŒ of the sequence, such that HfŒ has the following
property: HfŒ contains a path from a i+1 to b i+1, which is obtained by repeating—an
arbitrary number of times—certain subpaths (see [ACY95], Definition 4.7) of the
path from a i+1 to b i+1 contained in Hf. Specifically, by the choice of k0, the paths
we repeat include some subpaths of the path from a i+1 to c1; and include no
subpath of the path from c −2 to b i+1. It is not hard to see (since the repetition can be
done an arbitrary number of times) that HfŒ can be chosen so that the labels of the
path from a i+1 to b i+1 in HfŒ do not correspond to a word in LC.

By repeating this argument for each copy of Dn in Hf, we obtain a structure Hk,
where k(x, y) is some formula of the sequence; and if ex, ey are the elements corre-
sponding to the free occurences of x, y in k: there is no path from ex to ey in Hk
with labels corresponding to a word in LC. However, k(ex, ey) holds in Hk
(Lemma 31), so Oex, eyP ¥ C-Access(Hk); this is a contradiction.

Claim. Suppose Dn is a substructure ofHf as in the Lemma. Then, for each i \ 0,
there is a row ofHf which contains at least i elements of Di.
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Proof of Claim. We argue by induction on i; the base case is obvious.
Di+1 is a simple path connecting the elements a i+1, b i+1. It contains three disjoint

copies of Di; the lth copy is a simple path Di, l connecting the elements a il, b
i
l.

Let l=1, 2, 3. Apply the inductive hypothesis to Di, l, to obtain a row Vkl of Hf
containing at least i elements of Di, l.

If any two of the indices k1, k2, k3 coincide, there is a single row of Hf which
contains at least 2i elements of Di+1.

If k1, k2, k3 are all different, assume (with no loss of generality) that k1 < k2 < k3.
Let Vk0 be a row of Hf as in the Lemma, intersecting the path of Di+1 from a i+1

to c1 at A; the path from c −1 to q at AŒ; the path from qŒ to c2 at B; and the path
from c −2 to b i+1 at BŒ.

If k0 [ k2, consider the path of Di+1 connecting B to BŒ. Note that this path con-
tains no elements of Di, 2. Since it contains Di, 3, it intersects the row Vk3 ; and by
Lemma 29, it also intersects the row Vk2 . So Vk2 contains at least one element of
Di+1 which is not in Di, 2, i.e., Vk2 contains at least i+1 elements of Di+1.

If k0 \ k2, consider the path of Di+1 connecting A to b i1. Note that this path con-
tains no elements of Di, 2. Since it contains Di, 1, it intersects the row Vk1 ; and by
Lemma 29, it also intersects the row Vk2 . So Vk2 contains at least one element of
Di+1 which is not in Di, 2, i.e., Vk2 contains at least i+1 elements of Di+1.

It follows from the Claim that there is a row of Hf with at least n elements. L

The results in this Section can be extended to Datalog( ] ); and furthermore to
Datalog( ] , ¬ ), which in addition allows negation on EDB-predicates.

6. DISCUSSION AND OPEN PROBLEMS

We have shown that there are natural notions of complexity associated with
Datalog programs. It seems worthwhile to examine more general logics (with
various notions of fixpoint) from the same perspective. We feel that our concept of
a linear formula might prove useful for such investigations.

We note that Immerman has also considered relationships between the number of
variables of first-order formulas and computational complexity [CFI92, EI95,
Imm81, Imm91]. His results are incomparable to ours, as the formulas he considers
are more general, and the lower bounds he obtains are smaller.

Parallel evaluation of Datalog programs has been studied wrto communication
costs [LV98]. It is interesting to see if an expressibility approach would also be
useful in this case.

Our results immediately suggest several concrete questions. In particular, we
believe that Theorems 24, 32 and 43 can be strengthened as follows.

Conjecture 47. Every Datalog( ] ) program that expresses K-Paths has deriva-
tion dag size W(nK).

Conjecture 48. Every sequence of linear formulas that expresses Access has
W(n) variables.

Conjecture 49. Every Datalog program that expresses K-Equals has derivation
dag size W(nK).
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The following is a conjectured nonuniform analogue of Theorem 43.

Conjecture 50. Every sequence of linear formulas that expresses K-Equals has
depth W(nK).
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