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In the first part of this paper, we characterize graded rings R = earEG R, for which the 

category R-gr is equivalent with a category of modules over a certain ring. 

In the second part, sufficient conditions are given for the following implication to hold: if 

R-gr is equivalent with R,-mod (1 is the unit element of G), then R is a strongly graded ring. 

Introduction 

Let G be a group, with identity element e, R = errEG R, a graded ring of type 

G. Consider the functor R C3.R, -: R,-mod+ R-gr given by M+ R CQR, M where 

ME R,-mod and R @I~, M is a graded left R-module by the grading 

(R @%ze M), = R, Se M. 
Dade’s well-known result [3, Theorem 2.81 states that R is strongly graded iff 

the functor RC3', - is an equivalence between R,-mod and R-gr. 

It is then natureal to ask the following question: 

What happens if R,-mod and R-gr are just categorically 

equivalent? 
(1) 

An easy example (see Example 3.5) shows that in this more general case R is not 

strongly graded, even if the group G is finite (and thus the statement of [2, 

Corollary 2.131 is slightly incorrect). 

On the other hand, if the group G is finite, then Cohen and Montgomery 

proved that R-gr is equivalent to (R # G*)-mod where R # G* is the smash 

product of R with G (see [2, Theorem 2.2; 71). Another proof of this fact can be 

found in [5] where it is shown that R # G* is isomorphic to the ring of graded 

endomorphisms of R U = ecEG R(u) which is clearly a projective and finitely 

* This paper was written while the first author was a member of G.N.S.A.G.A. of C.N.R. and while 
the second author was a visiting professor of the C.N.R. at the university of Ferrara. 
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generated generator of R-gr. Thus another question naturally arises: 

What happens if R-gr is equivalent to A-mod, A a ring? (2) 

The main aim of this paper is to study questions (1) and (2). 

For this purpose we proceed as follows. After recalling in Section 0 some 

definitions and results about modules over graded rings, in Section 1 we state the 

definition of graded equivalence: two graded rings R and S of type G are called 

left graded equivalent if there is an equivalence F: R-gr+ S-gr, G : S-gr-+ R-gr 

such that F and G commute for every (T E G with the cT-suspension functors. This 

definition was set by Gordon and Green in [4] in the particular case when G = Z. 

Anyway, it is easily seen that their main result on graded equivalences [4, 

Theorem 5.41 still holds in this general setting. In particular any graded equival- 

ence between R-gr and S-gr gives rise to a Morita equivalence between R-mod 

and S-mod 

In Section 2 we deal with question (2) above. We call a graded ring R left 

F.G.G. iff there is a ring A and a category equivalence between R-gr and A-mod. 

Theorem 2.2 is the central result on left F.G.G. rings. Among other facts, it is 

proved that a graded ring R = errEG R, of type G is left F.G.G. iff R-gr has a 

finitely generated generator iff R is left graded equivalent to a strongly graded ring 

S iff there is a finite subset F of G such that for every T E G, R, = 
CuEF R,-,,R,-I, (in this case RIJ = ecEF R, is a generator of R-gr). 

In particular this last characterization is very useful for applications. The first 

important one is that any left F.G.G. ring is right F.G.G. so that we can just 

speak about F.G.G. rings without regarding of the side. Clearly any strongly 

graded ring and any graded ring over a finite group G are F.G.G., but not every 

graded ring is F.G.G. 

Remark 2.4 illustrates why the polynomial ring in one variable over a division 

ring with usual Z-gradation is not F.G.G. Other applications are the following 

ones. 

If g : R + S is a morphism of graded rings of the same type and R is F.G.G., 

then S is F.G.G. (Corollary 2.7). 

The graded direct product of two graded rings R and S of the same type is 

F.G.G. iff both R and S are (Corollary 2.7). 

If R is a graded ring of type G, H is a subgroup of G of finite index and RcH) is 
F.G.G., then R is F.G.G. 

If R is a graded ring of type G and H is a finite normal subgroup of G and 

RcGIHl is F.G.G., then R is F.G.G. (Corollary 2.8). 

Conditions on ME R-gr are given for END(M) to be F.G.G. (Proposition 

2.12). 

At this point we focus our attention on those rings A such that R-gr is 

equivalent to A-mod for a fixed F.G.G. graded ring R. Proposition 3.2 shows that 

R-gr is equivalent to A-mod iff gr-R is equivalent to mod-A and thus we call such 

a ring A an admissible ring for the F.G.G. graded ring R. 
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It is proved that admissible rings for R are just the rings in the Morita 

equivalence class of rings of graded endomorphisms of the modules RZJ = 

eatF R(v), RU being a generator of R-gr. 

An F.G.G. graded ring R is called S.F.G.G. if R, is an admissible ring for R, 

i.e. S.F.G.G. rings are precisely the rings in question (1) above. 

Not every F.G.G. ring is S.F.G.G. (Example 3.15), and, as we stated before, 

not every S.F.G.G. ring is strongly graded (Example 3.5). Nevertheless in some 

particular cases (S.F.G.G.) F.G.G. rings are strongly graded. For example, it is 

proved that if an F.G.G. graded ring R has an admissible ring A with A modulo 

its Jacobson radical simple artinian, then R is strongly graded (Corollary 3.13) 

and also, if R is S.F.G.G. and R, modulo its Jacobson radical is semisimple 

artinian, then R is strongly graded. 

0. Notations and preliminaries 

All rings considered in this paper are associative with identity 1 # 0 and all 

modules are unital. 

Let R be a ring. R-mod will denote the category of left R-modules. The 

notation RM will be used to emphasize that M is a left R-module. 

Moreover if R and S are two rings, we will write RMS to mean that M is an R-S 

bimodule (left R-module and right S-module). J(R) will denote the Jacobson 

radical of R. 

Let G be a multiplicative group with identity element e. Let R = BoEG Rr be a 

graded ring of type G. We denote by R-gr (gr-R) the category of graded left 

(right) R-modules. If M = evEG M,, N = Bmtc N, are two graded left modules, 

HomR_g,(M, N) is the set of morphisms in the category R-gr from M to N, i.e. 

Horn&M, N) = { f : M + N ( f is R-linear and 

f(M,)cN,,VaEG). 

If M = ehEG M, is a graded left R-module and (T E G, then M(a) is the graded 

left module obtained from M by setting M(a), = M,,; the graded left module 

M(v) is called the u-suspension of M [6]. 

It is well known [6] that the mapping M * M(a) defines a functor 

Tf : R-gr-+ R-gr which is an equivalence of categories. 

The forgetful functor R-gr+ R-mod will be denoted by Q. If H is a subgroup 

of G, then the ring RcH), with gradation (RcH’), = R, for all x E H, is a graded 

ring of type H. 

If H is a normal subgroup of G, we will denote by R(,,,) the ring R endowed 

with the grading of type GIH delined by R, = @ hEH Rhw, 6 = Her E GIH. 

Recall that the graded ring R = BvEG R, is called strongly graded if RmRT = 

R,, for any V, T E G or, equivalently, if RmRwmt = R, for any u E G (see [3,6]). 
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A graded left module M = eVEG M, over a graded ring R = BVEC R, is called 

strongly graded if R,M, = M,, for any (T, T E G. 

Since we will use it several times we recall the following result of Dade: 

Theorem 0.1. Let R = ecEG R, be a graded ring of type G. Then the following 
statements are equivalent: 

(a) R is strongly graded; 
(b) The functor R@,< -: R,-mod-+ R-gr given by M H R gR, M, where ME 

R,-mod and RJ%~, M is a graded left R-module by the grading (RgReM), = 
R, @‘Re M, is an equivalence; 

(c) Every graded left R-module is strongly graded; 
(d) R is a generator of R-gr. 

Proof. See [3, Theorems 2.8 and 4.61 or [6, Theorems 1.3.4 and 1.5.11. Cl 

Remark 0.2. It is easy to see that condition (c) can be weakened to the following 

form: 

(cl) Every gr-simple left R-module is strongly graded. 

In fact, in this case, if S is a gr-simple module, then S, # 0 so that R generates S in 

R-gr. Thus, if (c’) is fulfilled, R generates every gr-simple left R-module. As any 

finitely generated module M in R-gr contains a gr-maximal left submodule and R 
is projective in R-gr, it follows that R generates every finitely generated module 

in R-gr and hence R is a generator of R-gr. 

Let M and N be graded left modules over the graded ring R = BUtc R,. For 

every r E G we set 

HOM,(M, N), = {f : M+ Nf is R-linear and f(M,) C NmT, V’o. E G} . 

HOM,(M, N), is an additive subgroup of the group Hom,(M, N) of all R-linear 

maps from M to N. 

HOWM, N) = TTG HOM,(M, W, 

is a graded abelian group of type G. If either G is finite or M is finitely generated, 

then HOM,(M, N) = Hom,(M, N) ( see [6, Corollary 1.2.111). If M = N, then 

END,(M) = Hom,(M, M) with multiplication fg = gof, f, g E END,(M), is a 

graded ring of type G and M = eVEG M, is a graded right END,(M)-module. In 

fact if T, (T E G and f E END,(M),, then f(M,) C M,,. 
If M, NE R-gr, then we say that N weakly divides M in R-gr if it is isomorphic 

to a direct summand of a direct sum of a finite number of copies of M. M and N 

are weakly isomorphic in R-gr if each of them weakly divides the other in R-gr. 
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M E R-gr is said to be weakly G-invariant if M and M(u) are weakly isomorphic 

for all u E G (see [3] and [6]). 

A graded ring is called left gr-noetherian if it satisfies the ascending chain 

condition for left graded ideals. Let R and S be two graded rings of the same type 

G. A ring homomorphism f : R-+ S is called a graded ring homomorphism if 

f(RC) C S, for all u E G. 

Let A be a ring, G a group. We denote by A[G] the group ring of A over G 

endowed with the G-grading: (A[G]), = A, for all v E G. 

Let A be a ring, G a subgroup of Aut(A). We denote by A * G the graded ring 

whose underlying abelian group is that one of the free A-module ACG) with 

multiplication defined by 

(as) * (bh) = (ag(b))(gh) g, h E G, a, b E A 

and G-grading (A * G)g = Ag for all g E G. 

N will denote the set of non-negative integers, Z the ring of integers. If A is a 

ring and n E N, n # 0, then M,,(A) will denote the ring of y1 X n matrices with 

entries in A. We will adopt the convention M,(A) = (0). 

1. Graded equivalence 

Definitions 1.1. Let R and S be graded rings of type G. A functor F: R-gr+ S-gr 

is called a graded functor if for every u E G, F commutes with the u-suspension 

functor, i.e. if Fo Tt = Tz 0 F. 
A graded functor F: R-gr-+ S-gr is a graded equivalence if there is a graded 

functor G: S-gr-+ R-gr such that Fo G = lS_gr and Go F = lR_gr. 

We say that R and S are left graded equivalent if there is a graded equivalence 

R-gr+ S-gr. 

Remark 1.2. Let A be a ring and G a subgroup of Aut(A). Consider the graded 

rings of type G, R = A[ G] and S = A * G. As R and S are strongly graded (see 

[6]), by Theorem 0.1 R-gr and S-gr are both equivalent to A-mod. In fact 

R, = A = S,. Thus R-gr is equivalent to S-gr. Anyway R and S are not left graded 

equivalent. 

Graded equivalences were introduced by Gordon and Green in [4]. Even if 

they considered only graded rings of type Z it is easily checked that all their 

results concerning graded equivalences still hold in the general case of graded 

rings of any type. 

We quote from [4] some results we will use later. 

Theorem 1.3. Let R and S be graded rings of type G. Then the following statements 
are equivalent: 
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(a) R and S are left graded equivalent; 
(b) There is a Morita equivalence L : R-mod-+ S-mod and a graded functor 

F: R-gr+ S-gr such that @s 0 F = L 0 QR; 

(c) There exists an object P E R-gr such that QR(P) is a finitely generated 
projective generator in R-mod and the graded ring END,(P) is isomorphic to S as 
graded rings. 

Proof. See [4, Theorem 5.41. 0 

Remark 1.4. Two graded rings can be Morita equivalent without being left 

graded equivalent. For example, let k be any field and consider R = k[X, X-‘1 
where X is a variable commuting with k and with Z-gradation given by R, = 
{ax”, a E k} for all n E Z. Let S = k[X, X-‘1 with the trivial Z-gradation: S, = S 

and S, = 0 for n # 0, n E Z. Then R-mod = S-mod but R-gr is not equivalent to 

S-gr in any sense. In fact, R being strongly graded, by Theorem 0.1 R-gr is 

equivalent to k-mod while it is easily checked that S-gr is equivalent to (A-mod)“, 

where A is the ring k[X, X-‘1 without any grading. More examples can be found 

in [4]. 

2. F.G.G. rings 

Definition 2.1. Let R be a graded ring. We will say that R is left F. G. G. if there is 

a ring A and a category equivalence between R-gr and A-mod. 

Theorem 2.2. Let R be a graded ring of type G. The following statements are 
equivalent: 

(a) R is left F.G.G.; 
(b) R-gr has a finitely generated generator; 
(c) There is a finite subset F of G such that U = BgEF R(u) is a generator of 

R-gr; 

(d) R is left graded equivalent to a strongly graded ring S; 

(e) There is a strongly graded ring S of type G such that R-gr is equivalent to 
S-gr; 

(f) There is a finite subset F of G such that, for every r E G, R, = 
c vEF Rr-db1T. Moreover, if (f) is fuljilled, U = eWEF R(W) is a generator of 
R-gr. 

Proof. (a)+(b). Let A be a ring and let F: R-gr+ A-mod, G : A-mod+ R-gr be 

a category equivalence. Then G(A) . IS a finitely generated (projective) generator 

of R-gr. 

(b) + (c). Let V be a finitely generated generator of R-gr. Then, as BrEG R(a) 
generates R-gr (see [6]), there is a finite subset F of G such that U = eUEF R(a) 
generates V. 
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(c) + (d). Let F be a finite subset of G such that RU = eWEF R(a) is a 

generator of R-gr. Then RU is weakly G-invariant. In fact, for every T E G, the 

T-suspension T: : R-gr-, R-gr being an equivalence of categories, Tf (U) = U(7) 
is a finitely generated projective generator of R-gr. Thus, as U generates-in 

R-gr-U(r) which is finitely generated and projective, U(r) weakly divides U in 

R-gr and conversely, as U(T) generates-in R-gr-U, which is finitely generated 

and projective, U weakly divides U(7) in R-gr. This holds for every 7 E G. Thus 

U is weakly G-invariant and hence END(.U) = S is a strongly graded ring of type 

G (cf. [3, Theorem 4.61 or [6, Theorem 1.5.1, p. 431). Apply now Theorem 1.3. 

(d) 3(e). Trivial. 

(e) + (a). Let S be a strongly graded ring such that R-gr is equivalent to S-gr 

and set A = S,. By Theorem 0.1 S-gr is equivalent to A-mod. Thus R-gr is 

equivalent to A-mod. 

(C)@((f). /?u = @SF R(v) is a generator of R-gr iff for every T E G there is an 

nT E N and a surjective morphism RU “,+ R(7) in R-gr. Now let n E N and let 

f:RUn+ R(7) be a morphism. Identify RUn with eVEF (R(u))“. Then, for each 

u, there exists Y, = (rV,, . . . , Y,,) E (R,-I,)” such that, for every x = (x,),~~ E 

U”, where X, = (x,, , . . . , x,,) E R(v)” 

(3) 

Clearly f is surjective iff there is an x E U” such that f(x) = 1 and then x E 

(l~“‘)~~,, f being a graded morphism. Thus f is surjective iff, for each (T E G, 

there exists x, = (x,, 2 . . . , x,n) E (R(a)“),-1 = (&l,Y such that 

c vEF ‘:=I x,,rvi = 1. 

Then 

Conversely if C VtF R.,-L,R,-I, = R,, then, for each (TE F, there is an y, E 

R7m~,R,m~, such that CuEF y, = 1. For each v E F we can write 

Y,=% x,,rLri 
1=1 

where, for each i = 1, . . . , n, x,, and I~, are suitable elements of R,-I, and RumI, 
respectively and ~1, E N. Now, F being finite, we can assume that n, is constant 

equal to a suitable II for every cr E F. Then defining f : U”+ R(T) via (3) we get 

the required surjective morphism. 0 

Corollary 2.3. Let R be a graded ring of type G. If R is strongly graded or G is 
finite, then R is left F. G. G. 0 
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Remark 2.4. Not every graded ring is left F.G.G. For example let YC be a division 

ring and consider the polynomial ring R = X[x] with the usual gradation of type 

Z: R, = 0 for n < 0 and R, = {ax” 1 a E X} for II > 0. Clearly R does not satisfy 

condition f of Theorem 2.2. 

Notation and definition 2.5. Let R be a graded ring of type G. For every subset X 

of G we set R(X) = ePEX R(u). 
If F is a finite subset of G and R(F) satisfies condition f of Theorem 2.2, then 

we will say that F satisfies left-(f) for R. An analoguos definition holds for right-(f) 

for R. 

Corollary 2.6. Let R be a graded left F.G.G. ring of type G and assume that 
F c G satisfies left-(f) for R. Then R is right F. G.G. and F’ = {w-l ) CT E F} 
satisfies right-(f) for R. 

Proof. For each r E G we have 

Then, for each 8 E G, we have 

i.e. 

which is easily seen to be the ‘right’ version of condition f of Theorem 2.2 with 

respect to the finite set F’. 0 

In view of Corollary 2.6 from now on we will simply say that a graded ring R is 

F.G.G. without mentioning left or right, but we will still distinguish between 

left-(f) or right-(f). 

Let R and S be two graded rings of the same type G. We will denote by 

R CD” S the ring R CD S endowed with the grading over G defined by 

(R&S),=R,@S_, VEG. 

Let G be an abelian group, R and S two graded algebras of type G over a ring 

Yt. We will denote with R @g S the Yt-algebra R Ba S endowed with the grading 

of type G defined by 
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Corollary 2.7. Let R and S be two graded rings of the same type G. Then 
(1) Zfg:R-+Sis a morphism ofgraded rings (g(l)=l), R is F.G.G. and F 

satisfies left-(f) for R, then S is F.G.G. and F satisfies left-(f) for S; 
(2) R W S is F. G. G. iff both R and S are. Moreover, F C G satisfies left-(f) for 

R CP’S ijf it satisfies left-(f) for both R and S; 
(3) Zf G . b 1’ 1s a e lan, R and S are graded YC-algebras and either R or S is F.G.G., 

then RC%$ S is F.G.G. 

Proof. (1) If F satisfies left-(f) for R, then, for every r E G, R, = CrEF RTm~gRu-~r 
and hence 

I = g(1) E U-F g(R7-l,)g(R,ml,) . 

As g(R,-1,) 2 S,mIu and g(RVml,) c SV-l, the conclusion follows. 

(2) If a subset of G satisfies left-(f) for a certain ring, then it is clear that any 

finite subset of G which contains this one satisfies left-(f) for the same ring. Thus 

if both R and S are F.G.G., then we can assume that there is a finite subset F of 

G which satisfies left-(f) for both R and S. Then, for every r E G, we have 

and 

Hence 

Thus F satisfies left-(f) for Rep' S, hence, by Theorem 2.2, R CBg’ S is F.G.G. 

Conversely, if R egr S is F.G.G. and F satisfies left-(f) for R CB” S, then, as the 

projections over R and S are graded ring-homomorphisms, both R and S are 

F.G.G. and F satisfies left-(f) both for R and for S, in view of (1). 

(3) Assume that R is F.G.G. The map 

g:R*R&S 
x 

definedbyg(r)=r@l,rER,isa 

Corollary 2.8. Let R be a graded 

morphism of graded rings. Apply now (1). 0 

ring of type G and H a subgroup of G. Then 
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(1) Zf H has fmite index in G and RcH) is F. G. G., then R is F. G. G.; 
(2) Zf H isfinite and normal in G and if R(G,Hj is F.G.G., then R is F.G.G. 

Proof. (1) Let E be a finite set of representatives of the left cosets of G modulo 

H:G= U EEE EH. Let F c H satisfy left-(f) for RcH! Then for every x E H 

R, = (RcH’), = c (R(H))X-~,(R(H))v+X = c RXm~,R,-~X . 
CTEF UEF 

Let L={Eu[EEE, cr E F}. Then, for every r E G 

R, = c RTm,hRh-,, . 

AEL 

In fact, if T E G, then r = EX for a suitable E E E and x E H. Then 

(2) Let rr: G+ G/H be the canonical projection. Since R(,,,) is F.G.G., by 

Theorem 2.2 there is a finite subset F of G such that for every T E G 

This means 

c R, = c (c RT+_,))( c &‘-‘r) . 
hf?H uEF hEH kEH 

As h # k implies (R,-I,~ Rk-IU-Ii) fI R, = 0, it is easy to see that 

i.e. 

whereL={ahluEF,hEH}. 0 

Proposition 2.9. Let R be a left gr-noetherian ring of type G, H a subgroup of G. 
Zf R is F.G.G., then RcH’ is F.G.G. 

Proof. Let V be a finitely generated generator of R-gr. Then, by [6, Corollary 

11.3.131, V (H) is finitely gene a r ted. Let us prove that VcH) is a generator of 

RcH’-gr. 
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Let x E H and note that (RCH’)(x) = (R(X))(~). In fact, for every h E H, it is 

((R’H’)(~))h = (RcH))hX = RAX = (KY)),, = (R(x)>/z = ((R(X))(~)),, 

Moreover, if V”-+R(x)--+O is an epimorphism in R-gr, then 

(V”)CH’ + R( ,Y)‘~’ -+ 0 is an epimorphism in RcH) -gr. Then it easily follows that 

VcH) is a generator of RcH). Therefore, by Theorem 2.2, RCH) is F.G.G. 0 

Definition 2.10. Let R be a graded ring of type G, M, NE R-gr. We shall say that 

M W.-h. (weakly-homogeneously) divides N in R-gr if for every u, T E G, M(a) 
weakly divides N(cT) in R-gr, i.e. iff M(u) is isomorphic in R-gr to a direct 

summand of a direct sum of a finite number of copies of N(uT). 

Notation 2.11. Let R be a graded ring of type G, ME R-gr, F a subset of G. We 

shall denote with M(F) the graded left R-module eaEF M(a). 

Proposition 2.12. Let R be a graded ring of type G, ME R-gr. Then the graded 

ring END(M) is F. G. G. iff there is a finite subset F of G such that M W.-h. divides 
M(F) in R-gr. In this case F satisfies left-(f) for END(M). 

Proof. END(M) is F.G.G. iff there is a finite subset F of G such that for every 

TEG: 

or equivalently 

(END(M)), = 2 (END(M)),,(END(M)),-~7~~ for every T E G , 
FEF 

i.e. such that for every T E G there is an n, E N and elements i, E END(M),,,, 

g,, E END(M)Vm~Tm~, i = 1, . . . , n,, u E F, such that 

Now, for every 0 E G, 

END(ML = Hom,.,,(M(~), M(~Tu)) , 

END(M)Vm17-I = Hom,_,,(M(&a), M(8)) 

and M(~T(T) = (M(cT))(~T). Th us we get that END(M) is F.G.G. iff there exists a 

finite subset F of G such that M w.-h.divides M(F). q 
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Proposition 2.13. Let R be a graded ring, A a ring and F: R-gr+ A-mod, 

G : A-mod+ R-gr a category equivalence. Then there is a positive integer n and an 

idempotent matrix CY E M,,(A) such that 

R, = (wM,(A)a . 

Proof. Let AQ = F(,R). Then AQ is projective, finitely generated and R, = 
EndR_gr(RR, RR) z End,(,Q). AQ, being projective and finitely generated, is a 

direct summand of A’“’ for a suitable n E N. 0 

3. Admissible rings and S.F.G.G. graded rings 

Lemma 3.1. Let R be a graded ring of type G, F’ = {u, , . . . , u,,} a finite subset of 
G, U = R(F). Then 

I 

R, Ru,rZl . . . Krlu;l 

R,,;1 R, . ’ . R,,,l 

(1) End,.,,(,U) z : 
1 

and 

(2) 

4 Q, ’ ’ ’ &I, 
Kg,, Re . . . Rc+rn 

End,,.,(U,) G : 

R,,,,l R,,l,2 . . . Re 

Proof. (1) See [6, Lemma 1.5.41. 

(2) Easily proved in a way analogous to (1). One should only note that if 

e,, . . . , e, is a homogeneous basis of U, with deg e, = a, and if f E End&U,), 

then for every i = 1, . . . , n 

f(ej) = i: e,r,i with deg rli = aJ’u, . 0 
i=l 

Proposition 3.2. Let R be an F.G.G. graded ring of type G, A any ring. Then the 
following statements are equivalent: 

(a) R-gr = A-mod; 

(b) There exists a finite subset F of G such that U = R(F) is a generator of R-gr 

and End R_gr(U) is Morita equivalent to A; 



When is R-gr equivalent to the category of modules? 289 

(c) For every finite subset F of G, if U = R(F) is a generator of R-gr, then 
End,_,,(U) is Morita equivalent to A; 

(4 gr-R = mod-A. 

If these conditions are fulfilled we shall say that A is an admissible ring for R. 

Proof. (a) j (c). Let U = R(F) b e a generator of R-gr. Then S = END(, U) is 

strongly graded and S, = End,_,,(U). Thus A-mod = R-gr = S-gr = S,-mod. 

(c) 3 (b). Trivial in view of Theorem 2.2. 

(b)+(a). See (e)+(a) of Theorem 2.2. 

(b) 3 (d). Let U = R(F) be a generator of R-gr. Then F satisfies left-(f) for R, 
and Corollary 2.6 shows that U = R(F) where F = { Y1 1 CT E F}. 

0 is a generator of gr-R. If F = {a,, . . . , a,}, then F = {a;‘, . . . , a,‘}, and 

by Lemma 3.1 

2 End &q(U) . 0 

Definition 3.3. Let R be a graded ring of type G. We shall say that R is S. F. G. G. 
if R is F.G.G. and R, is an admissible ring for R. 

Remark 3.4. Clearly, by the well-known result of Dade (see Theorem 0.1) every 

strongly graded ring is S.F.G.G. 

The following example shows that the converse, even if the group G is finite, 

does not generally hold: 

Example 3.5. Let A be a commutative ring such that A x A z A (e.g. A = 
ni,, Bi, B, = B any commutative ring, I an infinite set) and consider the graded 

ring R = A X (0) of type G = (0, l}. Then for U = R(G) we have 

End,.,,(U) z (t l]= A x A = A. 

Thus R is S.F.G.G. Clearly R is not strongly graded. 

Anyway, if R is an F.G.G. (resp. S.F.G.G.) ring having ‘special type’ of 

admissible rings, then R is strongly graded. To be more precise we need the 

following: 



290 C. Menini, C. Ncista’sescu 

Definitions 3.6. We shall say that a ring A has 

(1) property (*) if any non-zero finitely generated projective left A-module is a 

generator of A-mod; 

(2) property (**) if any finitely generated projective left A-module with 

edomorphism ring isomorphic to A is a generator of A-mod. 

Before relating these definitions with our study of F.G.G. rings we want to 

investigate a little bit the class of rings with property (*) (resp. (**)). 

Clearly any ring, for which non-zero finitely generated projective modules are 

free, has property (*). Moreover, we have 

Proposition 3.7. Let A be a ring, J = J(A) its Jacobson radical. Zf AIJ has property 

(*) (resp. ( * *)), th en also A has this property. 

Proof. Let AP be a finitely generated projective left A-module. Then (see [l, 

Proposition 17.91) .P is a generator of A-mod iff *P generates every simple left 

A-module. Clearly this holds iff APIJ(AP) generates every simple left A-module, 

i.e. every simple left A/J-module. 

By [l, Proposition 17.101, J(,P) = JP. Thus AP generates A-mod iff *PIJP 
generates every simple left A/J-module. Clearly *P/JP z A/J @)A P is a finitely 

generated projective left A/J-module. Moreover, 

End,,,(PIJP) z End(,P)lJ(End,P) 

(cf. [l, Corollary 17.121). Thus if *P is non-zero, then PIJP is non-zero and if 

End(.P) E A, then End,,,(PIJP) E A/J. 
Therefore if A/J has property (*) (resp. (**)), then A has this property too. 0 

Lemma 3.8. Any simple artinian ring A has property (*). 

Proof. Let AP be a non-zero finitely generated projective left A-module. Clearly 

*P has a simple quotient. As all simple left A-modules are isomorphic, *P 
generates every simple left A-module and hence AP is a generator (cf. [l, 

Proposition 17.91). 0 

Corollary 3.9. Let A be a ring, J = J(A) its Jacobson radical. Zf AIJ is simple 
artinian, then A has property (*). 0 

Lemma 3.10. Any semisimple artinian ring A has property (**). 

Proof. Obvious. q 
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Proposition 3.12. Let R be a graded ring. Then 
(1) Zf R is F.G.G. and has an admissible ring A with property (*), then R is 

strongly graded; 
(2) If R is S. F. G. G. and R, has property (**), then R is strongly graded. 

Proof. Let F: R-gr+ A-mod, G : A-mod -+ R-gr be a category equivalence. Then 

*P = F(R) is a finitely generated projective left A-module (and End(,P) = 

End,_,,(,R) = R,). Thus if A has property (*) (resp. A = R, has property (**)), 

then AP is a generator of A-mod. 

Thus RR g gr G(,P) is a generator of R-gr. By Theorem 0.1, this means that R 
is strongly graded. 0 

Corollary 3.13. If R is an F. G. G. graded ring having an admissible ring A with 
A/J(A) simple artinian, then R is strongly graded. 0 

Corollary 3.14. If R is a S.F.G.G. graded ring and R,IJ(R,) is semisimple 
artinian, then R is strongly graded. •i 

Example 3.15. Let D be a division ring and R = D X M, the trivial extension of D 
by the bimodule ,M, . Then R is a graded ring of type G = (0, l} with 

R, = D x (0) and R, = (0) x M. Clearly R is F.G.G. but not strongly graded, as 

R,R, =O. R is not S.F.G.G. In fact, as R,= D X (0) if R were S.F.G.G., by 

Corollary 3.14 R would be strongly graded. 
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