
Science of Computer Programming 64 (2007) 187–204
www.elsevier.com/locate/scico

Global computing in a dynamic network of tuple spacesI

Rocco De Nicolaa, Daniele Gorlab,∗, Rosario Pugliesea

a Dipartimento di Sistemi e Informatica, Università di Firenze, Italy
b Dipartimento di Informatica, Università di Roma “La Sapienza”, Roma, Italy

Received 15 September 2005; received in revised form 15 March 2006; accepted 15 June 2006
Available online 26 September 2006

Abstract

We present TKLAIM (Topological KLAIM), a process description language that retains the main features of KLAIM (process
distribution and mobility, remote and asynchronous communication through distributed data spaces), but extends it with new
constructs to flexibly model the interconnection structure underlying a network and its evolution in time. We show how TKLAIM can
be used to model a number of interesting distributed applications and how systems correctness can be guaranteed, also in the
presence of failures, by exploiting observational equivalences to study the relationships between descriptions of systems at different
levels of abstraction.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Global computing; Formal methods; Observational equivalence; Distributed algorithms; Program verification

1. Introduction

In the last decade, programming computational infrastructures available globally for offering uniform services
has become an important topic in Computer Science. The challenges come from the necessity of dealing at once
with issues like communication, co-operation, mobility, resource usage, security, privacy, failures, etc., in a setting
where demands and guarantees can be very different for the many different components. This has stimulated research
on abstractions, models and calculi that could provide the basis for the design and the analysis of network aware
programs, where physical and logical mobility of systems plays a crucial role. The research area that considers all the
above issues is now called Global Computing.

Both the linguistic abstractions and the foundational aspects of Global Computing have been investigated. On the
linguistic side, the search is for languages with primitives that support network awareness (locations are explicitly
referenceable), disconnected operations (moved code executes also in the presence of intermittent connections),
flexible communication mechanisms (like distributed repositories storing content addressable data) and remote
operations (like asynchronous remote communications). On the foundational side, the demand is instead on the
development of tools and techniques to build safe and trustworthy global systems, to analyse their behaviour, and

I This work has been partially supported by EU within the FP6-2004-IST-FET Proactive project SENSORIA proposal contract number 016004.
∗ Corresponding author.

E-mail addresses: denicola@dsi.unifi.it (R. De Nicola), gorla@di.uniroma1.it (D. Gorla), pugliese@dsi.unifi.it (R. Pugliese).

0167-6423/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.06.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82809814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
mailto:denicola@dsi.unifi.it
mailto:gorla@di.uniroma1.it
mailto:pugliese@dsi.unifi.it
http://dx.doi.org/10.1016/j.scico.2006.06.004

188 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

to demonstrate their conformance to given specifications. Clearly, such theories should capture the above listed
distinctive features of global systems.

KLAIM (Kernel Language for Agents Interaction and Mobility), that we introduced in [12], can be placed along
this research line. It is a formalism specifically designed to describe distributed systems made up of several mobile
interacting components. KLAIM primitives, inspired by the LINDA coordination model [21], allow programmers
to distribute processes at different localities of a net, where data can be placed and retrieved. Localities are first-
class citizens that can be dynamically created and communicated. In more recent papers, we have evolved KLAIM

to a full-fledged programming language (X-KLAIM [4]) to be used for distributed mobile programming but have
also distilled it into a number of simpler process languages [13]. Building on these languages, here we introduce
TKLAIM (Topological KLAIM), a formalism that relies on inter-node connections to allow or deny remote operations.
Connections are programmable, in that they can be explicitly and dynamically activated and deactivated by processes,
and remote operations can take place only if the involved nodes are directly connected.

Many process algebraic languages for modelling and programming global computational infrastructures have been
proposed in the literature [18,8,28,19]; also a number of languages and systems for distributed computing relying on
and extending the powerful LINDA [21] paradigm have been put forward both from Academia and from industries
[3,27,17,24]. Notably, in all these formalisms, little attention has been devoted to explicitly modelling the network
topology: it usually originates from the linguistic choices concerning the mobility paradigm. Thus, when migration
consists in the movement of bare processes, the network is usually seen as a fully connected graph of computing
sites where new sites can be dynamically added (see, e.g., Dπ -calculus [22], KLAIM [12] or NOMADIC PICT [28]).
Instead, when migration consists in the movement of entities with executable content (such as entire sites), the network
is usually seen as a forest of trees that evolves with the addition/pruning/displacement of subtrees (see, e.g., Ambient
[8] and its variants, or DJoin [18]). However, global computers (e.g. the Internet) are generic graphs, i.e. their nodes
are neither organised in tree-like structures nor are fully (directly) connected. Connections can unpredictably break
down rendering nodes (at least temporarily) unreachable. To meet the demands arising from modelling the network
topology of global computers and its evolution in time we have extended KLAIM with supports for connections and
failures, thus obtaining TKLAIM.

Another major contribution of this paper, is the development of a framework for specifying and proving properties
of global computing applications. On the one hand, we show how TKLAIM can be used to model a number of
interesting distributed applications. On the other hand, we show how system correctness can be guaranteed by
exploiting behavioural equivalences to study the relationships between system descriptions at different levels of
abstraction. To state and prove properties of systems, we follow the approach presented in [1]. According to this
approach, in correspondence to the detailed description in TKLAIM of a given system (as close as possible to the
actual implementation), another, more abstract and intuitive, specification has to be provided that clearly manifests
the wanted (or unwanted) behaviour of the system under consideration. The theory of may testing [15] can then be
used to establish the relationship between the abstract and the concrete specification and thus to check whether the
expected (or unexpected) behaviour is possible.

To gently introduce the reader to our approach, in Section 2 we present a very basic formalism where inter-node
connections are explicitly fixed at the outset. This scenario is very close to Local Area Networks, where physical
connections are usually reliable and immutable (or change very rarely). Section 3 shows how the basic model can
be used to program communication between machines that are indirectly connected: we present a routing messenger
process and prove that it behaves correctly. In the following sections we present two variants of the basic model. In
Section 4, we enrich the language with different forms of failures. We first consider a scenario where only nodes and
node components (i.e., data or processes) can fail and, under these assumptions, we establish soundness of a distributed
fault-tolerant protocol for the ‘k-set agreement’ problem [10]; then, we discuss failures of connections. Dynamic
connections, explicitly modifiable by processes, are considered in Section 5; there, we model a more sophisticated
routing scenario and establish its soundness. We conclude in Section 6 with a discussion on future and related work.

2. The basic language

In this section, we report syntax, operational and may-testing semantics of a basic variant of TKLAIM with only
static connections.

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 189

Table 1
Syntax of TKLAIM

NETS: COMPONENTS:

N ::= 0 | l :: C | {l1 ↔ l2} | N1‖ N2 | (νl)N C ::= 〈t〉 | P | C1|C2

PROCESSES: TUPLES:

P ::= nil | a.P | P1| P2 | A(ẽ , ˜̀) t ::= e | ` | t1, t2

ACTIONS:

a ::= in(T)@` | read(T)@` | out(t)@` | eval(P)@` | new(l)

TEMPLATES: EXPRESSIONS:

T ::= e | !x | ` | !u | T1, T2 e ::= V | x | . . .

2.1. Syntax

The syntax of TKLAIM, given in Table 1, is parameterised with respect to the following syntactic sets, which we
assume to be countable and pairwise disjoint:

– V, the set of basic values (integers, strings, booleans, . . .), is ranged over by V ;
– L, the set of localities, is ranged over by l;
– X, the set of basic variables, is ranged over by x ;
– U, the set of locality variables, is ranged over by u;
– A, the set of process identifiers, is ranged over by A.

Finally, ` is used to denote localities and locality variables.
Nets, ranged over by N , M, K , . . ., are finite collections of nodes and inter-node connections. A node is a pair

l :: C , where locality l is the address (i.e., the network reference) of the node and C is the (parallel) component located
at l. Components, ranged over by C, D, . . ., can be either processes or tuples of data, denoted by 〈t〉. Connections are
pairs of node addresses {l1 ↔ l2} stating that the nodes with address l1 and l2 are directly (and bidirectionally1)
connected. In (νl)N , name l is private to N ; the intended effect is that, if one considers the term M ‖ (νl)N , then
locality l of N cannot be referred from within M .

Processes, ranged over by P, Q, R, . . ., are the TKLAIM active computational units and may be executed
concurrently either at the same locality or at different localities. They are built up from the terminated process
nil and from the basic actions by using prefixing, parallel composition and process invocation. Actions permit
removing/accessing/adding tuples from/to tuple spaces (actions in/read/out, resp.), activating new threads of
execution (action eval) and creating new nodes (action new). Action new is not indexed with an address because
it always acts locally; all the other actions explicitly indicate the (possibly remote) locality where they will take effect.

The exact syntax of expressions, e, is deliberately omitted; we only assume that expressions contain, at least, basic
values and variables. Tuples, t , are sequences of expressions, localities or variables. Templates, T , are used to select
tuples: in particular, !x and !u, that we call formal fields, are used to bind variables to values.

Names (i.e. localities and variables) occurring in TKLAIM processes and nets can be bound. More precisely, prefixes
in(T)@`.P and read(T)@`.P bind T ’s formal fields in P; prefix new(l).P binds l in P , and, similarly, net restriction
(νl)N binds l in N . A name that is not bound is called free. The sets fn(·) and bn(·) (respectively, of free and bound
names of a term) are defined accordingly. The set n(·) of names of a term is the union of its sets of free and bound
names. We say that two terms are alpha-equivalent, written =α , if one can be obtained from the other by renaming
bound names. In the following, we shall work with terms whose bound names are all distinct and different from the
free ones. Moreover, as usual, we shall only consider closed terms, i.e. processes and nets without free variables.

1 For the sake of simplicity, we assume bidirectional connections; nevertheless, all the theory and the examples we develop here could be tailored
to the framework where connections are directed.

190 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

Table 2
Structural congruence

(ALPHA) (PZERO)

N ≡ N ′ if N =α N ′ N ‖ 0 ≡ N

(PCOM) (PASS)

N1 ‖ N2 ≡ N2 ‖ N1 (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RCOM) (EXT)

(νl1)(νl2)N ≡ (νl2)(νl1)N N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l 6∈ fn(N1)

(GARB) (CALL)

(νl)0 ≡ 0 l :: A(ẽ , ˜̀) ≡ l :: P [̃e/̃x ,
˜̀
/̃u] if A(x̃ , ũ)

def
= P

(CLONE) (ABS)

l :: C1| C2 ≡ l :: C1 ‖ l :: C2 l :: C ≡ l :: C | nil

(SELF) (BIDIR)

l :: nil ≡ l :: nil ‖ {l ↔ l} {l1 ↔ l2} ≡ {l2 ↔ l1}

(CONNNODE)

{l1 ↔ l2} ≡ {l1 ↔ l2} ‖ l1 :: nil

Notation ·̃ denotes a (possibly empty) sequence of objects; e.g., l̃ is a sequence of localities. Thus, A(ẽ , ˜̀) stands
for the invocation of the process identified by A with actual parameters ẽ, ˜̀. It is assumed that each process identifier
A has a single defining equation A(x̃ , ũ)

def
= P where the free variables of P are contained in x̃, ũ. Moreover, to

guarantee uniqueness of solution of recursive process definitions, it is assumed that all the identifiers occurring in P
are guarded, i.e. they occur within the scope of a blocking in/read prefix.

We write Z , W to mean that Z is of the form W ; this notation is used to assign a symbolic name Z to the term W .
We shall sometimes write in()@l, out()@l and 〈〉 to mean that the argument of the actions or the tuple are irrelevant.
We will use the standard notation P[e/x] to indicate the capture avoiding substitution of the expression e for the free
occurrences of the variable x in P; P [̃e/̃x] will denote the simultaneous substitution of each free occurrence of x ∈ x̃
with the corresponding e ∈ ẽ in P . P[l/u] and P [̃l/̃u] have a similar meaning. We shall omit trailing occurrences of
process nil and write

∏
j∈J Wj for the parallel composition (both ‘|’ and ‘‖’) of terms (components or nets, resp.) Wj .

Finally, when in a process definition A(x̃ , ũ)
def
= P both x̃ and ũ are empty, we shall simply write A instead of A()

to invoke it.

2.2. Operational semantics

TKLAIM operational semantics is given by means of a reduction relation relying on a structural congruence. The
structural congruence, ≡, identifies those nets which intuitively represent the same net and is inspired to the π -
calculus’ one (see, e.g., [26]). Formally, it is defined as the smallest congruence satisfying the laws in Table 2. Law
(ALPHA) equates alpha-equivalent nets; laws (PZERO), (PCOM) and (PASS) state that ‘‖’ is a monoidal operator
with 0 as identity element. Laws (RCOM), (GARB) and (EXT) handle restrictions: the first one regulates their
commutativity; the second one collects unused (garbage) restricted names; the third one is the standard π -calculus’
rule for scope extension and states that the scope of a bound name can be extended, provided that this does not
cause any name capture. Law (CALL) permits to freely fold/unfold process invocations; law (CLONE) turns a parallel
between co-located components into a parallel between nodes; law (ABS) states that nil is the identity for ‘|’ (by
using law (CLONE), it is easy to see that also ‘|’ is a monoidal operator). Finally, law (SELF) states that nodes are
self-connected; law (BIDIR) states that connections are bidirectional; law (CONNNODE) states that a connection can
be placed only between existing nodes.

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 191

Table 3
TKLAIM reduction relation

(R-NEW) l :: new(l ′).P 7−→ (νl ′)(l :: P ‖ {l ↔ l ′})

(R-EVAL) l :: eval(Q)@l ′.P ‖ {l ↔ l ′} 7−→ l :: P ‖ {l ↔ l ′} ‖ l ′ :: Q

(R-IN)

match(E[[T]]; t) = σ

l :: in(T)@l ′.P ‖ {l ↔ l ′} ‖ l ′ :: 〈t〉 7−→ l :: Pσ ‖ {l ↔ l ′}

(R-READ)

match(E[[T]]; t) = σ

l :: read(T)@l ′.P ‖ {l ↔ l ′} ‖ l ′ :: 〈t〉 7−→ l :: Pσ ‖ {l ↔ l ′} ‖ l ′ :: 〈t〉

(R-OUT)
E[[t]] = t ′

l :: out(t)@l ′.P ‖ {l ↔ l ′} 7−→ l :: P ‖ {l ↔ l ′} ‖ l ′ :: 〈t ′〉

(R-PAR)

N1 7−→ N ′
1

N1 ‖ N2 7−→ N ′
1 ‖ N2

(R-RES)
N 7−→ N ′

(νl)N 7−→ (νl)N ′

(R-STRUCT)
N ≡ M M 7−→ M ′ M ′

≡ N ′

N 7−→ N ′

The reduction relation is given in Table 3 and relies on two auxiliary functions: E[[]] and match(;).
The tuple/template evaluation function, E[[]], evaluates componentwise the expressions occurring within the
tuple/template ; its precise definition depends on the exact syntax of expressions and, thus, is omitted. The pattern
matching function, match(;), verifies the compliance of a tuple w.r.t. a template and associates values to variables
bound in the template. Intuitively, a tuple matches a template if they have the same number of fields and corresponding
fields do match. Formally, function match returns a substitution defined as follows:

match(V ; V) = ε match(!x; V) = [V/x]

match(l; l) = ε match(!u; l) = [l/u]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1, T2; t1, t2) = σ1 ◦ σ2

where we let ‘ε’ be the empty substitution and ‘◦’ denote substitutions composition.
The operational rules of TKLAIM can be briefly explained as follows. Rule (R-NEW) says that execution of action

new(l ′) creates a new node at the restricted address l ′ and a connection with the creating node l. Rule (R-EVAL) states
that a process can be spawned at l ′ by a process running at l only if l and l ′ are directly connected. Rule (R-OUT)
evaluates the expressions within the argument tuple and sends the resulting tuple to the target node. Again, this is
possible only if the source and the target nodes are directly connected. Rules (R-READ) and (R-IN) require existence
of a matching tuple in the target node and of a connection between the source and the target node. The tuple is then
used to replace the variables bound by the template in the continuation of the process performing the actions. With
action in the matched tuple is consumed while with action read it is not. Rules (R-PAR), (R-RES) and (R-STRUCT)
are standard.

TKLAIM adopts a LINDA-like [21] communication mechanism: data are anonymous and associatively accessed via
pattern matching; communication is asynchronous. Indeed, although there exist prefixes for placing data to (possibly

192 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

remote) nodes, no synchronisation takes place between processes, because their interactions are mediated by nodes,
that act as data repositories.

To conclude the presentation of TKLAIM’s operational semantics, we want to stress that interactions between
nodes that are not directly connected is forbidden. This could be remedied in two ways. The first way is to change the
presented operational semantics by adding the structural law

{l1 ↔ l2} ‖ {l2 ↔ l3} ≡ {l1 ↔ l2} ‖ {l2 ↔ l3} ‖ {l1 ↔ l3}

that states a sort of ‘transitivity’ property for direct connections. In this way, ‘single-hop’ connections are placed
also between not directly connected nodes. Alternatively, one could explicitly program remote interactions through
‘multi-hop’ connections. Thus, if there exists a path of connections from l to l ′, then a process P running at l willing
to interact with l ′ can do so by means of a mobile process spawned from l ‘towards’ l ′.

Adopting one way or the other only depends on the chosen abstraction level. We prefer the second alternative
because we consider it more basic and because it fits better in more dynamic scenarios; thus, in Section 3, we shall
present a possible implementation of multi-hop communication and a proof of its correctness.

2.3. Observational semantics

To state and prove properties of TKLAIM nets, we follow the approach put forward in [15] and use the may testing
preorder and the associated equivalence. Intuitively, two nets are may testing equivalent if they cannot be distinguished
by any external observer taking note of the data offered by the observed nets. More precisely, observers, ranged over
by O , O ′, O1, . . . , are nets that can use an additional distinct locality name test 6∈ L as a node address. Computations
from N ‖ O are (possibly infinite) sequences of reductions N ‖ O (, (νl̃0)(N0 ‖ O0)) 7−→ (νl̃1)(N1 ‖ O1) 7−→ · · · ;
we call such a computation successful if there is some i ≥ 0 such that Oi ≡ O ′

‖ test :: 〈〉 and test 6∈ l̃i . We write
N MAY O whenever there exists a successful computation from N ‖ O; moreover, we shall sometimes say that N
satisfies O . Finally, N NOTMAY O stands for the negation of N MAY O .

Definition 1 (May Testing Preorder). May testing preorder, v, is the least preorder on TKLAIM nets such that, for
every N v M , it holds that N MAY O implies M MAY O , for each observer O .

When N v M , we sometimes write M w N (i.e. relation w is the ‘inverse’ of v). May testing equivalence, ', is
defined as the intersection of v and w . Given a set of observers O, we will write v

O (resp. '
O) to denote that v

(resp. ') holds when considering only observers from O.
To relate nets under both v and ', it is necessary to describe the possible interactions between an observer and the

observed net; thus, we need a fully compositional operational semantics for TKLAIM. To this aim, we reformulate the
semantics of our language as a labelled transition system (LTS) to make apparent the action a net is willing to perform
in order to evolve. The labelled transition relation,

α
−→ , is defined as the least relation over nets induced by the rules

in Table 4. Labels take the form

α ::= τ | l1 y l2 | (ν̃l) 〈t〉 @ l1 : l2 | l1 : F l2 | l1 : t G l2

We let bn(α) be l̃ if α = (ν̃l) 〈t〉 @ l1 : l2 and be ∅ otherwise; fn(α) and n(α) are defined accordingly.
Let us now explain the intuition behind the labels of the LTS and some key rules. Label α in N

α
−→ N ′ can be

τ : this means that N may perform a reduction step to become N ′ (see Proposition 1).
l1 y l2 : this means that in N there is a direct connection between nodes l1 and l2 (see (LTS-LINK)).
(ν̃l) 〈t〉 @ l1 : l2 : this means that in N there is a tuple 〈t〉 located at l1 and a connection {l1 ↔ l2}; the tuple is

available for processes located at l2 (see (LTS-TUPLE), (LTS-OFFER) and (LTS-LINK)). Moreover, names
l̃ occur restricted in N (see (LTS-OPEN)).

l1 : F l2 : this means that in N there is a process located at l1 willing to send a component at l2 (see (LTS-OUT)
and (LTS-EVAL)). For the sending to take place, a direct connection between such nodes is needed (see
(LTS-SEND)).

l1 : t G l2 : this means that in N there is a process located at l1 willing to retrieve a tuple 〈t〉 from l2 (see (LTS-IN)
and (LTS-READ)). For the actual retrieval, a direct connection between such nodes and tuple 〈t〉 at l2 are
needed (see (LTS-COMM)).

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 193

Table 4
A labelled transition system

(LTS-NEW) (LTS-LINK)

l :: new(l ′).P
τ

−→ (νl ′)(l :: P ‖ {l ↔ l ′}) {l1 ↔ l2}
l1 y l2
−−−−→ l1 :: nil ‖ l2 :: nil

(LTS-EVAL) (LTS-TUPLE)

l1 :: eval(Q)@l2.P
l1: F l2
−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: Q l1 :: 〈t〉

〈t〉 @ l1 : l1
−−−−−−−−→ l1 :: nil

(LTS-IN) (LTS-OFFER)

match(E[[T]]; t) = σ

l1 :: in(T)@l2.P
l1: t G l2
−−−−−→ l1 :: Pσ ‖ {l1 ↔ l2}

N1
〈t〉 @ l2 : l2

−−−−−−−−→ N ′
1 N2

l2 y l1
−−−−→ N ′

2

N1 ‖ N2
〈t〉 @ l2 : l1

−−−−−−−−→ N ′
1 ‖ N ′

2

(LTS-READ) (LTS-RES)

match(E[[T]]; t) = σ

l1 :: read(T)@l2.P
l1: t G l2
−−−−−→ l1 :: Pσ ‖ {l1 ↔ l2} ‖ l2 :: 〈t〉

N
α
−→ N ′ l 6∈ n(α)

(νl)N
α
−→ (νl)N ′

(LTS-OUT) (LTS-SEND)

t ′ = E[[t]]

l1 :: out(t)@l2.P
l1: F l2
−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈t ′〉

N1
l1: F l2
−−−−→ N ′

1 N2
l1 y l2
−−−−→ N ′

2

N1 ‖ N2
τ

−→ N ′
1 ‖ N ′

2

(LTS-OPEN) (LTS-PAR)

N
(ν̃l) 〈t〉 @ l2 : l1
−−−−−−−−−−→ N ′ l ∈ fn(t) − {̃l, l1, l2}

(νl)N
(νl ,̃l) 〈t〉 @ l2 : l1
−−−−−−−−−−−→ N ′

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-COMM) (LTS-STRUCT)

N1
l1: t G l2
−−−−−→ N ′

1 N2
〈t〉 @ l2 : l1

−−−−−−−−→ N ′
2

N1 ‖ N2
τ

−→ N ′
1 ‖ N ′

2

N ≡ N1 N1
α
−→ N2 N2 ≡ N ′

N
α
−→ N ′

Labels l1 : F l2 and l1 : t G l2 describe ‘intentions’ of processes running in the net. E.g., (LTS-OUT) should be read
as: “process out(t)@l2.P running at l1 is willing to send a component at l2; when such an intention is concretised, l1
will be left with process P , l2 will receive the tuple resulting from the evaluation of t , and the execution context will
provide the needed connection”. Rules (LTS-EVAL), (LTS-IN) and (LTS-READ) should be interpreted similarly.

(LTS-OPEN) signals extrusion of bound names and is used to investigate the capability of processes to export bound
names, rather than to actually extend the scope of bound names which is instead achieved through the structural law
(EXT). Indeed, in (LTS-COMM) labels do not carry any restriction on names, whose scope must have been previously
extended. (LTS-RES), (LTS-PAR) and (LTS-STRUCT) are standard.

It should not be surprising that actions out and eval yield the same label. Of course, the two actions should be
kept distinct for security reasons, because accepting processes for execution is more dangerous than accepting data.
However, in our setting, an external observer has not enough power to notice any difference: in both cases, it can just
observe that a packet is sent. Similar considerations also hold for actions in and read.

The following proposition states that the LTS is ‘correct’ w.r.t. the actual operational semantics of TKLAIM, 7−→.

Proposition 1. N 7−→ M if and only if N
τ

−→ M.

Proof. Both directions can be proved by an easy induction on the shortest inference for the judgement in the
premise. �

194 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

We are now ready to give the key proposition that describes the possible interactions a net N can engage with
another net K , when some names l̃ are restricted.

Proposition 2. (ν̃l)(N ‖ K)
α

−→ N̄ if and only if one of the following conditions holds, possibly exchanging K and
N:

(1) (ν̃l)N
α

−→ (νl̃ ′)N ′ and N̄ ≡ (νl̃ ′)(N ′
‖ K)

(2) N
l1y l2
−−−→ N ′, K

(νl̃ ′) 〈t〉 @ l1 : l1
−−−−−−−−−→ K ′ and N̄ ≡ (νl̃ ′′)(N ′

‖ K ′), for l̃ ′′ = l̃ − fn((νl̃ ′)t)

(3) N
l1: F l2
−−−−→ N ′, K

l1y l2
−−−→ K ′, N̄ ≡ (ν̃l)(N ′

‖ K ′) and α = τ

(4) N
l2: t G l1
−−−−→ N ′, K

(νl̃ ′) 〈t〉 @ l1 : l2
−−−−−−−−−→ K ′, N̄ ≡ (ν̃l, l̃ ′)(N ′

‖ K ′) and α = τ

(5) N
l1y l2
−−−→

l2: t G l1
−−−−→ N ′, K

(νl̃ ′) 〈t〉 @ l1 : l1
−−−−−−−−−→ K ′, N̄ ≡ (ν̃l, l̃ ′)(N ′

‖ K ′) and α = τ

(6) N
(νl̃ ′) 〈t〉 @ l1 : l1
−−−−−−−−−→

l2: t G l1
−−−−→ N ′, K

l1y l2
−−−→ K ′, N̄ ≡ (ν̃l, l̃ ′)(N ′

‖ K ′) and α = τ .

Proof. The ‘only if’ part holds by definition of the LTS; the ‘if’ part follows by induction over the shortest inference
for (ν̃l)(N ‖ K)

α
−→ N̄ . �

To conclude, we present a few equational laws that will simplify the proofs of the case-studies considered in
this paper. The first three laws state a ‘confluence’ property for actions out, eval and new; the last law states that a
restricted node hosting no processes is useless even if it is connected to a non-restricted node. We shall fully prove
the first equivalence only; the other ones, like all the equivalences that will be found in the following, can be proved
similarly.

Proposition 3.

(1) l :: out(t)@l ′.P ‖ {l ↔ l ′} ' l :: P ‖ {l ↔ l ′} ‖ l ′ :: 〈t ′〉 where t ′ = E[[t]]

(2) l :: eval(Q)@l ′.P ‖ {l ↔ l ′} ' l :: P ‖ {l ↔ l ′} ‖ l ′ :: Q
(3) l :: new(l ′).P ' (νl ′)(l :: P ‖ {l ↔ l ′})
(4) (νl)(l :: C ‖ {l ↔ l ′}) ' l ′ :: nil whenever C is a tuple, the stuck process nil or the parallel composition of

such components.

Proof. Let Nlhs and Nrhs denote the left hand side and the right hand side of the first equality; we have to prove that,
for every O , Nlhs MAY O if and only if Nrhs MAY O . The ‘if’ part is trivial, since Nlhs can reduce to Nrhs in one step.
For the converse, we know that Nlhs MAY O , i.e. Nlhs ‖ O , (νl̃0)(N0 ‖ O0) 7−→ · · · 7−→ (νl̃i)(Ni ‖ Oi), where Oi
is the first observer in {O0, O1, . . .} that reports success. The proof is by induction on i . The base step is trivial. For the
inductive step, let us consider the possible interactions among N0 and O0 that yielded the first reduction; according
to Proposition 2, we have six possibilities (the first two ones correspond to Proposition 2(1) and its symmetric; the
third one corresponds to Proposition 2(3); the last two ones correspond to the symmetric of Proposition 2(3)). In
all the cases, l̃0 = l̃1 = ∅.

(1) N0
τ

−→ N1 and O1 ≡ O0: in this case, the only possible τ -action of N0 leads it to Nrhs; thus, N1 ≡ Nrhs and
Nrhs ‖ O 7−→ · · · 7−→ (νl̃i)(Ni ‖ Oi), i.e. Nrhs MAY O .

(2) O0
τ

−→ O1 and N1 ≡ N0: this case is simple since, by induction, Nlhs MAY O1 implies that Nrhs MAY O1; hence,
Nrhs MAY O .

(3) N0
l: F l ′
−−−→ N1 and O0

ly l ′
−−→ O1: by definition of the LTS, it must be that l :: out(t)@l ′.P

l: F l ′
−−−→ Nrhs,

N1 ≡ Nrhs ‖ {l ↔ l ′} and O0 ≡ O1 ‖ {l ↔ l ′}; thus, N1 ‖ O1 ≡ Nrhs ‖ O and we easily conclude like
in case (1).

(4) O0
l: F l ′
−−−→ O1 and N0

ly l ′
−−→ N1: similarly to case (3), O1 ≡ O ′

1 ‖ {l ↔ l ′} and N0 ≡ N1 ‖ {l ↔ l ′};
thus, N1 ‖ O1 ≡ Nlhs ‖ O ′

1 that, by induction, yields Nrhs MAY O ′

1. The thesis follows by noting that
Nrhs MAY O 7−→ Nrhs MAY O ′

1.

(5) O0
l ′′: F l ′′
−−−−→ O1 and N0

l ′′y l ′′
−−−→ N1, for l ′′ ∈ {l, l ′}: by definition of the LTS, l ′′ is a node address in O; thus, by law

(SELF), O0 7−→ O1 and we can conclude like in case (2). �

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 195

3. Implementing distant communications: A routing messenger

As we have already mentioned in Section 2.2, in our setting a process at l can perform action out(t)@l ′ only if l
and l ′ are directly connected. We can however define a protocol to deliver t from l to l ′ under the assumption that there
exists a path of links from l to l ′ in the connection graph. Remote access/retrieval of tuples and spawning of processes
can be dealt with similarly.

To determine a path connecting any pair of nodes, we exploit routing tables. These sort of distributed data
structures store information on routing paths; they are usually built at the outset by routing algorithms that, during net
evolution, take care of maintaining consistency of stored information. In our basic setting links never change during
the computation, thus routing tables do not change over time. To implement single entries of routing tables, we use
tuples of the form 〈“route”, l, l ′〉. More precisely, we assume that, for each pair of (possibly indirectly) connected
localities l1 and l2, there is a (permanent) tuple 〈“route”, l2, l3〉 at l1 storing the directly connected node l3 to visit next
for reaching l2.

For the sake of readability, we shall use a conditional statement to select one of two processes for execution. In
TKLAIM, it is defined as follows:

if l1 = l2 then P else Q , new(l).out(l1 = l2)@l.(in(tt)@l.P | in(ff)@l.Q)

where tt and ff stand for the boolean values true and false, and ‘=’ stands for the equality test for locality names. It
is easy to prove that P can evolve if and only if l1 = l2, and Q can evolve if and only if l1 6= l2.

Proposition 4.

(1) l ′ :: if l = l then P else Q ' l ′ :: P
(2) l ′ :: if l1 = l2 then P else Q ' l ′ :: Q, whenever l1 6= l2.

Proof. We just examine the first claim; the second one is very similar. By Proposition 3(3) and 3(1), we have that l ′ ::

if l = l then P else Q is may testing equivalent to (νl ′′)(l ′ :: in(tt)@l ′′.P | in(ff)@l ′′.Q ‖ {l ′ ↔ l ′′} ‖ l ′′ :: 〈tt〉),
as E[[l = l]] , tt. It is now easy to prove that the latter net satisfies exactly the same observers as l ′ :: P: indeed,
the former can only reduce to l ′ :: P and, before doing this, it can only offer label l ′ y l ′ in any interaction with an
observer. �

We are now ready to describe the mobile process delivering tuple t from l to l ′ as Delivert (l, l ′), where

Delivert (u, v)
def
= read(“route”, v, !w)@u.if w = v then out(t)@v else eval(Delivert (w, v))@w

The process gets the address of the next node to visit for reaching v and binds it to w; if the obtained address is v

itself, then the current node u is directly connected to v and action out(t)@v is performed; otherwise, the process
migrates to node w and iterates its behaviour.

To prove that execution of process Delivert (l, l ′) does indeed place the result of evaluating tuple t at l ′, we only
consider observers that do not interfere with information stored in routing tables. Thus, let Or t be the set of observers
that do not provide/emit/remove tuples of the form 〈“route”, ·, ·〉. Now, correctness of Delivert (l, l ′) can be formalised
as follows.

Let l and l ′ be addresses of nodes in N , f be a fresh name (i.e., a name occurring nowhere else) and t ′ = E[[t]]. If
l is connected to l ′ in N , then

N ‖ l :: Delivert (l, l ′) '
Or t N ‖ l ′ :: 〈t ′〉 (1)

N ‖ l :: Deliverf(l, l ′) 6'
Or t N (2)

N ‖ l :: Deliverf(l, l ′) 6'
Or t N ‖ l ′ :: 〈t ′′〉 for t ′′ 6= f (3)

otherwise

N ‖ l :: Delivert (l, l ′) '
Or t N (4)

N ‖ l :: Deliverf(l, l ′) 6'
Or t N ‖ l ′ :: 〈f〉 (5)

The first three equations state that, if the target node is reachable from the source one, process Deliver properly
forwards the tuple to its destination. Indeed, Eq. (1) states that Deliver may emit t ′ at l ′; Eq. (2) states that Deliver

196 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

cannot avoid emitting a tuple at l ′; and Eq. (3) states that the emitted tuple must be the tuple carried by Deliver. If
source and target nodes are not (indirectly) connected, Eq. (4) states that the activity of Deliver is essentially the same
as doing nothing, while Eq. (5) states that Deliver cannot emit the carried tuple at l ′. Notice that, in Eqs. (2)/(3)/(5),
freshness of f ensures that N cannot produce it; hence, the presence/absence of a tuple 〈f〉 faithfully mirrors the
activity of Deliver.

Validity of negative requirements can be easily established by providing a proper observer that distinguishes the
two nets. For Eqs. (2), (3) and (5) we consider

O
def
= {test ↔ l ′} ‖ test :: in(f)@l ′.out()@test

In Eqs. (2) and (3), it holds that N ‖ l :: Deliverf(l, l ′) MAY O while, because of freshness of f, we have
N NOTMAY O and N ‖ l ′ :: 〈t ′′〉 NOTMAY O . Similarly, in Eq. (5), we have that N ‖ l ′ :: 〈f〉 MAY O but
N ‖ l :: Deliverf(l, l ′) NOTMAY O .

To prove validity of Eqs. (1) and (4), we first give a proposition that regulates the handling of routing information
stored in the net of our example.

Proposition 5.

(1) l :: read(“route”, l ′, !u)@l.P '
Or t l :: nil

(2) l :: 〈“route”, l ′, l ′′〉 | read(“route”, l ′, !u)@l.P '
Or t l :: 〈“route”, l ′, l ′′〉 | P[l

′′
/u].

Proof. The proof proceeds like the proof of Proposition 3(1). The only thing to notice is that, by interacting with
the observers of the set Or t , l :: read(“route”, l ′, !x)@l.P can only exhibit labels of the form l y l; similarly,
l :: 〈“route”, l ′, l ′′〉 | read(“route”, l ′, !u)@l.P can either exhibit labels of the form l y l or perform a τ -step to
become l :: 〈“route”, l ′, l ′′〉 | P[l

′′
/u]. �

Now, let us consider Eq. (1); we know that, if l and l ′ are connected, there is a path l , l0 → l1 → · · · → ln , l ′

(for n ≥ 0) in the connection graph underlying N , that is faithfully reflected by the routing tables within N . We work
by induction on n.

Base case (n = 0): In this case, l = l ′ and hence

N ‖ l :: Delivert (l, l)
'
Or t N ‖ l :: if l = l then out(t)@l else eval(Delivert (l, l))@l

' N ‖ l :: 〈t ′〉

The first equality is proved by using Proposition 5(2), as in the routing table at l there is the entry
〈“route”, l, l〉; the second equality relies on Propositions 4(1) and 3(1).

Inductive case (n > 0): Let l , l0 → l1 → · · · → ln , l ′. Thus

N ‖ l :: Delivert (l, l ′)

'
Or t N ‖ l :: if l1 = l ′ then out(t)@l ′ else eval(Delivert (l1, l ′))@l1

'

{
N ‖ l :: 〈t〉 if l1 = l ′

N ‖ l1 :: Delivert (l1, l ′) otherwise

'
Or t N ‖ l :: 〈t ′〉

The first and the second equalities when l1 = l ′ are proved like in the base case. The second equality
when l1 6= l ′ is proved by using Propositions 4(2) and 3(2). The third equality follows by a straightforward
induction and by reflexivity of '.

We are left with Eq. (4). The fact that l and l ′ are not connected means that in the routing table of l there is no
tuple of the form 〈“route”, l ′, ·〉 and, of course, such a tuple will never appear. Thus, Eq. (4) follows by virtue of
Proposition 5(1).

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 197

4. Modelling failures

We now enrich the basic framework with a mechanism for modelling different forms of failures. We start by
modelling failure of nodes and node components, and use the new setting to prove some properties of a distributed
fault-tolerant protocol. Then, we take into account failures of connections too.

4.1. Failure of nodes and node components

Failures of nodes and components can be modelled by adding to the reduction relation of Table 3 the rule

(R-FAILN) l :: C 7−→ 0

This rule models loss of tuples if C , 〈t1〉| . . . |〈tn〉, node fail-silent failure if l :: C collects all the clones of l, and
abnormal termination of some processes running at l otherwise. Modelling failures as disappearance of a resource (a
tuple, a process or a whole node) is a simple, but realistic, way of representing failures. Indeed, while the presence
of tuples/nodes can be ascertained, their absence cannot because there is no practical upper bound to communication
delays. This is true in distributed environments [16], but it is especially true in global computing scenarios [7], where
failures cannot be distinguished from long delays and should be modelled as totally asynchronous and undetectable
events.

Having modified the operational semantics as we have just discussed, the theory of may testing can be
straightforwardly adapted; to avoid ambiguities, we shall denote with v f and ' f the may testing preorder and
equivalence arising in this new framework. Moreover, also the LTS of Section 2.3 can be easily adapted to this
framework; indeed, it suffices to add a rule

(LTS-FAILN) l :: C
τ

−→ 0

to those in Table 4.

A distributed fault-tolerant protocol: k-set agreement [10]. Let us consider a totally-connected distributed
system with n principals relying on an asynchronous message-passing communication paradigm. The communication
medium is reliable, i.e. all sent messages are received, but, due to asynchrony, the reception order is unpredictable.
Each principal has an input value (taken from a totally ordered set) and must produce an ‘agreed’ output value.
Principals can fail according to a fail-silent model of failures.

The original agreement problem requires to find a protocol that satisfies three properties: agreement (i.e. the
non-faulty principals produce the same output value), validity (i.e. the output value is one of the input values) and
termination (i.e. the non-faulty principals eventually produce an output). It is well-known [16] that a solution for this
problem does not exist even in the presence of a single failure.

The k-set agreement problem relaxes the agreement property to guarantee existence of a solution. Indeed, for each
k ∈ {1, ..., n}, it requires that, assuming at most k −1 faulty principals, the non-failed principals successfully complete
their execution and produce a set of outputs whose size is at most k. Notice that for k = 1, the problem reduces to the
agreement problem without failures.

A possible solution for the k-set agreement problem is given in [10] by letting each principal execute the following
protocol:

(i) send your input value to all principals (including yourself)
(ii) wait to receive n − k + 1 values

(iii) output the minimum value received.

In this way, if we call IN the set of the input values, the set of output values OUT is formed by the k smallest values
in IN.

In our TKLAIM implementation of this protocol, we use integers as input/output values, while principals are
represented as distinct nodes, whose addresses form the set l̃ , { l1, . . . , ln}; l is a distinct locality used to collect
output values. Moreover, we use di ∈ IN to denote the input value of the principal associated to the node whose
address is li . Given k, the process at li is

Pk
i

def
= out(di)@l1.out(di)@ln .

in(!zi
1)@liin(!zi

n−k+1)@li .out(mi)@l where mi , min{zi
1, . . . , zi

n−k+1}

198 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

The net implementing the whole protocol is

N k
n , (ν̃l)

(
n∏

i=1

li :: Pk
i ‖ Nc

)
where Nc ,

1...n∏
i 6= j

{li ↔ l j } ‖

n∏
i=1

{li ↔ l}

We restricted the localities associated to the principals because no external context is allowed to interfere with the
execution of the protocol.

Validity and k-set agreement. These two properties can be proved at once by establishing the following equality:

N k
n ' f Mk

n (6)

There, we exploit the auxiliary net

Mk
n , (ν̃l)

(
n∏

i=1

li :: Qk
i ‖ Nc

)
where

Qk
i

def
= out(di)@l1. · · · .out(di)@ln .in(!zi

1)@li . · · · .in(!zi
n−k+1)@li .if mi ∈ OUT then out(mi)@l else nil

Here, we have generalised the if-then-else statement presented in Section 3 to check whether a value V belongs to a
given set of values S. Indeed, if S is {V1, . . . , Vk}, this check can be implemented as follows:

if V ∈ S then P else Q , new(l).out(V = V1 ∨ · · · ∨ V = Vk)@l.(in(tt)@l.P | in(ff)@l.Q)

Intuitively, Qk
i performs the final output only if the value produced by the principal i is in OUT . The net Mk

n obviously
satisfies the wanted properties, since its principals output only values in OUT . The fact that |OUT| = k implies the
k-set agreement property, while the fact that OUT ⊆ IN implies the validity property. By following the intuition
behind Eq. (3) in Section 3, we can also easily express the fact that N k

n can only produce data of OUT at l: it is enough
to replace OUT with IN − OUT in Qk

i and prove that the resulting net is not equivalent to N k
n .

By Proposition 3(1), that also holds in the framework with failures, we have that N k
n ' f H and Mk

n ' f K , where

H , (ν̃l)

(
n∏

i=1

li :: in(!zi
1)@li . · · · .in(!zi

n−k+1)@li .out(mi)@l | 〈d1〉 | . . . | 〈dn〉 ‖ Nc

)

K , (ν̃l)

(
n∏

i=1

li :: in(!zi
1)@li . · · · .in(!zi

n−k+1)@li .

if mi ∈ OUT then out(mi)@l else nil | 〈d1〉 | . . . | 〈dn〉 ‖ Nc

)
We now prove that H ' f K . Since K is obtained from H by adding the test mi ∈ OUT before the last action, it holds
that K v f H . To prove the converse, observe that the only actions of H that in principle K could not be able to exhibit

are 〈m′

i 〉 @ l : l , where m′

i denotes mi [d̃/̃z], with d̃ , {di1 , . . . , din−k+1} ⊆ {d1, . . . , dn} and z̃ , {z1, . . . , zn−k+1}.
However, as we now prove, K can perform exactly the same actions 〈m′

i 〉 @ l : l as H . Suppose that H offers to an
observer O the datum 〈m′

i 〉 at l; then, principal i in H has collected n − k + 1 values from {d1, . . . , dn} and has output
the minimum among them. Since |OUT| = k, we have that m′

i ∈ OUT; thus, by letting K select the same tuples, we
have that also principal i in K can output m′

i at l. This suffices to conclude H v f K and proves Eq. (6).

Termination. In order to prove the termination property, it suffices to prove that

l ::

n−k+1∏
j=1

〈〉 v f N̂ k
n (7)

N̂ k
n 6v f l ::

n−k∏
j=1

〈〉 (8)

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 199

where N̂ k
n , (ν̃l)(

∏n
i=1 li :: P̂k

i ‖ Nc) and process P̂k
i is defined like Pk

i but with action out()@l in place of
out(mi)@l. Clearly, if we only consider termination, N k

n and N̂ k
n are ‘equivalent’, in the sense that a non-faulty

principal produces an output value in the first net if and only if its counterpart produces an output in the second net.
Thus, Eqs. (7) and (8) imply termination of the protocol, since they require that at least n − k + 1 tuples are produced
at l; by definition of the protocol, this is possible only if at least n − k + 1 principals terminate successfully.

To prove Eq. (8), one can use the observer

n−k+1

O
def
= {test ↔ l} ‖ test ::

︷ ︸︸ ︷
in()@l. · · · .in()@l .out()@test.

To prove Eq. (7), we need two new laws, collected in the following proposition. By the way, notice that the same laws
would also hold for v and ' .

Proposition 6.

(1) If n ≤ m, then l :: 〈t1〉| . . . |〈tn〉 v f l :: 〈t1〉| . . . |〈tm〉.
(2) If x 6∈ fn(P), then, for every n > 0 and i ∈ {1, . . . , n}, it holds that

(νl)

(
l :: in(!x)@l.P | 〈V1〉 | . . . | 〈Vn〉 ‖

∏
k

{l ↔ lk}

)
' f (νl)

(
l :: P |

1...n∏
j 6=i

〈V j 〉 ‖

∏
k

{l ↔ lk}

)
Now,

N̂ k
n ' f (ν̃l)

(
n∏

i=1

li :: in(!zi
1)@liin(!zi

n−k+1)@li .out()@l | 〈d1〉 | . . . | 〈dn〉 ‖ Nc

)

' f (ν̃l)

(
n∏

i=1

li :: out()@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ Nc

)
' f l ::

n∏
j=1

〈〉

w f l ::

n−k+1∏
j=1

〈〉

The first two steps are derived by using Propositions 3(1) and 6(2); the third step is derived by using Propositions
3(1) and 3(4) (notice that also the latter one still holds in the framework with failures); the fourth step derives from
Proposition 6(1).

4.2. Failure of inter-node connections

Our model of failures can be easily tailored to also deal with failures of connections. To this aim, we add the
reduction rule

(R-FAILC) {l1 ↔ l2} 7−→ 0

to those of Table 3. The new rule models the (asynchronous and undetectable) failure of the connection between nodes
l1 and l2. Correspondingly, we add a rule

(LTS-FAILC) {l1 ↔ l2}
τ

−→ 0

to those of Table 4. We still let v f denote the may testing preorder in this new framework.

Discovering neighbours. In the example of Section 3 we assumed unchangeable connections; however, when the
(multi)set of connections in a net can change during computations, routing tables must be dynamically updated,
because the original topology can change at runtime. This task is usually carried out by so-called adaptive (or dynamic)
routing algorithms. Several proposals have been presented in the literature and different standards adopt different
solutions. However, all adaptive routing algorithms are executed at regular time intervals and consist of two main

200 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

phases: first, each node discovers its neighbours; then, it calculates its routing table by sharing local information with
its neighbours. We present here a simple implementation of the first phase; the (more challenging) implementation of
the second phase is left for future work.

Existence of connection {l ↔ l ′} can be tested by l through execution of action eval(nil)@l ′ which corresponds to
sending a sort of ‘ping’ message to l ′. If the action succeeds, then a connection between l and l ′ does exist; otherwise,
nothing can be said (e.g., the message could get lost or the connection could be congested and this caused a delay to
the message).

Soundness of the solution outlined above follows by proving that

l :: eval(nil)@l ′.out(“conn”, l, l ′)@l v f {l ↔ l ′} ‖ l :: 〈“conn”, l, l ′〉 (9)

Indeed, if the left hand side of (9) successfully passes the test of an observer looking for a tuple 〈“conn”, l, l ′〉
at l, the connection {l ↔ l ′} must exist. By working like in Proposition 3(2), we can prove that l ::

eval(nil)@l ′.out(“conn”, l, l ′)@l v f {l ↔ l ′} ‖ l :: out(“conn”, l, l ′)@l that, by Proposition 3(1), implies (9).

5. Modelling dynamic connections

Finally, we present ‘full’ TKLAIM, i.e. we extend the basic language of Section 2 with dynamically modifiable
connections. To this aim, we add specific actions for asking activation, for acceptance and for deactivation of a
connection. Formally, we modify the BNF rules for actions of Table 1 as follows:

a ::= . . . | conn(`) | acpt(`) | acpt(!u) | disc(`)

Intuitively, when executed at l, action conn(l ′) asks for activation of a connection between l and l ′. When executed
at l ′, action acpt(l) authorises the activation of a connection between l ′ and l, while action acpt(!u) authorises the
activation of a connection between l ′ and any network node asking for such an activation. Finally, action disc(l ′),
when executed at node l, deactivates a connection between l and l ′, if such a connection exists. Thus, activation
of a connection requires mutual agreement; this resembles the handshake of capabilities and co-capabilities in Safe
Ambients [23] needed to authorise movements. On the contrary, connection deactivations can be asynchronously
decided by any of the involved nodes.

These intuitions are formalised by the following operational rules, that are added to those in Table 3:

(R-CONN1) l :: conn(l ′).P ‖ l ′ :: acpt(l).Q 7−→ l :: P ‖ {l ↔ l ′} ‖ l ′ :: Q
(R-CONN2) l :: conn(l ′).P ‖ l ′ :: acpt(!u).Q 7−→ l :: P ‖ {l ↔ l ′} ‖ l ′ :: Q[l/u]

(R-DISC) l :: disc(l ′).P ‖ {l ↔ l ′} 7−→ l :: P ‖ l ′ :: nil

Notice that action acpt(!u) is a binder for u in the continuation. We believe that both forms of acpt are useful in
practice. On the one hand, acpt(!u) can be exploited by a server willing to accept connection requests from any,
initially unknown, client. On the other hand, acpt(l) should be used if a process is ready to activate connections
only with a specific partner. Indeed, accepting connection requests from any process through acpt(!x) and then, after
checking the partner identity, disconnecting the unwanted partners through disc, could expose a node to security risks
because the sequence of actions is not guaranteed to be performed atomically. It is worth noticing that the form of
client–server interaction enabled by acpt(!u) could not be flexibly implemented by resorting to a shared tuple space
storing connection requests, because a connection between the node hosting the tuple space and that of a potential
client should be already in place for the client be able to put its request.

The fact that acpt(l) cannot be simulated via an acpt(!x) and a possible disc(x) is also stressed by the following
disequality:

l :: acpt(l ′) 6'd l :: A with A
def
= acpt(!x).if x = l ′ then nil else disc(x).A

where 'd denotes the may testing equivalence in the language with dynamic connections. One observer that can be
used to distinguish l :: acpt(l ′) and l :: A is

O
def
= test :: conn(l).out()@test

Indeed, l :: A MAY O , while l :: acpt(l ′) NOTMAY O .

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 201

To properly adapt the LTS of Section 2.3 to the framework with modifiable connections, we add three new labels,
corresponding to the new primitives of the language:

α ::= . . . | l1 : ?l2 | l1 : !l2 | l1 : ¬ l2

These new labels are exploited by the following rules, that are added to those in Table 4:

(LTS-CONN) (LTS-ACC1)

l1 :: conn(l2).P
l1 : ?l2

−−−−→ l1 :: P ‖ {l1 ↔ l2} l1 :: acpt(!x).P
l1 : !l2

−−−→ l1 :: P[l2/x]

(LTS-ACC2) (LTS-DISC)

l1 :: acpt(l2).P
l1 : !l2

−−−→ l1 :: P l1 :: disc(l2).P
l1 : ¬ l2

−−−−→ l1 :: P

(LTS-EST)

N1
l1 : ?l2

−−−−→ N ′

1 N2
l2 : !l1

−−−→ N ′

2

N1 ‖ N2
τ

−→ N ′

1 ‖ N ′

2

(LTS-REM)

N1
l1 : ¬ l2

−−−−→ N ′

1 N2
l1y l2
−−−→ N ′

2

N1 ‖ N2
τ

−→ N ′

1 ‖ N ′

2

Let us now explain the intuition behind the new labels and rules. Suppose that N
α

−→ N ′. If α = l1 : ?l2 , then
this means that in N there is a process located at l1 willing to activate a connection with l2 (see (LTS-CONN)); for
the actual activation, the net must also contain a node with address l2 accepting such a request (see (LTS-EST)). Vice
versa, if α = l1 : !l2 , then this means that in N there is a process located at l1 willing to accept a request of connection
with l2 (see (LTS-ACC1) and (LTS-ACC2)); for the actual activation, the net must contain a node with address l1 that
requires such a connection (see (LTS-EST)). Finally, if α = l1 : ¬ l2 , then this means that in N there is a process
located at l1 willing to deactivate a connection with l2 (see (LTS-DISC)); for the actual deactivation, the net must
contain the connection {l1 ↔ l2} (see (LTS-REM)).

In this new framework with modifiable connections, Proposition 2 must be adapted to also include the following
two possibilities:

(7) N
l1 : ¬ l2

−−−−→ N ′, K
l1y l2
−−−→ K ′, N̄ ≡ (ν̃l)(N ′

‖ K ′) and α = τ

(8) N
l1 : ?l2

−−−−→ N ′, K
l2 : !l1

−−−→ K ′, N̄ ≡ (ν̃l)(N ′
‖ K ′) and α = τ

Message delivery in a dynamic net. We illustrate now an application of our theory to a simplified scenario inspired
by the handover protocol, proposed by the European Telecommunication Standards Institute for the GSM Public Land
Mobile Network (PLMN). A formalisation of the protocol and its service specification can be found in [25].

The PLMN is a cellular system which consists of Mobile Stations (MSs), Base Stations (BSs) and Mobile Switching
Centres (MSCs). MSs are mobile devices that provide services to end users. BSs manage the interface between the
MSs and a stationary net; they control the communications within a geographical area (a cell). Any MSC handles a
set of BSs; it communicates with them and with other MSCs using a stationary net.

A new user can enter the system by connecting its MS with a MSC that, in turn, will decide the proper BS
responsible for such a MS. Then, messages sent from the user are routed to their destinations by the BS, passing
through the MSC handling the BS. It may happen that the BS responsible for a MS must be changed during the
computation (e.g., because the MS left the area associated to the BS and entered the area associated to a different BS);
this process is called ‘handover’. In this case, the MSC should carry out the rearrangements needed to cope with the
new situation, without affecting the end-to-end communication.

We model the key features of a PLMN in TKLAIM; however, for the sake of simplicity, several aspects will be
omitted, such as the criterion used to choose a proper BS for a given MS or the event leading to a handover. Both
MSs, BSs and MSCs are modelled as nodes. For the sake of simplicity, we consider a very simple PLMN, with one
MSC (whose address is M) and two BSs (whose addresses are B1 and B2). Moreover, we use a private repository at
address Table used by M to store temporary information.

The process that handles the connection requests at M is

Enter
def
= acpt(!u).(Enter | read(!v)@Table.eval(conn(u))@v.disc(u).out(u, v)@Table)

202 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

When a new user wants to join the PLMN, it has to perform a conn(M) from its MS, with address, say, l1. In actual
situations, this address, together with other information (like the geographical area of the user or its credentials), are
used by the MSC to choose a proper BS; in our simplified scenario, however, we let M pick out a BS’s address from
Table. Then, the MSC activates a new connection from the chosen BS to the MS and deactivates the connection from
itself to the MS. Finally, it records in Table the fact that the MS is under the control of the chosen BS.

Having entered the PLMN, the new user can send some message m to (the MS of) a remote user with address, say,
l2; this is achieved by letting the MS with address l1 perform an action of the form out(‘send’, l2, m)@l1. Then, the
BSs controlling the MSs at l1 and l2 take care of delivering the message. In particular, let Bi be (the address of) the BS
associated to l1 and B j be (the address of) the BS associated to l2 (for i, j ∈ {1, 2}). Then, the message is forwarded
from Bi to B j by the process

Fwdi
def
= read(!u, Bi)@Table.(Fwdi | in(‘send’, !v, !x)@u.in(v, !v′)@Table.out(v, x)@v′)

which is located at Bi . This process first retrieves the address l1 of the MS associated to Bi ; then, it collects the message
at l1 and forwards it to B j , i.e. the BS associated to the receiver MS at l2. Notice that, in doing this, Fwdi ‘locks’ the
connection between l2 and B j (by withdrawing tuple 〈l2, B j 〉 from Table) until the message can be delivered to l2;
this is necessary to avoid a handover interfering with the delivery of the message. The message is collected by B j and
delivered to l2 through the process

Clt j
def
= in(!v, !x)@B j .(Clt j | out(x)@v.out(v, B j)@Table)

which is located at B j . This process retrieves the message sent by Bi and passes it to the receiver MS; then, it releases
the ‘lock’ acquired by Bi on the connection {B j ↔ l2} by putting back in Table the tuple 〈l2, B j 〉. Of course, there
are also processes Fwd j and Clti running at B j and Bi respectively, but they do not play any rôle in the delivery of
message m from l1 to l2.

The handover is handled by the MSC through the following process:

Hndvr
def
= in(!u, !v)@Table.(Hndvr | read(!v′)@Table.

eval(disc(u))@v.eval(conn(u))@v′.out(u, v′)@Table)

This process first selects a MS-to-BS association to be changed (as we said before, we do not model the reason why
this is needed); then, it chooses a new BS, properly changes the connections between the MS and the BSs, and updates
the repository at Table.

Therefore, the overall system is

SYS , (νTable, B1, B2)(M :: Enter | Hndvr ‖ Table :: 〈B1〉 | 〈B2〉

‖ B1 :: Fwd1 | Clt1 ‖ B2 :: Fwd2 | Clt2
‖ {M ↔ Table} ‖ {M ↔ B1} ‖ {M ↔ B2}

‖ {Table ↔ B2} ‖ {Table ↔ B1} ‖ {B1 ↔ B2})

Its soundness can be formulated as:

(νl1, l2)(SYS ‖ l1 :: conn(M).out(‘send’, l2, ‘HI’)@l1
‖ l2 :: conn(M).in(‘HI’)@l2.out()@rcvd ‖ {l2 ↔ rcvd})

'd SYS ‖ rcvd :: 〈〉

(10)

This law states that the message from l1 to l2 is dispatched by the PLMN in any execution context. We want to remark
that l1 and l2 have been restricted only to simplify proofs: the soundness of the protocol is not affected by the fact that
the MSs are not public. By following the intuition behind Eq. (2) in Section 3, we can also express the fact that the
system must produce a datum at rcvd; we leave this task to the reader.

To prove Eq. (10), notice that the only visible actions that both sides of Eq. (10) can perform are: M y M,
rcvd y rcvd, 〈〉 @ rcvd : rcvd and M : !l , for l 6∈ {Table, B1, B2, l1, l2}. Moreover, only the third one can be
executed at most once; the remaining ones can be executed an unbounded number of times. By relying on inductive
arguments and on the modified version of Proposition 2, this suffices to conclude the proof.

R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204 203

6. Conclusions and related work

We have experimented with TKLAIM, a process description language obtained by enriching KLAIM with explicit
inter-node connections. We have first presented a basic setting where connections are reliable and immutable; then, we
have enriched the basic framework with failures of nodes and connections, and with dynamic activation/deactivation
of connections. In each setting, we have used our formalisms to specify and verify some non-trivial global
computing applications. We have used the may-testing preorder and equivalence to carry out proofs. Given the
direct correspondence of TKLAIM with X-KLAIM, we believe that the study at the level of the process description
language can be faithfully transposed to guarantee correctness of programs running on actual global computational
infrastructures.

The equivalence we have introduced has allowed us to establish interesting properties of the systems taken into
account. However, as a future work, we plan to define finer equivalences (e.g. bisimulation-based equivalences), that
could guarantee a more stringent correspondence between specifications and implementations. We also plan to enrich
connections with weights that would permit establishing quantitative properties of global computing programs along
the lines of [11] and [14].

The use of behavioural equivalences to prove soundness of protocols is well-established in the field of process
calculi; some notable examples are [1,25,29]. In particular, the handover protocol of the PLMN example has been
first specified in the π -calculus, then verified algebraically [25] and finally verified by means of an automatic tool for
proving π -calculus’ equivalences [29]. It is worth noting that, however, our specification is radically simpler than that
in [25,29]. Indeed, TKLAIM and π -calculus can be seen as formalisms standing at two different levels of abstraction:
TKLAIM is network aware and allows users to directly exploit knowledge of the topology of the net; the π -calculus is
at network level and permits to directly refer network sockets (that can be represented as communication channels).
We can say that TKLAIM clearly enlightens the key features of WANs, such as process distribution, process mobility
and inter-node connections. An encoding of such features in the π -calculus (or in any simpler language) would hide
such features within complex process structures.

The problem of formalising and proving correctness of solutions to distributed consensus problems in the presence
of failures has been tackled with process algebraic techniques also in [20]. In [20], a new process algebra with failure
detectors [9] is introduced and properties of its operational semantics are exploited to carry out the correctness proofs.
The approach followed by the authors is somewhat ‘ad hoc’ and heavier than ours, that instead exploits a (simpler)
equational setting. Moreover, it has to be said that failure detectors are difficult to implement in a global computing
scenario.

We conclude by comparing TKLAIM with other recently proposed formalisms for distributed computing from the
linguistic point of view. The process language most closely related to TKLAIM is DπF [19]. This is a distributed
version of the π -calculus with an explicit representation of the state of the underlying network on which processes
execute. The state of each node and link is affected by the failures that can occur during net evolution; processes
can detect and react to such failures. Differently from TKLAIM, in DπF failures are programmable (via two specific
primitives, kill and break) and detectable (via the primitive ping); we do not consider these assumptions realistic in
a global computing framework. Another notable difference is that in TKLAIM a deactivated connection can be re-
established later on, via the primitives conn/acpt, while this is not possible in DπF . Thus we have that in DπF link
failures are permanent, while in TKLAIM they can also be transient. We may say that TKLAIM’s dynamic connections
are more similar to software connections rather than to physical links; physical links are better modelled by TKLAIM’s
static connections (as presented in Sections 2 and 3) and by DπF ’s links.

NOMADIC PICT [28] is a distributed and agent-based core language inspired by the π -calculus that relies on a net
with flat topology where named agents can roam. Communication between agents can take place only if they are co-
located. However, the language also provides a (high-level) primitive for remote communication, that transparently
delivers a message to an agent not co-located with the sender. This primitive is then encoded by only using the
local communication primitives via a central forwarding server. The assumption that only co-located agents can
communicate is, in our opinion, not natural in a global computing scenario; moreover, it is not clear to us how the
theory can be adapted to consider failures.

In DJoin [18], located mobile processes are hierarchically structured and form a tree-like structure evolving during
the computation. Entire subtrees, not just single processes, can move and fail. Like in DπF , failures are programmable
and can be detected by processes. In our view, these choices make DJoin not a suitable model of global computers; it

204 R. De Nicola et al. / Science of Computer Programming 64 (2007) 187–204

is a more natural candidate for modelling the logical organisation of a distributed system. Similar considerations hold
for the Ambient calculus [8], an elegant notation to model hierarchically structured distributed applications. Moreover,
no explicit notion of failures, close to actual global computing requirements, has been developed for Ambient so far.

Acknowledgements

We would like to thank the anonymous referees for their suggestions that helped in improving the paper.

References

[1] M. Abadi, A. Gordon, Reasoning about cryptographic protocols in the Spi calculus, in: Proc. of CONCUR’97, in: LNCS, vol. 1243, Springer,
1997, pp. 59–73.

[2] R.M. Amadio, I. Castellani, D. Sangiorgi, On bisimulations for the asynchronous π -calculus, Theoretical Computer Science 195 (2) (1998)
291–324.

[3] K. Arnold, E. Freeman, S. Hupfer, JavaSpaces Principles, Patterns and Practice, Addison-Wesley, 1999.
[4] L. Bettini, R. De Nicola, Interactive mobile agents in X-KLAIM, in: SFM-05:Moby, in: LNCS, vol. 3465, Springer, 2005, pp. 29–68.
[5] M. Boreale, R. De Nicola, R. Pugliese, Trace and testing equivalence on asynchronous processes, Information and Computation 172 (2002)

139–164.
[6] M. Boreale, R. De Nicola, R. Pugliese, Basic observables for processes, Information and Computation 149 (1) (1999) 77–98.
[7] L. Cardelli, Abstractions for mobile computation, in: Secure Internet Programming, in: LNCS, vol. 1603, Springer, 1999, pp. 51–94.
[8] L. Cardelli, A. Gordon, Mobile ambients, Theoretical Computer Science 240 (1) (2000) 177–213.
[9] T. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, Journal of the ACM 43 (2) (1996) 225–267.

[10] S. Chaudhuri, More choices allow more faults: Set consensus problems in totally asynchronous systems, Information and Computation 105
(1) (1993) 132–158.

[11] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, E. Tuosto, A process calculus for QoS-Aware applications, in: Proc. of
COORDINATION’05, in: LNCS, vol. 3454, Springer, 2005, pp. 33–48.

[12] R. De Nicola, G. Ferrari, R. Pugliese, KLAIM: A Kernel language for agents interaction and mobility, IEEE Transactions on Software
Engineering 24 (5) (1998) 315–330.

[13] R. De Nicola, D. Gorla, R. Pugliese, On the expressive power of KLAIM-based calculi, in: Proc. of EXPRESS’04, ENTCS 128(2) 117–130.
Extended version to appear in Theoretical Computer Science.

[14] R. De Nicola, D. Latella, M. Massink, Formal modeling and quantitative analysis of KLAIM-based mobile systems, in: Proc. of SAC’05,
ACM, 2005, pp. 428–435.

[15] R. De Nicola, M. Hennessy, Testing equivalence for processes, Theoretical Computer Science 34 (1984) 83–133.
[16] M.J. Fischer, N.A. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty process, Journal of the ACM 32 (2) (1985)

374–382.
[17] D. Ford, T. Lehman, S. McLaughry, P. Wyckoff, T Spaces, IBM Systems Journal (August) (1998) 454–474.
[18] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, D. Rémy, A calculus of mobile agents, in: Proc. of CONCUR’96, in: LNCS, vol. 1119,

Springer, 1996, pp. 406–421.
[19] A. Francalanza, M. Hennessy, A theory of system behaviour in the presence of node and link failures, in: CONCUR’05, in: LNCS, vol. 3653,

pp. 368–382.
[20] R. Fuzzati, M. Merro, U. Nestmann, Modelling consensus in a process calculus, in: Proc. of CONCUR’03, in: LNCS, vol. 2761, Springer,

2003.
[21] D. Gelernter, Generative communication in Linda, ACM Transactions on Programming Languages and Systems 7 (1) (1985) 80–112.
[22] M. Hennessy, J. Riely, Resource access control in systems of mobile agents, Information and Computation 173 (2002) 82–120.
[23] F. Levi, D. Sangiorgi, Controlling interference in ambients, in: Proceedings of POPL’00, ACM, January 2000, pp. 352–364.
[24] A. Omicini, F. Zambonelli, Coordination of mobile information agents in TuCSoN, Internet Research 8 (5) (1998) 400–413.
[25] F. Orava, J. Parrow, An algebraic verification of a mobile network, Formal Aspects of Computing 4 (1992) 497–543.
[26] J. Parrow, An introduction to the pi-calculus, in: Handbook of Process Algebra, Elsevier Science, 2001, pp. 479–543.
[27] G. Picco, A. Murphy, G.-C. Roman, LIME: Linda meets mobility, in: Proc. of the 21st Int. Conference on Software Engineering, ACM, 1999,

pp. 368–377.
[28] A. Unyapoth, P. Sewell, Nomadic Pict: Correct communication infrastructures for mobile computation, in: Proc. of POPL’01, ACM, 2001,

pp. 116–127.
[29] B. Victor, F. Moller, The mobility workbench — a tool for the π -calculus, in: Proc. of CAV’94, in: LNCS, vol. 818, Springer, 1994,

pp. 428–440.

	Global computing in a dynamic network of tuple spaces
	Introduction
	The basic language
	Syntax
	Operational semantics
	Observational semantics

	Implementing distant communications: A routing messenger
	Modelling failures
	Failure of nodes and node components
	Failure of inter-node connections

	Modelling dynamic connections
	Conclusions and related work
	Acknowledgements
	References

